
PHYSICAL REVIEW E 89, 062807 (2014)

Entropy distribution and condensation in random networks with a given degree distribution

Kartik Anand,1 Dmitri Krioukov,2 and Ginestra Bianconi3
1Bank of Canada, 234 Laurier Ave West, Ottawa, Ontario K1A 0G9, Canada

2Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
3School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK

(Received 24 March 2014; published 11 June 2014)

The entropy of network ensembles characterizes the amount of information encoded in the network structure
and can be used to quantify network complexity and the relevance of given structural properties observed in real
network datasets with respect to a random hypothesis. In many real networks the degrees of individual nodes
are not fixed but change in time, while their statistical properties, such as the degree distribution, are preserved.
Here we characterize the distribution of entropy of random networks with given degree sequences, where each
degree sequence is drawn randomly from a given degree distribution. We show that the leading term of the
entropy of scale-free network ensembles depends only on the network size and average degree and that entropy
is self-averaging, meaning that its relative variance vanishes in the thermodynamic limit. We also characterize
large fluctuations of entropy that are fully determined by the average degree in the network. Finally, above a
certain threshold, large fluctuations of the average degree in the ensemble can lead to condensation, meaning that
a single node in a network of size N can attract O(N ) links.
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I. INTRODUCTION

One reason why network science has recently attracted sig-
nificant research attention is that network structure efficiently
encodes the complexity of a large variety of systems, from
the brain to different technosocial infrastructures [1–4]. In the
last fifteen years or so there has been significant progress
in characterizing not only universal properties of complex
networks, e.g., scale-free degree distributions or small-world
properties, but also their specific features that distinguish
one network from another—degree correlations, community
structure [5], or motif distributions [6–9].

More recently, considerable effort has focused on quanti-
fying network complexity using new network entropy mea-
sures [10–18] borrowed from information theory, statistical
mechanics [19–22], and quantum information [23,24]. The
entropy of a network ensemble evaluates the total number
of networks belonging to the ensemble [10,11]. As the
network structure becomes more complex, sophisticated,
and unique, both the number of networks in the ensemble
having these peculiar properties and the entropy become
smaller. The entropy measures have proven useful for solving
inference problems involving real-world networks [14–17].
The statistical mechanics treatment of network ensembles can
be used to characterize the likelihood that a real dataset is
generated by a model [25]. Some real networks have been
shown to belong with high likelihood to ensembles of random
geometric graphs in hyperbolic spaces, modeling trade-offs
between popularity and similarity in network evolution, and
casting preferential attachment as an emergent phenomenon
[26,27]. More recently, the entropy of multiplex ensembles
has been proposed to characterize the complexity of multilayer
networks [28].

By definition, a network ensemble is a set of graphs G

with probability measure P (G). It is important to make a
distinction between microcanonical and canonical ensembles
[11]. In microcanonical ensembles, some structural network
properties are fixed to given values. For example, the total

number of links in graphs of size N can be fixed to M ,
or the degrees of all nodes can be fixed to degree sequence
{ki}, i = 1, . . . ,N . In this case, the ensemble consists of all
graphs of size N , and the probability measure is uniform:
If the number of graphs G satisfying the constraints is N ,
then for all such graphs, P (G) = 1/N , and P (G) = 0 for
all other graphs that do not satisfy the constraints. In the
canonical counterparts of these ensembles, the same structural
constraints are fixed only on average—the resulting ensembles
are maximum-entropy ensembles under the constraints that the
expected values of the number of edges or node degrees in the
ensemble are M or {ki}. The probability measure P (G) in
this case is not uniform—as G gets closer to satisfying the
constraints, P (G) becomes larger. In random graph ensembles
with a fixed exact or expected number of links, the canonical
distribution converges to the microcanonical distribution in
the thermodynamic limit N → ∞. However, as soon as the
number of imposed constraints is extensive, the canonical
and microcanonical network ensembles are not equal even in
the thermodynamic limit, and neither are their entropies. For
example, the entropy of the microcanonical ensemble with
a fixed degree sequence is not equal to the entropy of the
canonical ensemble where only the expected degree sequence
is fixed [11].

