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Hierarchy and polysynchrony in an adaptive network
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We describe a simple adaptive network of coupled chaotic maps. The network reaches a stationary state (frozen
topology) for all values of the coupling parameter, although the dynamics of the maps at the nodes of the network
can be nontrivial. The structure of the network shows interesting hierarchical properties and in certain parameter
regions the dynamics is polysynchronous: Nodes can be divided in differently synchronized classes but, contrary
to cluster synchronization, nodes in the same class need not be connected to each other. These complicated
synchrony patterns have been conjectured to play roles in systems biology and circuits. The adaptive system we
study describes ways whereby this behavior can evolve from undifferentiated nodes.
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I. INTRODUCTION

Networks allow us to model a huge variety of complex
systems where a multitude of agents dynamically interact [1,2].
The agents are modeled as nodes and the links of the network
stand for their interactions. When the dynamics of the agents
can affect the pattern of interactions, i.e., change the structure
of the network, we speak of complex adaptive networks [3,4].
These networks can show a variety of dynamical and structural
properties depending on the dynamics of the agents, the
nature of the interactions, or the adaptation mechanism [5–13].
Adaptive networks have been already applied to different
problems such as neural networks [14–17], epidemic spreading
[18–20], and opinion formation [21,22].

The dynamics of the agents at the nodes of adaptive
networks can be very complicated. In Ref. [23] we de-
scribed numerical simulations of an adaptive network that
could evolve into a state with polysynchronous dynamics
at appropriate parameter values. Polysynchrony is a form of
network synchronization where groups of nodes synchronize
without being directly connected [24–28]. The term sublattice
synchronization has also been used for this same phenomenon
[29–31]. The aim of this paper is to provide a more rigorous
and complete analysis of the adaptive network introduced
in Ref. [23]. We describe in detail the dynamical regimes
this model of adaptive network can show and explain the
different regimes through the analytical study of the stability
of the different attractors or synchronized states. We also
prove results about the asymptotic stationarity of the network
topology and describe the hierarchical nature of this frozen
state (although here we add one simplifying rule). The structure
of the paper is as follows. In Sec. II the adaptive network
introduced in Ref. [23] is defined. The dynamics of the network
topology has a stochastic element driven by a homophilic
principle, so nodes in similar states “like” to be connected
together. At each time step the network topology can change
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according to a set of rules, thus changing the inputs to the
dynamics at the nodes. We refer to this process as rewiring. In
Sec. III we explore the dynamics of the network numerically.
We show that the network reaches a frozen state where the
rewiring stops. The transient times to the frozen state are
evaluated as a function of the network size and the coupling
strength. The different dynamical regimes are also described
in this section in terms of the synchronization of the nodes.
We provide several examples of polysynchronous networks
and study the probability of finding polysynchrony as a
function of the coupling strength. The numerical observations
show that the synchronization effect is very strong, and the
dynamics at different nodes can become indistinguishable at
machine accuracy. This effect, which we believe is interesting
in that it reflects what any finite measurement could discern,
means that some of the final topological states observed are
extremely unlikely from a mathematical point of view. In
Sec. IV we show formally that a closely related network
rule that eliminates these mathematically unlikely states must
lead to a stationary topology. In Sec. V we summarize and
discuss the main results of this work and their potential
applications. The detailed stability analysis of the fully
synchronous and the polysynchronous states is given in two
appendices.

Many accounts of adaptive networks concentrate on the
increased complexity of the evolving network topology (to
scale-free networks, for example). In contrast, the systems
described in this paper evolve towards a stationary network
topology with some striking features such as a strong hi-
erarchical structure and polysynchronous dynamics at the
nodes. Our models therefore point the way to rather different
application areas: the evolution to networks with relatively
simple structure having dynamics correlated in different nodes
that are not directly connected by the network lends itself
to interpretations in terms of functional differentiation of
initially equivalent units, where the differentiated systems
are distributed across the network rather than clustered.
This and other possible applications in biological and social
systems is commented on further in the final section of this
paper.
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II. THE MODEL

The model consists of a directed network of N nodes where
the dynamics of the ith node (i = 1, . . . ,N) are given by

xi
n+1 = f

(
xi

n

) + ε

m

N∑
j=1

Aij
n

[
f

(
xj

n

) − f
(
xi

n

)]
. (1)

We choose f to be the fully chaotic logistic map f (x) =
4x(1 − x) and An is the adjacency matrix of the network at
time step n, so A

ij
n = k if there are k directed edges from j to i.

In the figures we represent the directed edges by an edge with
an arrow indicating the direction of the flow of information.
Thus the head of the arrow is the node that receives the input
and the tail of the arrow is the node that influences the node
at the head, i.e., if A

ij
n �= 0 there will be a directed edge (an

arrow) from node j to node i. Each node is assigned the same
fixed number m of incoming links so

N∑
j=1

Aij
n = m, (2)

and we choose m = N − 1 throughout this paper. The input
degree of the nodes is therefore fixed. This is particularly
important for the interpretation of the examples we show
throughout the paper where we have avoided labeling the
weights of the connections; they always sum to m. Moreover,
we will not allow a link from a node to itself so Aii

n = 0 for
all n.

At each iteration the ith node is influenced by the dynamics
of those nodes to which it is connected by an incoming arrow.
We will call these nodes the neighbors of node i. Due to the
condition imposed by (2), a node can have at most m neighbors.

