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We present a microscopic ordinary differential equation (ODE)-based model for pedestrian dynamics: the
gradient navigation model. The model uses a superposition of gradients of distance functions to directly change
the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs
fundamentally from force-based models needing only three equations to derive the ODE system, as opposed to
four in, e.g., the social force model. Also, as a result, pedestrians are no longer subject to inertia. Several other
advantages ensue: Model-induced oscillations are avoided completely since no actual forces are present. The
derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high-order
numerical integrators. At the same time, the existence and uniqueness of the solution to the ODE system follow
almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters
by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These
parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians.
Several empirically observed system phenomena emerge without the need to recalibrate the parameter set
for each scenario: obstacle avoidance, lane formation, stop-and-go waves, and congestion at bottlenecks. The
density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe
a dependence of the crowd velocity on the local density that compares well with benchmark fundamental
diagrams.
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I. INTRODUCTION

Pedestrian flows are dynamical systems. Numerous models
exist [1–3] on both the macroscopic [4,5] and the microscopic
level [6–8]. In the latter, two approaches seem to dominate:
ordinary differential equation (ODE) models and cellular
automata (CA).

ODE models are particularly well suited to describe
dynamical systems because they can formally and concisely
describe the change of a system over time. The mathematical
theory for ODEs is rich, both on the analytic and the numerical
side. In CA models, pedestrians are confined to the cells of a
grid. They move from cell to cell according to certain rules.
This is computationally efficient, but there is only little theory
available [9]. Many CA models employ a floor field to steer
individuals around obstacles [10,11].

The use of floor fields for pedestrian navigation in ODE
models is only sparingly described in literature. In Ref. [6],
pedestrians steer towards the edges of a polygonal path, in
Ref. [12] optimal control is applied. In addition, most of the
ODE models are derived from molecular dynamics where the
direction of motion is gradually changed by the application
of a force. This leads to various problems mostly caused by
inertia [3,13].

Cellular automata and more recent models in continuous
space, such as the optimal steps model [8], deviate from this
approach and directly modify the direction of motion. This is
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also true for some ODE models in robotics, where movement
is very controlled and precise and thus inertia is negligible
[14,15]. The direct change of the velocity constitutes a strong
deviation from molecular dynamics and hence from force-
based models.

This paper proposes an application of this model type to
pedestrian dynamics: the gradient navigation model (GNM).
The GNM is a system of ODEs that describe movement and
navigation of pedestrians on a microscopic level. Similar to
CA models, pedestrians steer directly towards the direction of
steepest descent on a given navigation function. This function
combines a floor field and local information such as the
presence of obstacles and other pedestrians in the vicinity.

The paper is structured as follows. In the model section,
three main assumptions about pedestrian dynamics are stated.
They lead to a system of differential equations. A brief
mathematical analysis of the model is given in the next
section where we use a plausibility argument to reduce the
number of free parameters in the ODE system from four
to two. We constructed the model functions so that they
are smooth. Thus, using standard mathematical arguments,
the existence and uniqueness of the solution follow directly.
In the simulations section the calibrated model is validated
against several scenarios from empirical research: congestion
in front of a bottleneck, lane formation, stop-and-go waves, and
speed-density relations. We also demonstrate computational
efficiency using high-order accurate numerical solvers such as
MATLAB’s ODE45 [16] that need the smoothness of the solution
to perform correctly. We conclude with a discussion of the
results and possible next steps.
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II. MODEL

The gradient navigation model (GNM) is composed of
a set of ordinary differential equations to determine the
position xi ∈ R2 of each pedestrian i at any point in time.
A navigational vector �Ni is used to describe an individual’s
direction of motion. The model is constructed using three main
assumptions.

Assumption 1. Crowd behavior in normal situations is
governed by the decisions of the individuals rather than by
physical, interpersonal contact forces.

This assumption is based on the observation that even in
very dense but otherwise normal situations, people try not
to push each other but rather stand and wait. It enables us to
neglect physical forces altogether and focus on personal goals.
If needed in the future, this assumption could be weakened and
additional physics could be added similar to Ref. [12], which
splits up what they call the physical model and the control
model. Note that this assumption sets the GNM apart from
models for situations of very high densities, where pedestrian
flow becomes similar to a fluid [4,17].

Assumption 2. Pedestrians want to reach their respective
targets in as little time as possible based on their information
about the environment.