In network theory there is usually no question of how
precisely we know the node degrees: Given a graph, its
degree sequence is uniquely defined. However, when a network
practitioner works with real network data, she is typically
given a collection of network measurements. Does she have
to treat the measured degrees of nodes as precisely defined
as well, given that measurements are always imprecise and
ever changing, and so is the network itself? The answer is
usually “no”—the relevant information is not the exact degree
sequence, but its statistical properties, such as the distribution
of these degrees. The ensembles of networks with a given
exact or even expected degree sequence do not account for
possible statistical fluctuations of node degrees in a given

1539-3755/2014/89(6)/062807(8) 062807-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.062807


KARTIK ANAND, DMITRI KRIOUKOV, AND GINESTRA BIANCONI PHYSICAL REVIEW E 89, 062807 (2014)

dataset, motivating us to consider here ensembles of random
networks whose exact or expected degree sequences {ki} are
independently sampled from a given distribution p(k). This
approach is a way to explore only the statistical properties of
networks, and not their specific linking diagrams that might
be affected by false or missing links, almost always present in
real data.

Specifically, we study the distribution of entropy in network
ensembles with a given exact or expected degree distribution
p(k). We find that in both cases (hard and exact as well as soft
and expected), if the network ensemble is sparse, the average
entropy is well defined and self-averaging. We also evaluate
the probability that ensemble entropy is equal to a particular
value, conditioned on the total number of links in the network,
and show that this conditional entropy distribution is always
well behaved. Characterizing large entropy deviations in the
ensemble with a given degree distribution and average degree,
we observe that a condensation phenomena can occur in the
network. This phenomena occurs only if the average degree in
the network 〈k〉 exceeds the degree distribution average m =∑

k kp(k). For 〈k〉 < m there is a symmetry under permutation
of the labels of the nodes of the network, meaning that if we
fix the average degree 〈k〉 of the network, then the degrees of
all nodes are o(N ), where N is the network size. Instead, if
〈k〉 > m, we observe a spontaneous breaking of this symmetry,
with a single node having an O(N ) degree. These results hold
in both hard and soft ensembles, i.e., ensembles with fixed
exact or expected degree distributions.

We begin with reviewing in Sec. II what is known about the
entropy of network ensembles with a fixed expected or exact
degree sequence. We then move to Secs. III and IV where
we analyze some properties of the entropy distributions in the
ensemble with a given expected and exact degree distribution,
respectively. Final remarks are in Sec. V.

II. ENTROPY OF NETWORK ENSEMBLES WITH A
GIVEN DEGREE SEQUENCE

A network ensemble is specified once probability P (G) is
assigned to every network G of size N . We denote nodes by i =
1,2, . . . ,N . The set of simple undirected unweighted labeled
networks of size N is bijective to the set of symmetric Boolean
N × N adjacency matrices a ∈ {0,1}N×N having zeros on the
diagonal. Depending on whether nodes i and j are connected
or not in network G, element aij of G’s adjacency matrix is
either 1 or 0. We next impose the constraint that the degree∑

j aij of each node i is fixed to some ki . We can treat this
constraint as hard or soft. If it is hard, we impose it exactly. The
resulting ensemble is a microcanonical network ensemble with
given degree sequence {ki}, known as the configuration model
[29,30]. In the soft case, we relax the constraint and demand
that the degree of each node i, averaged over all networks in
the ensemble, is ki , which no longer has to be integer but can
be any non-negative real number. The resulting ensemble is
a canonical network ensemble with a given expected degree
sequence {ki}, belonging to the class of random graphs known
as exponential random graphs [4,19,31,32]. In what follows we
denote by Pe(G|{ki}) the probability of G in the canonical (e =
C) or microcanonical (e = M) ensembles. The entropy S({ki})
of these ensemble evaluates the typical number of networks in

the ensemble and is given by

S = −
∑
G

Pe(G|{ki}) ln Pe(G|{ki}) , (1)

where the sum is performed over all networks in the ensemble.

A. Entropy of the canonical ensemble

The probability distribution PC(G|{ki}) in the canonical
ensemble is defined as the distribution that maximizes entropy

S({ki}) = −
∑
G

PC(G|{ki}) ln PC(G|{ki}) , (2)

subject to the following N constraints:∑
G

PC(G|{ki})
∑
j �=i

aij = ki, for i = 1, . . . ,N . (3)

By summing over all networks G, we sum over their adjacency
matrices. Introducing Lagrangian multipliers λi to enforce
the conditions in Eq. (3), and Lagrangian multiplier � to
normalize the probability measure

∑
G PC(G|{ki}) = 1, we

solve the system of equations

∂

∂P (G|{ki})
[
S −

N∑
i=1

λi

∑
G

∑
j �=i

aijPC(G|{ki})

−�
∑
G

P (G|{ki})
]

= 0 (4)

to find the expression for distribution PC(G|{ki}):

PC(G|{ki}) = 1

ZC

exp

⎡
⎣−

N∑
i=1

∑
j �=i

λiaij ,

⎤
⎦ , (5)

where the normalization constant

ZC = e−� =
∑
G

exp

⎡
⎣−

N∑
i=1

∑
j �=i

λiaij

⎤
⎦ (6)

is called the “partition function.” Since the probability distri-
bution in Eq. (5) has an exponential form, this ensemble is
called exponential random graphs.