As indicated in the Introduction, the network topology
changes according to a homophilic principle. At each time
step the node dynamics evolves according to (1). The values
of the map f at each node is compared to the values of f at
its neighbors and then a “bad” set of neighbors is identified.
These are those with f values far from that at the node they
influence. The connections to the bad node are then changed
at random to nodes that are not bad, and then the process
repeats. More precisely, the nodes rewire their links through
the following mechanism. At each iteration n we compute the
distance matrix D

ij
n ,

Dij
n =

{∣∣f (
xi

n

) − f
(
x

j
n

)
big|, if A

ij

n−1 �= 0
0, if A

ij

n−1 = 0
, (3)

and calculate from it the mean distance of a node to all its
neighbors

〈D〉in = 1

ai
n

N∑
j=1

Dij
n (4)

where ai
n is the unweighted number of neighbors of node i at

time step n, i.e., the sum over j of sign(Aij

n−1).
We have chosen the rewiring to be homophily driven, so

nodes prefer to be connected to nodes being in a similar state.
Therefore, we identify the bad neighbors Bi

n of each node i at

iteration n,

j ∈ Bi
n if Dij

n > 〈D〉in. (5)

Thus a neighbor j is considered bad if its distance D
ij
n to the

node is larger than the average distance of the neighborhood
〈D〉in. The good neighbors of node i are then given by

Gi
n = {1, . . . ,N}\(Bi

n ∪ {i}). (6)

Once the good and bad neighbors have been identified node
i will break the links coming from Bi

n and randomly rewire
them to nodes in Gi

n. Let bi
n be the number of bad connections,

i.e., the sum of the connections to i from bad neighbors,

bi
n =

∑
j∈Bi

n

A
ij

n−1. (7)

Now choose bi
n elements of Gi

n at random and suppose that rik
n

is the number of times node k is chosen. The adjacency matrix
at the next time step is

Aik
n =

{
0, k ∈ Bi

n ∪ {i}
Aik

n−1 + rik
n , k ∈ Gi

n

. (8)

It is worth noting that Gi
n contains two sets of nodes: those

that were neighbors of i at time n − 1 and which were not
bad according to the criterion (5) at time n − 1 and those that
were not neighbors of i at time n − 1. This means that at each
time step with Bi

n nonempty, connections from outside the set
of previous neighbors becomes possible and that there is no
memory of whether a node has been bad in the past.

In all the cases described here the initial connectivity is
the symmetric all-to-all connectivity where each node in the
network is connected to all the possible m = N − 1 neighbors
and Aii

0 = 0.

III. NUMERICAL RESULTS

A. Asymptotic network topology

The first main observation is that, contrary to other models
of adaptive networks of chaotic maps [5,6], in this model the
network reaches a frozen state where the rewiring stops for all
values of ε ∈ [0,1]. The existence of the frozen state is partly
explained by the rewiring mechanism chosen (see Sec. IV for
further explanation and mathematical proof). If, for instance, a
node i receives all its incoming links from one single neighbor
k at some iteration n′, then 〈D〉in = Dik

n and Bi
n = ∅ for all

n > n′. Therefore i will remain locked to this neighbor and
there will be no further change to this part of the network
topology.

The duration of the transient to the frozen state appears
to increase exponentially with the system size N (Fig. 1)
and depends on the value of ε (Fig. 2). The dependence of
the transient length on the coupling constant is a sign of
the influence of the dynamics in the rewiring and freezing
processes. The exponential increase of the transient time with
the system size is similar to that described in Ref. [32] for the
case of a coupled map lattice with diffusive coupling although
the definition of the transient differs. In the lattice case the
topology is fixed and the transient is defined as the time it
takes to reach a certain attractor.

062809-2



HIERARCHY AND POLYSYNCHRONY IN AN ADAPTIVE . . . PHYSICAL REVIEW E 89, 062809 (2014)

FIG. 1. Average transient length to the frozen state as a function
of the system size N for different values of the coupling constant ε.
The average is calculated over 500 realizations of the system. The
frozen state is identified when the network topology remains constant
for 104 iterations.

In both Fig. 1 and Fig. 2 there seems to be a marked
difference between parameters ε in the interval [0.25,0.75]
and parameters outside this interval. The transient times appear
significantly shorter for parameters inside this central interval,
and as we shall see (although this is, of course, not an
explanation) the dynamics of the nodes for the stationary
network differs in these two cases, too.

In Fig. 3 we show six examples of final topologies of
a network of N = 10 nodes for different values of ε. The
most clear feature of these network examples is the strong
hierarchical structure. This model does not allow a tree
structure as a final topology since all nodes have input links
by definition and therefore the network will have at least one
cycle. However, the structure is very close to the hierarchy of
a tree structure if we consider strongly connected components
of the network as roots. (We say a set of nodes is strongly
connected if there is a path in the graph following the directed

FIG. 2. Average transient length to the frozen state as a function
of the coupling constant ε for different values of the system size N .
The average is calculated over 500 realizations of the system. The
frozen state is identified when the network topology remains constant
for 104 iterations.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Examples of the final network topology (N = 10). The
values of the coupling constant are as follows: ε = 0.1 in (a) and (b);
ε = 0.4 in (c); ε = 0.6 in (d); ε = 0.8 in (e); ε = 0.95 in (f).

edges or arrows between any two nodes.) Inspired by the
definitions of “trophic level” and “trophic height” introduced
in Ref. [33] for the study of food webs, we can define the
“level” of a node as the minimum (directed) path length from
the root to the node and the “height” of a node as the average
distance over all possible directed paths from the root to the
node. We say a network is strongly hierarchical if level and
height coincide for all the nodes in the network. We can see
that following this definition all the topologies shown in Fig. 3
are strongly hierarchical.