Most models for pedestrian motion are designed with
this assumption. Differences remain regarding the optimality
criteria for little time as well as the amount of information
each pedestrian possesses. Reference [6] uses a polygonal
path around obstacles for navigation, Ref. [18] solves a
Hamilton-Jacobi equation, incorporating other pedestrians. In
this paper, we use the eikonal equation similar to Refs. [4,19]
to find the shortest arrival times σ of a wave emanating from
the target region. This allows us to compute the part of the
direction of motion �Ni,T that minimizes the time to the target:

�Ni,T = −∇σ. (1)

Assumption 3. Pedestrians alter their desired velocity as
a reaction to the presence of surrounding pedestrians and
obstacles. They do so after a certain reaction time.

The relation of speed and local density has been studied
numerous times and its existence is well accepted. The actual
form of this relation, however, differs between cultures, even
between different scenarios [20–22]. Note that assumption 3
not only claims the existence of such a relation but makes it
part of the thought process. In our model, we implement this by
modifying the desired direction of motion with a vector �Ni,P

so that pedestrians keep a certain distance from each other and
from obstacles. In models using velocity obstacles, this issue
is addressed further [23–26]. Attractants such as windows of a
store or street performers could also be modeled as proposed
by Ref. [27, p. 49], but are not considered in this paper.

�Ni,P = −
( ∑

j �=i

∇Pi,j

︸ ︷︷ ︸
influence of pedestrians

+
∑
B

∇Pi,B︸ ︷︷ ︸
influence of obstacles

)
, (2)

where ∇Pi,j and ∇Pi,B are gradients of functions that are
based on the distance to another pedestrian j and obstacle
B respectively. Their norm decreases monotonically with
increasing distance. To model this, we introduce a smooth

FIG. 1. The graph of h, which depends on the distance between
pedestrians r as well as the maximal value p/e and support R of h.

exponential function with compact support R > 0 and maxi-
mum p/e > 0 (see Fig. 1):

h(r; R,p) =
{

p exp
(

1
(r/R)2−1

)
|r/R| < 1

0 otherwise.
(3)

To take the viewing angle of pedestrians into account, we
scale ∇Pi,j by

si,j = g̃(cos(κφi,σ − κφj )). (4)

The function g̃ is a shifted logistic function [see Eq. (A4)]
and (φi,σ − φj ) is the angle between the direction �Ni,T and the
vector from xi to xj (see Fig. 2). κ is a positive constant to set
the angle of view to ≈ 200 deg. Using h and si,j (see Fig. 2),
the gradients in Eq. (2) are now defined by

∇Pi,j = hε(‖xi − xj‖; pj ,Rj )si,j

xj − xi

‖xj − xi‖ (5)

∇Pi,B = hε(‖xi − xB‖; pB,RB)
xB − xi

‖xB − xi‖ , (6)

where pj ,Rj ,pB,RB are positive constants that represent
comfort zones between pedestrian i, pedestrian j , and obstacle
B. To avoid (mostly artificially induced) situations when
pedestrians stand exactly on top of each other [13], we replace

FIG. 2. Isolines of the function si,j h(‖xi − xj‖; 1,1) with xi = 0
and xj ∈ R2. This function represents the field of view of a pedestrian
in the origin together with his or her comfort zone. If xj is close and
in front of xi , the function values are maximal, meaning least comfort
for xi .
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h by hε :

hε(‖xi − xj‖; p,R) = h(‖xi − xj‖; p,R)

−h(‖xi − xj‖; p,ε), (7)

where ε > 0 is a small constant. For ε → 0, hε(·; p,R) →
h(·; p,R). For ‖xi − xj‖ = 0, we also define ∇Pi,j = 0 and
∇Pi,B = 0.

To validate the second part of assumption 3, we use the
result of Ref. [28]: pedestrians undergo a certain reaction
time τ between an event that changes their motivation and
their action. The relaxed speed adaptation is modeled by a
multiplicative, time-dependent, scalar variable w : R+

0 → R,
which we call relaxed speed. Its derivative with respect to time,
ẇ, is similar to acceleration in one dimension.