In this ensemble, we can relate entropy S({ki}) in Eq. (2) to
partition function ZC :

S({ki}) = −
∑
G

PC(G|{ki}) ln PC(G|{ki})

= −
∑
G

PC(G|{ki})
⎡
⎣−

N∑
i=1

λi

∑
j �=i

aij − log(ZC)

⎤
⎦

=
N∑

i=1

λiki + log ZC. (7)

We call the entropy S({ki}) of the canonical ensemble the
Shannon entropy.
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The probability pij of a link between node i and node j in
the ensemble is given by

pij = 〈aij 〉 = e−(λi+λj )

1 + e−(λi+λj )

= hihj/N

1 + hihj/N
, (8)

where hi = √
Ne−λi are called “hidden variables.” Upon this

change of variables, the constraints in Eq. (3) translate to

ki =
∑
j �=i

pij =
∑
j �=i

hihj /N

1 + hihj/N
. (9)

This system of equations can be solved for {hi}, yielding the
values of Lagrangian multipliers {λi}. Using pij in Eq. (8), a
simpler expression for distribution PC(G|{ki}) reads

PC(G|{ki}) =
∏
ij

p
aij

ij (1 − pij )1−aij . (10)

Therefore probability PC(G|{ki}) is actually the probability to
generate network G with hidden variables {hi} by connecting
node pairs i and j with probability pij given by Eq. (8) and
not connecting them with probability 1 − pij . Using these
link existence probabilities pij , the entropy of the ensemble in
Eq. (2) can be written as

S({ki}) = −
∑
i<j

[pij log pij + (1 − pij ) log(1 − pij )]. (11)

By inserting the explicit dependence of probabilities pij on
hidden variables hi , we can extract the leading term S({ki})
of the entropy that depends only on the average degree in
the network, and the subleading term Nσ ({ki}) that increases
linearly with N :

S({ki}) = S({ki}) − Nσ ({ki}), (12)

where S({ki}) and σ ({ki}) in any sparse network are given by

S({ki}) = 1

2
〈k〉N ln N,

Nσ ({ki}) =
∑
i<j

[pij log(Npij ) + (1 − pij ) log(1 − pij )]

=
⎡
⎣∑

i<j

hihj/N

1 + hihj/N
ln

(
hihj

1 + hihj/N

)

+
∑
i<j

(
1 − hihj/N

1 + hihj/N

)

× ln

(
1 − hihj/N

1 + hihj/N

)]
. (13)

If all expected degrees ki 	 √〈k〉N , where 〈k〉 is the average
expected degree

∑
i ki/N , then hidden variables hi 	 √

N

are proportional to expected degrees ki , hi = ki/〈k〉, and we
can approximate probabilities pij in Eq. (8) by

pij = hihj

N
= kikj

〈k〉N . (14)

which corresponds to the case where links in the network are
uncorrelated.

In this case the expression for the extensive entropy term
σ ({ki}) in Eq. (13) simplifies to

σ ({ki}) = 1

N

∑
i

ki ln ki − 1

2
〈k〉[1 + ln 〈k〉]. (15)

B. Entropy of the microcanonical ensemble

In the microcanonical ensemble, all networks satisfy the hard
constraint that the degree sequence is {ki} exactly. We assume
here that the degree sequence is graphical [33,34], meaning
that it can be realized by at least one network. This condition
is obviously satisfied if the degree sequence is read off from
a real network. The probability distribution in the ensemble is
uniform—all networks satisfying this constraint have the same
probability

PM (G|{ki}) = 1

ZM

N∏
i=1

δ

⎡
⎣∑

j �=i

aij ,ki

⎤
⎦ , (16)

where δ[. . .] stands for the Kronecker δ, and where “partition
function” ZM is given by

ZM =
∑
G

N∏
i=1

δ

⎡
⎣∑

j �=i

aij ,ki

⎤
⎦ . (17)

This partition function simply counts the number of networks
with degree sequence {ki}.