The observation of these topologies also allows us to deduce
some dynamical properties of the network. In Fig. 3(a) and
Fig. 3(b) (ε = 0.1) all nodes are locked to one single neighbor.
In the remaining the examples there are nodes with inputs
coming from two different neighbors. As we shall see in the
following sections, this is due to synchronization phenomena
in the strongly connected components. When a node i has only
two neighbors j,k and these are synchronized (xj

n = xk
n , for

all n), then D
ij
n = Dik

n = 〈D〉in for all n and the node remains
locked to its neighborhood. Mathematically, this is highly
unlikely since usually the orbits synchronize only eventually
and are therefore never exactly the same. However, we find
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FIG. 4. Probability of a node being in a strongly connected
component of size n calculated over 500 initial conditions for each
value of ε.

such states due to machine-precision effects in the numerical
computations. In Sec. IV, where we prove the freezing of the
network, a extra rule for the rewiring mechanism is added to
avoid such situations.

In Fig. 4 we show the probability that a node belongs to a
strongly connected component of a certain size as a function of
ε. As could be already appreciated in Fig. 3, the most common
strongly connected components are pairs and triplets except in
the region of large ε (ε > 0.9) where bigger strongly connected
components are possible. This and the rest of the variations of
the probabilities with ε can be better understood by studying
the synchronization dynamics. Therefore, we will come back
to this figure in the next section.

B. Dynamics

We study now the dynamics of the nodes in the final network
as a function of the coupling constant. Our main interest is to
see if any nodes in the network synchronize and how they do
it.

To measure the synchronization of nodes we find it useful
to define the matrix,

βij = θ

(
1

τ

n′+τ∑
n=n′

∣∣xi
n − xj

n

∣∣ − δ

)
, (9)

where θ (x) is the Heaviside step function, n′ is a long transient
that we allow in order to be sure the network has frozen and
the dynamics have stabilized, and δ is a small quantity that we
introduce to properly detect eventually synchronous dynamics
(numerically, machine-precision effects do the work). The
element βij is equal to zero if the trajectories of nodes i and j

are fully synchronized (xi
n = x

j
n ) during τ iterations after the

transient and is equal to one otherwise.
We can now define a measure of full synchronization of the

network as

α = 1 − 1

N (N − 1)

∑
i,j

i �= j

βij . (10)

This measures the percentage of synchronized pairs of nodes
(connected or not) over the total number of pairs. If α = 1 all

FIG. 5. Averages over 500 initial conditions of the synchrony
measures α and αC as a function of the coupling parameter ε. The
frozen state is identified when the network topology remains constant
for 104 iterations. Parameters: N = 10, τ = 10, n′ = 104 − τ .

nodes in the network are synchronized in the same trajectory
while if α = 0 no two nodes in the network are synchronized.

Since our network can split in several disconnected compo-
nents and each connected component could be fully synchro-
nized in a different trajectory, we introduce a second quantity
to take this into account and measure the synchronization only
between pairs of connected nodes. We can thus define the
connected component synchronization as

αC = 1 − 1

|C|
∑

(i,j )∈C

βij , (11)

where C is the set of pairs of connected nodes and |C| is the
cardinality of this set.

We can see the values of α and αC as a function of ε in
Fig. 5. To explain the different regimes in this figure it is
very useful to study first the dynamics of the most common
small strongly connected components such as the completely
connected pair, the triplet with transposition symmetry and
the three-cycle shown in Fig. 6. Since these act as roots from
which the rest of the network takes their inputs, the dynamics
of these components is what determines the behavior of the
rest of the nodes. In Appendix A we detail the calculations.
Here we will only report the results that are of interest for the
discussion. The Lyapunov exponent of the fully chaotic logistic
map (r = 4) is λ = ln 2. Substituting this in (A5) we find that
the synchronous chaotic state of the completely connected pair
is stable in the interval 0.25 < ε < 0.75. Similarly, the triplet
with transposition symmetry (A6) has a stable synchronous
state if 0.5 < ε < 0.75. On the other hand, for the fully chaotic
logistic map (r = 4) used here the three-cycle (A8) has no
stable synchronous state. Another important fact is that a node
locked to a synchronized set of nodes (all following an orbit
of the uncoupled logistic map), as in (A12), will synchronize
to them if ε > 0.5. This results makes the interpretation of
Fig. 5 much more straightforward. The change of regime
at ε = 0.25 is explained by the strongly connected pairs
becoming synchronized. Also, in Fig. 4 we can see that
the probability of finding pairs in the final network greatly
increases. At ε = 0.5 the synchronized state of the triplet with
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FIG. 6. (a) Completely connected pair (two-cycle). (b) Triplet
with transposition symmetry. (c) three-cycle.

transposition symmetry becomes stable. This is likely to be the
cause of the increase, at ε = 0.5, of the probability of being
in a strongly connected component of size n = 3. Moreover,
a node locked to a synchronized pair or triplet will become
synchronized with it and due to the hierarchical structure of
the networks, this opens the possibility for the whole network
to synchronize in the same orbit. When ε = 0.75 the pair and
the triplet synchronized states both lose stability. However,
Fig. 5 shows that in both 0.12 � ε � 0.2 and ε > 0.75 there
is a considerable amount of synchronized nodes in the final
networks even though none of the most common strongly
connected components has a stable synchronous state. This
is partly caused by the phenomena of polysynchrony that we
explain in detail in the next section.