Equations (1) and 2 enable us to construct a relation between
the desired direction �N of a pedestrian and the underlying floor
field as well as other pedestrians:

�N = g(g( �NT ) + g( �NP )). (8)

The function g : R2 → R2 scales the length of a given vector
to lie in the interval [0,1]. For the exact formula see Appendix.
Note that with definition (8), N must not always have length
one, but can also be shorter. This enables us to scale it with the
desired speed of a pedestrian to get the velocity vector:

�̇x = �Nw. (9)

With initial conditions �x0 = �x(0) and w0 = w(0) the gradi-
ent navigation model is given by the equations of motion for
every pedestrian i:

�̇xi(t) = wi(t) �Ni(�xi,t)
(10)

ẇi(t) = 1

τ
{vi[ρ(�xi)]‖ �Ni(�xi,t)‖ − wi(t)}.

The position �xi : R → R2 and the one-dimensional relaxed
speed wi : R → R are functions of time t . vi(ρ(�xi)) represents
the individuals’ desired speeds that depends on the local crowd
density ρ(�xi) (see assumption 3). Since the reason for the
relation between velocity and density is still an open question
[20,22], we choose a very simple relation in this paper: we use
vi(ρ) constant and normally distributed with mean 1.34 and
standard deviation 0.26, i.e., vi(ρ) = vdes

i ∼ N (1.34,0.26).
The choice of this distribution is based on a metastudy of
several experiments [29].

With these equations, the direction of pedestrian i changes
independently of physical constraints, similar to heuristics in
Ref. [30], many CA models, and the optimal steps model [8].
The speed in the desired direction is determined by the norm
of the navigation function �Ni and the relaxed speed wi .

III. NAVIGATION FIELD

Similar to Ref. [4] and later Refs. [12,19], we use the
solution σ : R2 → R to the eikonal equation (11) to steer
pedestrians to their targets. σ represents first arrival times (or
walking costs) in a given domain � ⊂ R2:

G(x)‖∇σ (x)‖ = 1, x ∈ �
(11)

σ (x) = 0, x ∈ 	 ⊂ ∂�.

	 ⊂ ∂� is the union of the boundaries of all possible target
regions for one pedestrian. Static properties of a geometry
(for example rough terrain or an obstacle) can be modeled by
modifying the speed function G : R2 → (0, + ∞). Reference
[31] includes the pedestrian density in G. This enables
pedestrians to locate congestions and then take a different
exit route. Reference [32] used the eikonal equation to steer
very large virtual crowds.

If G(x) = 1 ∀x, σ represents the length of the shortest path
to the closest target region. This does not take into account that
pedestrians can not get arbitrarily close to obstacles. Therefore,
we slow down the wave close to obstacles by reducing G in
the immediate vicinity of walls. The influence of walls on σ is
chosen similar to ‖∇Pi,B‖, so that pedestrians incorporate the
distance to walls into their route.

Being a solution to the eikonal equation (11), the floor
field σ is Lipschitz continuous [33]. In the given ODE setting,
however, it is desirable to smooth σ to ensure differentiability
and thus existence of the gradient at all points in the geometry.
We employ mollification theory [33] with a mollifier η [similar
to h in Eq. (3)] on compact support B(x) to get a mollified ∇σ ,
which we call ∇σ̃ :

∇σ̃ (x) = ∇(η ∗ σ )(x)

=
∫

B(x)
∇η(y)σ (x − y)dy ∈ C∞(R2,R2). (12)

IV. MATHEMATICAL ANALYSIS AND CALIBRATION

The existence and uniqueness of a solution to Eq. (10)
follows from the theorem of Picard and Lindeloef when using
the method of vanishing viscosity to solve the eikonal equation
[33] and mollification theory to smooth ∇σ [see Eq. (12)].

The system of equations in Eq. (10) contains several
parameters. References [28,34] conducted experiments to find
the parameters τ (relaxation constant, ≈ 0.5) and κ (viewing
angle, ≈ 200 deg, which corresponds to a value of κ ≈ 0.6
here). The following free parameters remain:

(i) pp and Rp define maximum and support of the norm of
the pedestrian gradient ‖∇Pi,j‖

(ii) pB and RB define maximum and support of the norm
of the obstacle gradient ‖∇Pi,B‖.

We use an additional assumption to find relations between
these four free parameters:

Assumption 4. A pedestrian who is enclosed by four
stationary other persons on the one side and by a wall on
the other side, and who wants to move parallel to the wall,
does not move in any direction (see Fig. 3).