The definition of the network ensemble entropy in
Eq. (1) applied to the microcanonical distribution in Eq. (16)
yields

N�({ki}) = −
∑
G

PM (G) ln PM (G) = ln ZM, (18)

where we call N�({ki}) the Gibbs entropy of the network
ensemble. The Gibbs entropy N�({ki}) of the microcanonical
ensemble is related to the Shannon entropy S({ki}) of the
conjugate canonical ensemble via

N�({ki}) = S({ki}) − N�({ki}), (19)

where N�({ki}) is equal to the logarithm of the probability
that in the conjugate canonical ensemble the hard constraints∑

j �=i aij = ki are satisfied:

N�({ki}) = − log

⎧⎨
⎩

∑
G

PC(G|{ki})
N∏

i=1

δ

⎡
⎣∑

j �=i

aij ,ki

⎤
⎦

⎫⎬
⎭ .

(20)
The relation between entropies in Eq. (19) can be obtained
by substituting the canonical distribution PC(G|{ki}) given by
Eq. (5) into Eq. (20), yielding

exp[−N�({ki})] =
∑
G

1

ZC

e− ∑N
i=1 λi

∑
j �=i aij

×
N∏

r=1

δ

⎡
⎣∑

s �=r

ars,kr

⎤
⎦
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= 1

ZC

e− ∑N
i=1 λiki

×
∑
G

N∏
r=1

δ

⎡
⎣∑

s �=r

ars,kr

⎤
⎦

= ZM

eS({ki }) = exp[N�({ki}) − S({ki})],

where in the last relation we have used Eqs. (7), (17), and
(18). The value of function �({ki}) in sparse networks can be
calculated by statistical mechanics methods [12,13]:

�({ki}) = 1

N

N∑
i=1

ln

[
ki!

(ki/e)ki

]
. (21)

It does not vanish in the thermodynamic limit N → ∞.
Therefore, in view of the relation between the microcanonical
and canonical entropies in Eq. (19), the microcanonical and
conjugate canonical ensembles are not equivalent even in the
large-N limit.

III. ENTROPY DISTRIBUTION IN THE NETWORK
ENSEMBLE WITH A GIVEN DISTRIBUTION OF

EXPECTED DEGREES

In this section we consider the network ensemble in which
the expected degree sequence {ki} is not fixed but sampled
in each network realization from a fixed distribution p(k).
Drawing from the field of disordered systems, we make a
distinction between quenched and annealed disorder. If the
disorder is annealed, then the degree of the nodes are not fixed
and they are continuously drawn form a degree distribution
p(k). If the disorder is quenched, then the expected degree
sequence {ki} in each realization is assumed to be fixed
but unknown, and for each expected degree sequence, the
ensemble probability distribution is obtained by maximizing
the entropy. Below we consider the quenched case only.

For a fixed expected degree sequence {ki}, the maximum-
entropy distribution PC(G|{ki}) is given by Eq. (10), while
the entropy S({ki}) of this distribution is given by Eq. (11). If
this degree sequence {ki} has probability P ({ki}) in a larger
ensemble, then the probability and entropy distributions in this
larger ensemble are

PC(G) =
∫ N∏

i=1

dkiP ({ki})PC(G|{ki}), (22)

PC(S) =
∫ N∏

i=1

dkiP ({ki})δ[S,S({ki})]. (23)

Therefore the distribution of the entropy S({ki}) in this
ensemble gives a very important indication on how the number
of possible network realization with expected degree sequence
{ki} changes if the sequence realization is drawn randomly
from a degree distribution p(k). If we cannot compute the
full distribution PC(S) exactly, we may still characterize its

average, variance, and relative error

S({ki}) =
∫ N∏

i=1

dkiP ({ki})S({ki})

[δS({ki})]2 =
∫ N∏

i=1

dkiP ({ki})[S({ki}) − S({ki})]2,

	S({ki}) =
√

[δS({ki})]2

S({ki})
. (24)

A. Entropy distribution in scale-free networks

We assume that each expected degree sequence {ki} has
probability P ({ki}) = ∏N

i=1 p(ki), where p(k) is the expected
degree distribution, and consider the specific case of power
law p(k) 
 k−γ with γ ∈ (2,∞). We first focus on the leading
term of entropy S({ki}) given by S({ki}) = 1

2 〈k〉N ln N , where

〈k〉N is the sum of expected degrees 〈k〉N = ∑N
i=1 ki .