C. Polysynchrony

In most studies of synchronization on networks, if two or
more nodes synchronize, then they are connected directly
in the network, and the synchronized states form clusters.
The term polysynchrony [24,25] was introduced to describe
a different form of synchronization on networks for which
the synchronized nodes are not necessarily directly connected
within the network. Mathematically, the possibility of polysyn-
chrony depends on the particular topology of the network
and the existence of a balanced equivalence relation between
the nodes with respect to their inputs. In other words, we
can find polysynchrony in a network if we can “color” the

FIG. 7. Example of polysynchronous network for ε = 0.85.
Nodes filled with the same pattern are synchronous. In this case
each synchrony class is attracted to a different fixed point.

nodes of the network in such a way that nodes of the same
color receive similar inputs. Examples, and further analysis of
general conditions for the existence of such states can be found
in Refs. [24–28].

We illustrate now the phenomenon of polysynchrony in our
model with several examples from the simplest case of fixed
point dynamics to more involved examples of quasiperiodic
and chaotic polysynchronous dynamics. In Fig. 7, for ε =
0.85, we find that each synchrony class has a fixed point
as the final attractor. These fixed points correspond to the
fixed point dynamics of the completely connected pair since
the root of the network in this example is composed of three
completely connected pairs. In fact, for most of the examples
of polysynchrony provided the quotient system of the network,
obtained by identifying synchronized nodes, reduces to a
completely connected pair [23]. Therefore, the available dy-
namics for the network are those of the completely connected
pair. These dynamics have been thoroughly described in the
literature [34–36] and Fig. 8 is meant to provide an intuition
of the available attractors and bifurcations as a function of the
coupling strength. It is interesting for our study to note that the
completely connected pair of fully chaotic logistic maps can

FIG. 8. Bifurcation diagram as a function of ε for the system of
two coupled fully chaotic logistic maps (A3).
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FIG. 9. Example of polysynchronous network for ε = 0.18.
Nodes filled with the same pattern are synchronous. The dynamics
of the synchrony classes is periodic with period 2. Nodes in different
classes oscillate in antiphase.

give rise to fixed point or periodic, quasiperiodic, and chaotic
dynamics.

For instance, in Fig. 9 for ε = 0.18 we find a network with
polysynchronous period 2 dynamics. The dynamics is divided
into two synchrony classes following the same period 2 orbit
in antiphase. Since for a given ε the dynamics of all pairs
is the same, the nodes of a pair are synchronous with the
corresponding nodes of the other pair.

In Fig. 10 (for ε = 0.861), the network has divided into two
separate clusters. In one of them the dynamics of the nodes
is quasiperiodic while in the other it is periodic with period
3. Both clusters have a triplet with transposition symmetry
as a root. As in the previous examples no two synchronized
nodes are connected and all nodes with equivalent inputs
are synchronized. Although the two clusters have different
dynamics, their quotient systems are completely connected

10 9 

2 

4 

1 8 

5 3 

6 7 

x4 

x1 

x6 

FIG. 10. Example of polysynchronous network for ε = 0.861.
Nodes filled with the same pattern are synchronous. The nodes in the
left cluster follow quasiperiodic orbits while the nodes in the right
cluster follow period 3 orbits.

7

1 4

3 5 8 2

610 9

FIG. 11. Example of polysynchronous network for ε = 0.14.
Nodes filled with the same pattern are synchronous. In this case
the nodes in the completely connected pair follow period 2 orbits as
in Fig. 9 and the rest of the nodes follow different period 4 orbits.

pairs and, therefore, both the period 3 and the quasiperiodic
orbit are attractors of the completely connected pair (see Fig. 8)
when ε = 0.861.

Figure 11 shows a slightly different example of polysyn-
chrony. As in Fig. 10, the network has split into two clusters.
The roots of the clusters are completely connected pairs. The
dynamics of the nodes in the pairs is periodic with period 2 as
in Fig. 9. The two nodes inside the pair follow the same orbit
but they are out of phase. The dynamics of the rest of the nodes
in the network is periodic with period 4. Interestingly, in this
example we can see how nodes with the same input (such as
nodes 1 and 4) do not necessarily synchronize.

This particular case is more involved because we find here
an instance of spatial route to chaos in an open flow similar
to that described in Refs. [37–40]. In Fig. 12 we observe
the prototypical open flow system, consisting of a chain of
unidirectionally coupled maps. In this case the system is closed
on one side by a completely connected pair. The period 2
orbit of the pair for ε = 0.14 is fed into the chain as a fixed
boundary condition and we observe a spatial period-doubling
bifurcation. What we observe in Fig. 11 is merely the beginning
of this route to chaos.