This scenario is very common in pedestrian simulations
and involves many elements that are explicitly modeled: other
pedestrians, walls, and a target direction. The setup also
includes other scenarios: when the wall is replaced by two
other pedestrians, the one in the center also does not move if
assumption 4 holds. This is because the vertical movement
is canceled out by the symmetry of the scenario. Using
assumption 4, we can simplify the system of equations (10)
to find dependencies between parameters. First, the direction
vectors �Ni,T and �Ni,P are computed based on the given
scenario. The gray pedestrian wants to walk parallel to the
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FIG. 3. (Color online) Setup used to reduce the number of pa-
rameters. The pedestrian in the center (gray) wants to reach a target
on the right (black, thick arrow, −∇σ ) but is enclosed by four other
pedestrians who are not moving and a wall (thick line at the bottom).
Together, the pedestrians and the wall act on the gray pedestrian via
−∇δ (sum of red, slim arrows). The red cross on the wall marks the
position on the wall that is closest to the gray pedestrian.

wall in the positive x direction, which means

�Ni,T (xi) = −∇σ (xi) =
[

1
0

]
. (13)

The remaining function �Ni,P is composed of the repulsive
effect of the four enclosing pedestrians and the wall. We
simplify Eqs. (5) and (6) by taking the limit ε → 0, which is
reasonable since the pedestrians do not overlap in the scenario.

�Ni,P =
4∑

i=1

hp(‖xgray − xi‖)sgray,j

xgray − xj

‖xgray − xj‖︸ ︷︷ ︸
influence of the white pedestrians

+hB(‖xgray − xB‖)

[
0
1

]
︸ ︷︷ ︸

influence of the wall

. (14)

Using Eqs. (13), (14), and assumption 4 the system of
differential equations (10) for the pedestrian in the center yield

�̇xi = w �Ni = −wg(g( �Ni,T ) + g( �Ni,P )) = 0 (15)

ẇ = 1

τ
[v(ρ)‖N‖ − w] = 0. (16)

The second equality yields

w = v(ρ)‖ �N‖ ⇒ w � 0. (17)

Since assumption 4 does not imply w = 0, Eq. (15) holds true
generally if

g( �Ni,T ) = −g( �Ni,P ). (18)

Since all φi , xi , xgray, and xB are known in the given scenario,
the only free variables in Eq. (18) are the free parameters
of the model: the height and width of hp (named pp and
Rp), as well as hB (named pB and RB). With only two
equations for four parameters, system (18) is underdetermined
and thus we choose RB = 0.25 (according to Ref. [29]) and

TABLE I. Numerical values of all parameters of the gradient
navigation model using assumption 4 and ρmax = 7P/m2. The first
two were determined by experiment [28,34].

Parameter Value Description

κ 0.6 Viewing angle
τ 0.5 Relaxation constant
pp 3.59 Height of hp

pB 9.96 Height of hB

Rp 0.70 Width of hp

RB 0.25 Width of hB

Rp = √
3r(ρmax), where r(ρmax) is the distance of pedestrians

in a dense lattice with pedestrian density ρmax. This choice for
Rp ensures that pedestrians adjacent to the enclosing ones have
no influence on the one in the center. Note that if this condition
is weakened in assumption 4, the model behaves differently
on a macroscopic scale (see Fig. 7).

With two of the four parameters fixed, we use Eq. (18)
to fix the remaining two. Table I shows numerical values
of all parameters, assuming ρmax = 7 P/m2, which leads to
r(ρmax) ≈ 0.41.

V. SIMULATIONS

To solve Eq. (10) numerically, we use the step-size control-
ling Dormand-Prince-45 integration scheme [16] with tolabs =
10−5 and tolrel = 10−4. Employing this scheme is possible
because the derivatives are designed to depend smoothly on
x, w, and t . Unless otherwise stated, all simulations use
the parameters given in Table I. The desired speeds vdes

i

are normally distributed with mean 1.34 ms−1 and standard
deviation 0.26 ms−1 as observed in experiments [29]. vdes

i is cut
off at 0.3 ms−1 and 3.0 ms−1 to avoid negative or unreasonably
high values. We used the fast marching method [35] to solve the
eikonal equation [Eq. (11)]. The mollification of ∇σ [Eq. (12)]
is computed using Gauss-Legendre quadrature with 21 × 21
grid points. All simulations were conducted on a machine with
an Intel Xeon (R) X5672 Processor, 3.20 Ghz and with the
Java-based simulator VADERE. Simulations of scenarios with
over 1000 pedestrians were possible in real time under these
conditions.