We distinguish between two cases:
Case γ > 3. When γ > 3, distribution P (S) is Gaussian,

the average of S is well defined in the network and its relative
error vanishes in the large network limit. Indeed, since 〈k2〉 <

∞, we have

	S({ki}) ∝ N−1/2. (25)

Case γ ∈ (2,3]. For large N and γ ∈ (2,3], due to the structural
degree cutoff ki � kmax = N , we observe that the average of
S is also well defined in the network and its relative error
also vanishes in the large network limit, but with a different
exponent. Indeed, since 〈k2〉 ∝ N3−γ we have

	S({ki}) ∝ N−(γ−2)/2. (26)

These results are important because they imply that for every
value of γ > 2 the average of the leading entropy term S({ki})
is well defined, with vanishing relative error.

Since the leading entropy term S({ki}) = 1
2 〈k〉N ln N

depends only on the average degree 〈k〉, we can further
analyze entropy fluctuations in the ensemble with a fixed
〈k〉. Therefore we next evaluate the conditional probability
distribution P (S|〈k〉) that depends only on the distribution
of the subleading entropy term, since average degree 〈k〉
determines uniquely the leading term.

B. Conditional entropy distribution P(S|〈k〉)

If P ({ki}) is the probability of degree sequence {ki}, then

P (S|〈k〉) =
∫ ∏

i

dkiP ({ki})δ(S,S({ki}))

×δ

(
〈k〉N,

N∑
i=1

ki

)
. (27)

Since entropy S({ki}) = 1
2 〈k〉N ln N − Nσ ({ki}) is a function

of hidden variables {hi} only, S({ki}) = S({hi}), we can
perform the following change of variables in the last equation:

P ({ki})
N∏

i=1

dki = �({hi})
∏
i=1

Ndhi, (28)

062807-4



ENTROPY DISTRIBUTION AND CONDENSATION IN . . . PHYSICAL REVIEW E 89, 062807 (2014)

where �({hi}) is the probability of hidden variables sequence
{hi}. After this transformation, and expressing δ functions in
Eq. (27) via exponentials, we obtain

P (S|〈k〉) =
∫ ∏

i

dhi�({hi})
∫

dωeiω[S−S({hi })]

×
∫

dνeiν[〈k〉N−∑
i,j |i �=j p(hi ,hj )] (29)

We next make the simplifying assumption that the hidden vari-
ables are independent and identically distributed, �({hi}) =∏N

i=1 π̃ (hi) with some distribution π̃(hi). In the large network
limit we can then transform the multiplex integral over N

variables {h1,h2, . . . ,hN } to a functional integral over density
function

ρ(h) = 1

N

N∑
i=1

δ(h,hi), (30)

imposing constraint
∫

dh ρ(h) = 1 by Lagrangian multiplier
μ. The distribution P (S|〈k〉) defined in Eq. (29) becomes

P (S|〈k〉) =
∫

dω

∫
dμ

∫
dν

∫
Dρ(h)eG(ρ,μ,ω,ν), (31)

with

G(ρ,μ,ω,ν) = −N

∫
dhρ(h) ln

[
ρ(h)

π̃ (h)

]

−iN2
∫

dh

∫
dh′ρ(h)ρ(h′)[ωs(h,h′)

+νp(h,h′)] − iμN

∫
dh[ρ(h) − 1]

+iν〈k〉N + iωS, (32)

where

s(h,h′) = −1

2

{
hh′/N

1 + hh′/N
ln

[
hh′/N

1 + hh′/N

]

+ 1

1 + hh′/N
ln

[
1

1 + hh′/N

]}
,

p(h,h′) = hh′/N
1 + hh′/N

. (33)

The integrals in Eq. (31) can be evaluated at the saddle point
given by

S = N2
∫

dh

∫
dh′ρ(h)ρ(h′)σ (h,h′),

〈k〉 = N2
∫

dh

∫
dh′ρ(h)ρ(h′)p(h,h′),

ρ(h) = π̃(h)e−2N
∫

dh′ρ(h′)[ωs(h,h′)+νp(h,h′)]∫
dh′′π̃ (h′′)e−2N

∫
dh′ρ(h′)[ωs(h′′,h′)+νp(h′′,h′)]

, (34)

where we have performed the Wick rotation of parameters
ω and ν. Denoting by ρ�(h) the S-dependent solution of the
above saddle point equations, we obtain the following simple

expression for distribution P (S|〈k〉):
P (S|〈k〉) = e−NDKL[ρ�(h)|π̃(h)], (35)

where

DKL[ρ�(h)|π̃(h)] =
∫

dh ρ�(h) ln
ρ�(h)

π̃ (h)
(36)

is the Kullback-Leibler distance between distributions ρ�(h)
and π̃ (h). Therefore, conditional distribution P (S|〈k〉) is well
behaved and depends only on KL distance DKL[ρ�(h)|π̃(h)].