Figure 13 shows an example of polysynchronous network
for ε = 0.78 where the dynamics of the nodes is chaotic. It
is important to note that the synchronized trajectories do not
correspond to trajectories of the uncoupled logistic map. If this
were the case, nodes 7 and 9 would synchronize to nodes 2
and 3 since ε > 0.5 [see Eq. (A13)].

0.4
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0.6

0.7

0.8

0.9

1

2 4 1 3 5 7 9 6 8 10 

x  

4

5

6

7

8

9

x

FIG. 12. Example of network similar to an open flow system with
a completely connected pair at one end that forces the system with a
period 2 orbit. We can see how the dynamics of the nodes follow a
spatial route-to-chaos along the chain. In this example ε = 0.14.
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FIG. 13. Example of polysynchronous network for ε = 0.78.
Nodes filled with the same pattern are synchronous. The dynamics of
both synchrony classes is chaotic in this case.

Finally, in Fig. 14 we show the probability of finding
polysynchrony in the network as a function of the coupling
constant ε. Numerically, to assess whether the final network
is polysynchronous, one can compare the differences matrix
δ

ij
n = |xi

n − x
j
n | and the adjacency matrix once the network

has stabilized. If the nondiagonal zero elements of δij

(synchronous nodes) correspond to nonconnected nodes in the
adjacency matrix, then the network is polysynchronous. As
we have already detected in the study of synchrony in Fig. 5,

FIG. 14. Percentage of final network topologies of size N = 10
showing polysynchronous patterns calculated over 500 realizations
of the system as a function of ε. (Reprinted from Ref. [23] with
permission.)

there are two intervals of coupling strength values for which
polysynchrony is possible.

The regions of polysynchrony in Fig. 14 can be better
understood by studying the stability of the different polysyn-
chronous dynamics. In Appendix B we study the stability of
the simplest (and more common) polysynchronous states in
the triplet with transposition symmetry which is one of the
smallest structures that can show polysynchrony. As explained
in Appendix B, the obtained results are independent of the
value of m′ [see Fig. 6(b)] and therefore are also valid
for the case of a completely connected pair with a third
node unidirectionally coupled to one of the nodes in the
pair (m′ = m or m′ = 0). The polysynchrony in the interval
0.12 � ε � 0.20 is mainly explained by the stability of the
period 2 polysynchronous state. This state is stable in the
range 0.140375 � ε � 0.193814. Although this state occupies
most of the interval, quasiperiodic polysynchronous states
and periodic polysynchronous states of higher period can be
numerically witnessed (Fig. 8). As we have also determined
analytically, chaotic polysynchrony with coupled fully chaotic
logistic maps (λ = ln 2) is only possible for ε > 0.75. This
fact, together with the stability of the fixed-point polysyn-
chronous state in the range 0.806186 � ε � 0.86 accounts
for most of the polysynchrony found for ε > 0.75. However,
as before, other periodic and quasiperiodic polysynchronous
states can be found in that region.

IV. ANALYSIS OF THE FROZEN STATE

As noted earlier in the discussion of Fig. 3 some numerical
simulations lead to stationary (frozen) networks in which one
or more nodes has more than one input. Mathematically, this
can happen only if there is complete synchronization between
the input nodes, not simply that the values approach each
other. This is highly unlikely, and the fact that we find these
configurations in examples reflects the speed of convergence
to synchronization and the finite precision of the simulations.
To avoid this possibility, and to make our proofs simpler, we
use a slightly modified rewiring rule in this section. Equations
(5)–(8) specify how to change the network structure if there
exists j with D

ij
n > 〈D〉in. We now add an additional rule

to resolve the ambiguity that arises if node i has more than
one neighbor and D

ij
n = 〈D〉in for all of these neighbors. The

additional rule, which we will refer to as rule (R), states the
following:

(R) IfBi
n = ∅ and i has more than one neighbor then choose

a neighbor ki at random and set

Aij
n =

{
m if j = ki

0 if j �= ki
. (12)

Thus if all the neighbors are “good,” which would have led
to no rewiring in the previous rule, we choose one of these at
random and rewire all inputs to node i from this choice. Of
course, once this is done there can be no further rewiring (as
the node k is compared only to itself) and so the connection to
node i is from a single node ki . In terms of the polysynchronous
states observed numerically, this rule would lead to further
evolution in the network topology of the polysynchronous
networks shown in the previous section but polysynchrony
would still occur (although in simpler networks).
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Note that since the dynamics has a stochastic component it
is not surprising that the freezing theorem will also be proba-
bilistic: We will prove that the probability that the network has
not frozen by time n, i.e., the dynamics of the network (but
not necessarily the dynamics on the nodes) is stationary from
time n onwards, tends to zero as n tends to infinity.

Before writing down the detailed calculations we will
describe the strategy of the proof. We begin by considering
a slightly modified system; one that is realized with nonzero
probability in the dynamics described above. The finite
probability system analyzed here is a subsystem of the general
case in which at each time step, every connection that is rewired
is rewired to the good node to which it already has the most
connections (or one of these at random if there are two or
more such nodes). At each time step, either a node has only
one neighbor, and there can be no rewiring, or the number of
connections to the most connected node increases by at least
one. Since each node has m inputs, there will be one neighbor
within m time steps. At each time step this happens in the real
system with a probability that is bounded below by a fixed
nonzero p. Hence, for any finite T there is a finite probability
(greater than pT ) that this revised rule will be used at each
of the next T time steps and, hence, as n goes to infinity, the
probability of freezing goes to one. Returning to the original
system this modified system occurs for m times steps with a
finite probability, and, hence, the probability that this modified
rule is applied is nonzero and the probability that the original
system does not freeze tends to zero as time goes to infinity.
We will now provide the details.