We validate the model quantitatively by comparing the flow
rates of 180 simulated pedestrians in a bottleneck scenario (see
Fig. 4) of different widths with experimentally determined data
from Refs. [36–38]. The length of the bottleneck is 4 m in all
runs. Figure 5 shows that, regarding flow rates, the simulation
is in good quantitative agreement with data from Refs. [36–38]
for all bottleneck widths. Also, the formation of a crowd in
front of a bottleneck matches observations well (see Fig. 4):
in front of the bottleneck, they form a cone as observed by
Refs. [36,39,40]. Note that this is different from the behavior
described in Ref. [41] that tries to capture the dynamics in
stress situations. Our simulations suggest that the desired
velocity is the most important parameter for this experiment:
when we change its distribution to N (1.57 ms−1,0.15 ms−1) as
found by Ref. [42], the flow is ≈1 s−1 higher for small widths
and ≈1 s−1 lower for larger widths.
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FIG. 4. The pedestrians in the GNM simulation form a cone in
front of the bottleneck as observed by Refs. [36,39,40].

The GNM can be calibrated to match the relation of speed
and density in a given fundamental diagram. Figure 6 shows
that for the calibration with only one layer of neighbors,
pedestrians do not slow down with increasing densities as
quickly as suggested in Ref. [29]. When calibrating with one
additional layer of pedestrians in the scenario shown in Fig. 3,
the curves match much better (see Fig. 7). We use the method
introduced by Ref. [38] to measure local density.

References [43,44] compute the deviation of distances
between drivers to analyze stop-and-go waves in car traffic.
No deviation implies no stop-and-go waves since all distances
are equal. A large deviation hints at the existence of a wave
since there must be regions with large and regions with small
distances between drivers. For pedestrian dynamics Refs.
[17,22,45] found stop-and-go waves experimentally. Similar to
the wave analysis in traffic, we use the deviation of individual
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0.5 1.0 1.5 2.0 2.5
width [m] 

FIG. 5. (Color online) Flow rate of the GNM compared to
experiments of Kretz [36], Seyfried [37], and Liddle [38]. We
use the parameters from Table I and the normal distribution
N (1.34 ms−1,0.26 ms−1) to find desired velocities as proposed by
Ref. [29].

FIG. 6. (Color online) Speed-density relation in unidirectional
flow compared to experimental data from metastudy (Weidmann,
[29]). The corridor was 40 m long and 4 m wide with periodic
boundary conditions. Each cross (labeled “simulation”) represents a
local measurement at the position of a pedestrian. We use the method
introduced by Ref. [38] to measure local density. The parameter set
in these simulations was fixed with the procedure shown in Fig. 3 and
thus incorporates one layer of four pedestrians.

speeds to measure stop-and-go waves. Figures 8 and 9 show
that the GNM also produces stop-and-go waves when a certain
global density is reached.

The model also captures lane formation in bidirec-
tional flow out of uniform initial conditions, as observed

FIG. 7. (Color online) Speed-density relation in unidirectional
flow compared to experimental data from metastudy (Weidmann,
[29]). The corridor was 40 m long and 4 m wide with periodic
boundary conditions. Each cross (labeled “simulation”) represents a
local measurement at the position of a pedestrian. We use the method
introduced by Ref. [38] to measure local density. The parameter set in
these simulations was adjusted with a similar procedure as in Fig. 3
to incorporate neighbors of neighbors in the computation of ∇δ:
Rp = 1.0, pp = 1.79, RB = 0.25, and pB = 11.3.
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FIG. 8. Normalized standard deviation σ (v)/0.26 (line) and mean
μ(v)/1.34 (dashed line) of individual speeds in a unidirectional
walkway with differing global densities ρ. Both the data points of the
simulations and zero-phase digital filtering curves (width: five data
points) are shown. The peak of the standard deviation at ρ = 4 Pm−2

indicates stop-and-go waves: even though the mean speed decreases,
the speed differences increase, which means that there are regions
with low as well as high speeds present at the same time.

experimentally by Ref. [46]. In the simulation, pedestrians
walk bidirectionally in a 10 m wide and 150 m long pathway
at a pedestrian density of 0.3 Pm−1. They start on uniformly
distributed positions at the left/right side and walk towards a
target on the respective other end. Figure 10 shows that several
lanes form. Due to the different desired velocities, many of
them break up after some time. When simulating with densities
higher than 1 Pm−2 in the whole pathway, pedestrians block
each other and all movement stops.