C. Condensation as a large deviation event

The saddle point Eqs. (34) have a solution only if the
average degree 〈k〉 is equal to or less than the expected degree
m of the degree distribution, i.e., only if

〈k〉 � m = N

∫
dh

∫
dh′ π̃ (h′)π̃(h)p(h,h′). (37)

In fact the Lagrangian multipliers ω,ν must be real and
greater than zero to guarantee that ρ(h) given by Eq. (34)
is well defined. Following Ref. [35], to explore large deviation
properties of a fat-tailed distribution, we use the following
ansatz:

Nρ(h) = (N − 1)ρc(h) + δ(h,hc). (38)

This ansatz accounts for a spontaneous breaking of permuta-
tion symmetry between the N hidden variables in the ensemble
and reflects our expectation to detect condensation in some
large-deviation realization in the ensemble. With this ansatz,
probability P (S|〈k〉) becomes

P (S|〈k〉) =
∫

dω

∫
dμ

∫
dν

∫
Dρ(h)eG(ρc,hc,μ,ω,ν), (39)

with

G(ρc,hc,μ,ω,ν) = −N

∫
dhρc(h) ln

[
ρc(h)

π̃(h)

]
− 1

N
ln ˜π (hc)

−iN2
∫

dh

∫
dh′ρc(h)ρc(h′)[ωs(h,h′)

+νp(h,h′)]

−i2N2
∫

dhρc(h)[ωs(hc,h) + νp(hc,h)]

−iμN

∫
dh [ρc(h)−1] + iν〈k〉N + iωS,

(40)

where functions s(h,h′) and p(h,h′) are as in Eqs. (33). The
problem of minimizing function G(ρc,hc,μ,ω,ν) with respect
to all its parameters has a nontrivial solution only if 〈k〉 > m,
in which case we have

〈k〉N = mN + 2N2
∫

dhρc(h)p(hc,h) (41)

with ρ�
c (h) = π̃ (h) and G(ρc,hc,μ,ω,ν) = 0 for any 〈k〉 > m.

In Fig. (1) we show the phase diagram (γ,〈k〉), where γ is the
exponent of the hidden variable distribution π̃ (h) ∝ h−γ , and
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FIG. 1. (Color online) Phase diagram showing the region of the
plain (γ,〈k〉) where we observe the condensation discussed in the
text (shaded region). The figure corresponds to the hidden variable
distribution π̃(h) ∝ h−γ with h ∈ [1,N ] and N = 104.

h ∈ [1,N ] for N = 104. Above the curve 〈k〉 = m, i.e., in the
shaded region of parameter values, we observe condensation.

IV. ENTROPY DISTRIBUTION IN THE NETWORK
ENSEMBLE WITH A GIVEN DISTRIBUTION

OF EXACT DEGREES

The results presented in the previous section concerning
the soft ensembles remain qualitatively unchanged if we
consider the hard ensembles of networks with a given degree
distribution of exact degrees. Note that we are treating here
always quenched disorder. In fact here we consider ensembles
of networks of fixed degree sequence, where each degree
sequence is drawn randomly from a given degree distribution.
As in the soft case, in this hard case we assume that the disorder
is quenched and that the exact degree sequence {ki} is fixed
but unknown and drawn from degree distribution p(k). The
probability of degree sequence {ki} is thus P ({ki}) = ∏

i p(ki),
and for each {ki} we consider the microcanonical ensemble of
networks with the fixed sequence of exact degrees {ki}. In
this ensemble, network G has probability PM (G|{ki}) defined
in Eq. (16), so that the probability distribution PM (G) in the
ensemble is

PM (G) =
∫ N∏

i=1

dkiP ({ki})PM (G|{ki}). (42)

Given degree sequence {ki}, and using Eq. (19) and Eq. (12),
the Gibbs entropy N�({ki}) is the sum of three contributions,

N�({ki}) = S({ki}) − N�({ki})
= S({ki}) − Nσ ({ki}) − N�({ki}, (43)

where the leading term of N�({ki}) is S({ki}) = 1
2 〈k〉N ln N .