The modified system is specified as follows. At each time
step n the mean distance 〈D〉in is calculated which determines
the good set and bad set, Gi

n and Bi
n for each i ∈ {1, . . . ,N} as

explained in Sec. II, Eqs. (3)–(6). Now the rewiring condition
(5) implies that at least one of the nodes that is “good” for a
given node at time n − 1 is also “good” for that node at time n,
so it is always possible to choose a node k(i,n) ∈ Gi

n such that

A
ik(i,n)
n−1 = max

j
A

ij

n−1,

where the maximum is over j ∈ Gi
n−1 ∩ Gi

n, and if the
maximum is attained by more than one node, one of these is
chosen at random. Then if bi

n is the valency of the bad nodes
as defined in (7) then

Aij
n =

⎧⎪⎨
⎪⎩

0 if j ∈ Bi
n ∪ {i}

A
ij

n−1 if j ∈ Gi
n\{k(i,n)}

A
ij

n−1 + bi
n if j = k(i,n)

. (13)

If bi
n �= 0, then by definition Aik(i,n)

n > A
ik(i,n−1)
n−1 and so (since

they are bounded by m) after at most m iterations for each
i there exists k and r � m such that Aik

r = m, bi
r = 0, and

Aik
s = m for all s > r . In other words the network has frozen.
This rule could be the outcome of the original rules when the

bad set is nonempty if all but one of the numbers r
ij
n were zero

and so the remaining r
ij
n equals bi

n and this final connection
is to a particular chosen node (that with the largest current
connectivity to i). If there are s bad nodes and N − s good
nodes, then for a given i the probability of picking the “right”
good node is 1/(N − s) and so the probability of rewiring all
the bad nodes to this node is 1/(N − s)b

i
n . Now bi

n � m and

N − s � N so the probability of making this choice is greater
than (1/N )m. This is true for each of the N nodes labeled by i

and so the probability of the original system behaving in this
way in one time step is greater than (1/N)mN .

Now consider using the modified rule (13) together with the
additional rule (R). Then at each time step either the number
of connections of the most connected node to i increases by at
least one or there is only one node connected to i and so there
can be no further changes to the connections to i. Since there
are a total of m connections to each node, this latter state must
be achieved within m time steps of this modified system, after
which it is frozen (and it is frozen whichever rules are used
after this stage).

Now, the probability of applying this modified rule to the
original system for m consecutive time steps is just (1/N)m

2N ,
so if we return to the original system with our additional rule
(R), time can be divided up into segments of length m, and
so in time rm there are r independent opportunities to use
the modified rule that leads to freezing, each with probability
greater than (1/N )m

2N , where the extra factor of m in the
exponent reflects the fact that the modified rule is applied at
most m times to obtain the frozen state. So the probability that
the system does not freeze in time rm is less than(

1 − 1

Nm2N

)r

, (14)

which obviously tends to zero as r → ∞, completing the
proof.

The estimate of the probability could be improved consid-
erably, for example, by considering overlapping time intervals,
but we are only interested in whether the probability of this
not happening tends to zero, and for this the argument above
suffices and has the virtue of simplicity.

Note that each node of the frozen network topology has
precisely one neighbor. From this it is easy to show that each
connected component of the network has one and only one
strongly connected component (a cycle) and then trees based
on the elements of the cycle. This means that the network
eventually has precisely the hierarchical structure of Ref. [33]
when the cycle is considered as the root of the network.

V. DISCUSSION

In this paper we have studied the dynamics of a simple adap-
tive network model as a function of the coupling parameter.
We have rigorously proved that the network reaches a frozen
state where the rewiring stops. We have shown that the final
topologies are usually hierarchical and that polysynchronous
dynamics appear in the frozen networks for certain parameter
values. The hierarchical structure of the networks facilitates
the appearance of polysynchrony as a stable attractor of
the dynamics by making it easier to establish a balanced
equivalence relation on the nodes. The stability study of dif-
ferent polysynchronous states explains the concrete coupling
parameter ranges for which polysynchrony can be observed.

Unlike many adaptive network studies, the system
described here evolves from a totally connected initial state
to a much more constrained final topology. This simplifying
structure could be relevant to the formation of functional
groups in social interactions of biological systems. The
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dynamics on the network also has rich features; so far as we
are aware this is the first network which can evolve naturally
to a polysynchronous state. Such states could describe a
form of functional evolution where a uniform population
separates into different functional units described by different
synchrony classes. The novel feature of polysynchrony is that
these groups do not have to separate spatially as in the standard
clusters, which are directly connected within the network.
From this point of view, a fast time adaptive network of the type
described here (to establish differentiated populations among a
uniform set of initial nodes) followed by a slow differentiation
process to lock in the differences created by the different
synchrony classes could be a model for processes that require a
mixed heterogeneous population from an initially homogenous
set. Our models bear some resemblance to models in
population dynamics (metapopulations, see Ref. [41]) and
so this may be another area where polysynchrony might
arise.
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APPENDIX A: SYNCHRONIZATION DYNAMICS
OF STRONGLY CONNECTED COMPONENTS

To study the stability of the synchronized state of the
different strongly connected components we will follow the
approach exposed in Ref. [42]. Some of these results are well
documented in the literature and are shown here for the sake
of completeness.