VI. CONCLUSION

We introduced an ODE-based microscopic model for
pedestrian dynamics, the gradient navigation model. We
demonstrated that the model very well reproduces important
crowd phenomena, such as bottleneck scenarios, lane forma-
tion, stop-and-go waves, and the speed-density relation. In the
case of bottlenecks and the speed-density relation, good agree-
ment with experimental data was achieved. Calibration of the

FIG. 9. Snapshot of a unidirectional pathway with global density
ρ = 4 P/m2, dimension 50 m × 4 m, periodic boundary conditions,
after 120 simulated seconds and walking direction to the right.
The normal and dashed lines mark slower and faster pedestrians,
respectively: a stop-and-go wave.

FIG. 10. Formation of six lanes in bidirectional flow. Filled
circles represent pedestrians walking to the left, empty circles
represent pedestrians walking to the right. The walkway is 10 m
wide and 150 m long. The snapshot shows a section of 25 m.

model parameters was performed using plausible assumptions
on the outcome of benchmark scenarios rather than numerical
tests. Recalibration for different scenarios was unnecessary.

One main goal for the model was to find a concise
formulation with as few equations as possible and, at the
same time, certain smoothness properties so that the existence,
uniqueness, and smoothness of the solution would follow
directly. The GNM only needs three equations, as opposed
to four in force-based models, to describe motion of one
pedestrian. In addition, we proposed a floor field to steer
pedestrians instead of constructing paths or guiding lines. The
floor field was computed by solving the eikonal equation using
Sethian’s highly efficient fast marching algorithm [35]. To
achieve smoothness, mollification techniques were employed.
The smoothness also enabled us to use numerical schemes of
high order making the GNM computationally very efficient.

Two of the methods we introduced can easily be carried over
to other models: The plausibility arguments that allowed us to
calibrate free parameters hold independently of the model. The
mollification techniques that led to the smooth functions could
also be used by other differential equation-based models, such
as the social force model [6,13] or the generalized centrifugal
force model [7].

Some of the most recent enhancements in crowd modeling
rely on a floor field to steer pedestrians towards the target.
Among them are steering around crowd clusters [4,31] and
more sophisticated navigation on the tactical and strategic level
[5]. These developments can be employed in the GNM without
any change to the equations of motion.

Some empirical observations, such as stop-and-go traffic
[17,40] are not yet well understood, either from the exper-
imental or the theoretical point of view. In a mathematical
model stability issues and bifurcations often are at the root
of such phenomena. The concise mathematical formulation of
the GNM as an ODE system facilitates stability analysis and
the investigation of bifurcations, both tasks are subjects for
future research.
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APPENDIX

1. Vector normalizer

In order to design a function that smoothly scales a given
vector to a length in [0,1], a smooth ramp function is needed.
The following chain of definitions is adopted from Ref. [13]:
Let r : R → R be the ramp function defined by

r(x) =
⎧⎨
⎩

0 for x � 0
x for x ∈ (0,1)
1 for x � 1

. (A1)

Then, a smooth version rmoll,p with mollification parameter p

is given by

moll(x,R,p) =
{
e × exp( 1

(‖x‖/R)2p−1 ) for ‖x‖ < R

0 for ‖x‖ � R
(A2)

rmoll,p(x) = moll(x,1,p) × x + [1 − moll(x,1,p)], (A3)

where p > 1. For this paper, we used p = 3.

Lemma 1. The following two statements hold:
(i) rmoll,p ∈ C∞(R)
(ii) rmoll,p(x) = r(x) ∀x ∈ R \ (0,1).
Proof. (i) holds since the standard mollifier is smooth:

moll(x,R,p) ∈ C∞ [33]. (ii) is trivial from the definitions of
r and rmoll,p. �

The desired scaling function g can now be defined as
follows:

g : R2 → R2

x �→
{

(0,0)T for ‖x‖ = 0
x/‖x‖ × rmoll,p(‖x‖) for ‖x‖ > 0

.

For a similar, one-dimensional version, for example for
smoothing max(0,x) with x ∈ [−1,1], the logistic function
can be used:

g̃(x; x0,R) = 1

1 + e−(x−x0)/R
(A4)

with x,x0,R ∈ R. In this paper, we choose x0 = 0.3 and R =
0.03 to smooth the influence of the viewing angle.
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