In what follows we analyze the entropy distribution P (N�) in
the ensemble

P (N�) =
∫ N∏

i=1

dkiP ({ki})δ[N�,N�({ki})]. (44)

If we cannot compute the full distribution P (N�) exactly, we
may still characterize its average, variance, and relative error

N�({ki}) =
∫ N∏

i=1

dkiP ({ki})N�({ki}),

[δN�({ki})]2 =
∫ N∏

i=1

dkiP ({ki})[N�({ki}) − N�({ki})]2,

	[N�({ki})] =
√

[δN�({ki})]2

N�({ki})
.

A. Entropy distribution in scale-free networks

We first consider the probability distribution P (S) of the
leading term S of entropy N�({ki}), defined as

P (S) =
∫ N∏

i=1

dki

N∏
i=1

p(ki)δ[S,S({ki})], (45)

where S({ki}) = 1
2 〈k〉N ln N depends only on the average

degree in the network. According to the generalized central
limit theorem [36], and similarly to the soft case, we have the
following two cases:

Case γ > 3. The distribution P (S) converges to a Gaussian
distribution and the relative error on the average of S is
vanishing in the large network limit. In fact we find that

	S({ki}) ∝ N−1/2. (46)

Case γ ∈ (2,3]. Due to the structural degree cutoff ki �
kmax = N , the entropy distribution has a vanishing relative
error given by

	S({ki}) ∝ N−(γ−2)/2. (47)

In the both cases, the average S({ki}) is well defined with a
relative error 	S({ki}) vanishing in the large network limit.

B. Conditional entropy distribution P(N�|〈k〉)

Similarly to the soft case, we next show that the large
entropy fluctuations are due exclusively to the fluctuations
of the total number of links in the ensemble. We note that
these fluctuations are necessarily present since the exact degree
sequence in each network in the ensemble is independently
sampled from the given distribution. Following a similar
procedure, we evaluate the probability of N� conditioned
to a fixed value of the average degree in the network 〈k〉,
P (N�|〈k〉). This conditional entropy distribution depends
only on the distribution of the subleading contributions to
N�({ki}), Nσ ({ki}) + N�({ki}), because the average degree
determines uniquely the leading term S({ki}).

If P ({ki}) is the probability of degree sequence {ki}, then

P (N�|〈k〉) =
∫ ∏

i

dkiP ({ki})δ(N�,N�({ki})

×δ

(
〈k〉N,

N∑
i=1

ki

)
. (48)
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Since entropy S({ki}) = 1
2 〈k〉N ln N − Nσ ({ki}) + N�({ki})

is a function of hidden variables {hi} only, N�({ki}) =
N�({hi}), we can change variables

P ({ki})
n∏

i=1

dki = �({hi})
N∏

i=1

dhi (49)

where �({hi}) is the probability of hidden variables sequence
{hi}, and obtain

P (N�|〈k〉) =
∫ ∏

i

dhi�({hi})
∫

dωeiω[N�−N�({hi })]

×
∫

dνeiν[〈k〉N−∑
i,j |i �=j p(hi ,hj )]. (50)

Assuming next that our hidden variables are i.i.d. distributed
�({hi}) = ∏N

i=1 π̃ (hi) with some distribution π̃ (hi), we trans-
form the multiplex integral over N variables {h1,h2, . . . ,hN }
in the large network limit to a functional integral over density
function

ρ(h) = 1

N

N∑
i=1

δ(h,hi), (51)

imposing constraint
∫

dhρ(h) = 1 by Lagrangian multiplier
μ. The distribution P (N�|〈k〉) defined in Eq. (50) becomes

P (N�|〈k〉) =
∫

dω

∫
dμ

∫
dν

∫
Dρ(h)eG(ρ,μ,ω,ν), (52)

with

G(ρ,μ,ω,ν)

= −N

∫
dhρ(h) ln

[
ρ(h)

π̃ (h)

]

− iN2
∫

dh

∫
dh′ρ(h)ρ(h′)[ωs(h,h′) + νp(h,h′)]

+ iωN

∫
dhρ(h) ln

(
k(h)k(h)e−k(h)

k(h)!

)

− iμN

∫
dh[ρ(h) − 1] + iν〈k〉N + iωN�, (53)

where

s(h,h′) = −1

2

{
hh′/N

1 + hh′/N
ln

[
hh′/N

1 + hh′/N

]

+ 1

1 + hh′/N
ln

[
1

1 + hh′/N

]}
,

p(h,h′) = hh′/N
1 + hh′/N

,

k(h) = N

∫
dh′ρ(h′)p(h,h′). (54)

The integrals in Eq. (52) can be evaluated at the saddle point
given by

N� = N2
∫

dh

∫
dh′ρ(h)ρ(h′)σ (h,h′)

−N

∫
dhρ(h) ln

(
k(h)k(h)e−k(h)

k(h)!