In all the cases we study the coupling is linear and can be
written, in general, as

xi
n+1 =

N∑
j=1

Lijf
(
xj

n

)
, (A1)

where L is the coupling linear operator. The synchronous state
exists if the operator L has an eigenvalue σ1 = 1 corresponding
to the eigenvector e1 = (1,1, . . . ,1). Since our coupling is
dissipative, the rest of the eigenvalues of the coupling operator
are in modulus less than one. The stability of the synchronized
state is then given by the condition

λ⊥ = λ + ln |σ2| < 0, (A2)

where λ⊥ is the transverse Lyapunov exponent, λ is the
Lyapunov exponent of the uncoupled map, and σ2 is the second
largest eigenvalue of the coupling operator.

1. Dynamics of the completely connected pair

The completely connected pair [Fig. 6(a)] forms a system
of two coupled logistic maps,(

xi
n+1

x
j

n+1

)
=

(
1 − ε ε

ε 1 − ε

) (
f

(
xi

n

)
f

(
x

j
n

)
)

. (A3)

This system has been thoroughly studied as a model of
population dynamics in Refs. [34–36].

In this case the linear operator has eigenvalues σ1 = 1
[e1 = (1,1)] and σ2 = 1 − 2ε [e2 = (−1,1)]. Thus the stability
condition reads

λ⊥ < 0 →
{

λ + ln(1 − 2ε) < 0, ε < 1
2 ,

λ + ln(2ε − 1) < 0, ε > 1
2 .

(A4)

Therefore, the synchronization of the pair is stable when

1 − e−λ

2
< ε <

1 + e−λ

2
. (A5)

2. Dynamics of the triplet with transposition symmetry

The linear operator in the case of the triplet with transposi-
tion symmetry [Fig. 6(b)] is

L =
⎛
⎝1 − ε ε 0

ε m′
m

1 − ε ε m−m′
m

0 ε 1 − ε

⎞
⎠ , (A6)

with eigenvalues

σ1 = 1, σ2 = 1 − ε, σ3 = 1 − 2ε,

corresponding to the eigenvectors e1 = (1,1,1), e2 =
(m′−m

m′ ,0,1), and e3 = (1,−1,1).
We should note that which eigenvalue has the second largest

modulus depends on the value of ε and the stability condition
has to be evaluated for both σ2 and σ3. It is an easy calculation
to deduce that the synchronized chaotic state will be stable in
the range

1 − e−λ < ε <
1 + e−λ

2
. (A7)

3. Dynamics of the three-cycle

The linear operator of the three-cycle [Fig. 6(c)] reads

L =
⎛
⎝1 − ε ε 0

0 1 − ε ε

ε 0 1 − ε

⎞
⎠ (A8)

and has eigenvalues

σ1 = 1, σ2 = 1
2 (2 − 3ε + iε

√
3),

σ3 = 1
2 (2 − 3ε − iε

√
3).

Thus, the stability condition of the synchronous state
reduces to

λ + ln |σ2| < 0 → λ + ln
√

1 − 3ε + 3ε2 < 0. (A9)

Solving this for ε provides us with the condition
1
2 − B < ε < 1

2 + B, (A10)

where

B = 1

2
√

3
e−2λ

√
−e2λ(e2λ − 4). (A11)

Therefore, the stability region for the synchronous state of
the three-cycle is an interval centered around ε = 0.5 of a
width depending on the Lyapunov exponent λ of the map.

062809-9



V. BOTELLA-SOLER AND P. GLENDINNING PHYSICAL REVIEW E 89, 062809 (2014)

When λ = ln 2, B vanishes and the synchronous state becomes
unstable for all ε.

4. Dynamics of the unidirectional coupling

Apart from the dynamics of the strongly connected com-
ponents, it is necessary to study the case where a node is
influenced by a single neighbor following an orbit of the un-
coupled logistic map or, equivalently, by a fully synchronized
neighborhood. In both cases the dynamics is given by(

xn+1

yn+1

)
=

(
1 − ε ε

0 1

) (
f (xn+1)
f (yn+1)

)
, (A12)

where xn is the variable of the node being influenced and yn

the trajectory of the synchronized neighborhood. Note that it
is implied in the equation that the input is a trajectory of the
uncoupled map [yn+1 = f (yn)]. If this were not the case we
could not perform this analysis.

The eigenvalues of the linear operator are σ1 = 1 [e1 =
(1,1)] and σ2 = 1 − ε [e2 = (1,0)]. Therefore, the influenced
node will synchronize to its input if

ε > 1 − e−λ. (A13)

APPENDIX B: STABILITY OF THE
POLYSYNCHRONOUS STATES

We study here the stability of different polysynchronous
states in the simplest structure capable of showing polysyn-
chrony: the triplet with transposition symmetry. In this case
polysynchrony means full synchronization of nodes i and
k. Thus, the quotient system of the triplet is a completely
connected pair and the possible polysynchronous dynamics
are therefore attractors of the completely connected pair.