)
, (55)

k(h) = N

∫
dh′ρ(h′)p(h,h′),

〈k〉 = N2
∫

dh

∫
dh′ρ(h)ρ(h′)p(h,h′),

ρ(h) = 1

C π̃ (h)

(
k(h)k(h)e−k(h)

k(h)!

)ω

exp

{
−N

∫
dh′ρ(h′)

×p(h,h′)[2ν + ω(Hk(h′) − ln k(h′))]
}

× exp

{
−N

∫
dh′ρ(h′)2ωs(h,h′)

}
, (56)

where C is a normalization constant and Hk(h) stands for
the harmonic number. Denoting by ρ�(h) the N�-dependent
solution of the above saddle point equations, we get the
following simple expression for distribution P (N�|〈k〉):

P (N�|〈k〉) = e−NDKL[ρ�(h)|π̃(h)]. (57)

As in the soft case, in this hard case the entropy distribution
conditioned on the average degree in the network is well be-
haved and depends only on the KL distance DKL[ρ�(h)|π̃(h)]
between distributions ρ�(h) and π̃(h).

C. Condensation as a large deviation event

The saddle point Eqs. (56) have a solution only if the
average degree 〈k〉 is equal to or less than the expected degree
m over the degree distribution,

〈k〉 < m = N

∫
dh

∫
dh′π̃ (h′)π̃(h)p(h,h′). (58)

In fact the Lagrangian multipliers ω,ν must be real and greater
than zero to guarantee that ρ(h) given by Eq. (56) is well
defined. Therefore, following the same logic as in the soft
case, we use the following ansatz:

Nρ(h) = (N − 1)ρc(h) + δ(h,hc), (59)

With this this ansatz, probability P (N�|〈k〉) becomes

P (N�|〈k〉) =
∫

dω

∫
dμ

∫
dν

∫
Dρ(h)eG(ρc,hc,μ,ω,ν), (60)

with

G(ρc,hc,μ,ω,ν)

= −N

∫
dhρc(h) ln

[
ρc(h)

π̃(h)

]
− 1

N
ln ˜π (hc)

− iN2
∫

dh

∫
dh′ρc(h)ρc(h′)[ωs(h,h′) + νp(h,h′)]

+ iωN

∫
dhρc(h) ln

(
k(h)k(h)e−k(h)

k(h)!

)

− i2N2
∫

dhρc(h)[ωs(hc,h) + νp(hc,h])

+ iωN ln

(
k(h)k(hc)e−k(hc)

k(hc)!

)

− iμN

∫
dh[ρ(h) − 1] + iν〈k〉N + iωN�, (61)
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where functions s(h,h′), p(h,h′), and k(h) are as in Eqs. (54).
The problem of minimizing function G(ρc,hc,μ,ω,ν) with
respect to all its parameters has a nontrivial solution only if
〈k〉 > m, in which case we have

〈k〉N = mN + 2N2
∫

dhρc(h)p(hc,h), (62)

with ρ�
c (h) = π̃ (h), and G(ρc,hc,μ,ω,ν) = 0 for any 〈k〉 > m.

The phase diagram of (γ,〈k〉) with π̃ (h) ∝ h−γ and h ∈ (1,N )
for N = 104 is the same as in the soft case shown in Fig. 1. If
〈k〉 > m, we can observe condensation—a single node in the
network can acquire a degree of the order of N .

V. CONCLUSION

Motivated by the observation that in modeling real net-
works, the degree distribution is a more reasonable and realistic
constraint than the degree sequence, we have studied the
entropy distribution in the ensembles of random networks
with a given degree distribution. We found that entropy is

self-averaging, thanks to the structural degree cutoff at kmax =
N . The fluctuations of entropy are mainly determined by the
fluctuations of the average degree in the ensembles. Networks
with average degree exceeding a certain threshold, 〈k〉 > m,
exhibit large deviation or condensation effects—a single node
can attract O(N ) links. Interestingly, this condensation is
different from the Bose-Einstein condensation in complex
networks [37] in that the condensation considered here
corresponds only to some “large deviation configurations.”
It is not typically expected in the ensemble.
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