1. Fixed-point polysynchronous state

The completely connected pair has two fixed points [(c1,c2)
and (c2,c1)] with

c1 = 1

8(2ε − 1)
[8ε − 3 +

√
9 − 4ε(9 − 8ε)],

c2 = 1

8(2ε − 1)
[8ε − 3 −

√
9 − 4ε(9 − 8ε)],

that are stable in the range 0.806186 � ε � 0.86. These
allow the triplet to have two possible polysynchronous fixed
point states: (c1,c2,c1) or (c2,c1,c2). The stability of these
states can be evaluated as the stability of a fixed point of a
three-dimensional system by studying the absolute value of
the eigenvalues of the Jacobian matrix at the fixed point. The
Jacobian matrix for the triplet with transposition symmetry
reads

J (xi,xj ,xk)

=

⎡
⎢⎣

(1 − ε)f ′(xi) εf ′(xj ) 0

ε m′
m

f ′(xi) (1 − ε)f ′(xj ) ε m−m′
m

f ′(xk)

0 εf ′(xj ) (1 − ε)f ′(xk)

⎤
⎥⎦ .

In Fig. 15 we represent the absolute value of the eigenvalues
of J (c1,c2,c1) as a function of ε and we can clearly see that

0.70 0.75 0.80 0.85 0.90
0.0

0.5

1.0

1.5

2.0

2.5

∋

⏐ σ
⏐

FIG. 15. Eigenvalues of J evaluated at the fixed point (c1,c2,c1)
as a function of ε. The three eigenvalues have modulus less than unity
in the range 0.806186 � ε � 0.86.

the polysynchronous state is stable in all the stability range of
the fixed points.

It is very interesting to note that the eigenvalues are
independent of m′ and therefore our conclusions are also valid
for a completely connected pair with an outgoing link to a third
node [as in the three-node subsystem of Fig. 3(e)].

2. Period 2 polysynchronous state

As described in Ref. [34], the period 2 orbit of the
completely connected pair has as its elements

(z1,z2) =
(

u + v + 1

2
,

u − v + 1

2

)
,

u := 1

4g
,

v :=
√

8g2 − 2g − 1

4g
,

g := 1 − 2ε.

This period 2 dynamics is stable in the range 0.13925 � ε �
0.193814.

Similarly to the fixed-point case, the stability of the period 2
polysychronous state can be studied as the stability of a period
2 orbit of a three-dimensional system. Therefore, we should
observe the eigenvalues of the Jacobian matrix,

J2(z1,z2) = J (z1,z2,z1)J (z2,z1,z2). (B1)

The eigenvalues of J2 have been graphed in Fig. 16 as a
function of the coupling strength. From this figure we see that
the period 2 polysynchronous state is stable when 0.140375 �
ε � 0.193814.

Interestingly, and contrary to the fixed-point case, there is
an interval of coupling strengths (0.13925 � ε � 0.140375)
where the period 2 orbit is stable in the pair but the period
2 polysynchronous state of the triplet is unstable. It is in
this interval of values where the spatial period-doubling
phenomena appears (see Fig. 12 and description in the text).
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∋

⏐ σ
⏐

FIG. 16. Eigenvalues of J2 as a function of ε. The three
eigenvalues have modulus less than unity in the range 0.140375 �
ε � 0.193814.

3. Chaotic polysynchronous state

To study the stability of the chaotic polysynchronous states
we start by making the following change of variables:

U = xi + xk

2
,

V = xj ,

W = xk − xi

2
.

In these new variables, the dynamics is given by

Un+1 = 1

2
{[(1 − ε)f (Un − Wn) + f (Un + Wn)]} + εf (Vn),

Vn+1 = ε
m′

m
f (Un − Wn) + (1 − ε)f (Vn)

+ ε
m′ − m

m
f (Un + Vn),

Wn+1 = (1 − ε)

2
[f (Un + Wn) − f (Un − Wn)].

The polysynchronous chaotic state corresponds to the case
Wn = 0 with Un and Vn following a nonsynchronous chaotic

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

∋

Stable Chaotic Polysynchrony

λ∗

FIG. 17. Region of stability of the chaotic polysynchronous state
as a function of the Lyapunov exponent of the chaotic orbit. The
dashed line corresponds to εmin.

orbit that we denote U ∗,V ∗. By expanding the equation for
Wn+1 around (U ∗,V ∗,0) we obtain

Wn+1 ≈ −2(1 − ε)U ∗
n Wn. (B2)

Assuming ergodicity, the transverse Lyapunov exponent
(transverse to the surface of R3 where the polysynchronous
orbit lies) can be written as [42]

λ� = ln | − 2(1 − ε)| + λ∗, (B3)

where λ∗ is the average Lyapunov exponent of the orbit
U ∗

n and has the upper bound ln 2, that would correspond to
the complete synchronization of Un and Vn (or, equivalently,
xi and xj ). We need λ� < 0 for the polysynchronous chaotic
state to be stable. This condition provides us with a relation
between the Lyapunov exponent of the chaotic orbit of U ∗ and
the minimum coupling strength necessary for polysynchrony
to be stable

εmin = 1 − e−λ∗

2
. (B4)

It is easy to see that εmin is always greater than 0.5 for
λ∗ � ln 2 (Fig. 17). This is in agreement with the numerical
experiments, which do not witness chaotic polysynchrony for
ε < 0.5.
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