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Excitability in a stochastic differential equation model for calcium puffs
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Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges
of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium
signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this
system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple
scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We
show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent
with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that
excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model
also predicts a bifurcation from transient to sustained release which may link local and global calcium signals
in cells.
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I. INTRODUCTION

Repetitive increases in intracellular Ca2+ concentrations
control various physiological functions, including muscle cell
contraction, neurotransmitter secretion, and gene expression
[1]. In many cells, Ca2+ levels rise after stimulation by extra-
cellular signals. If the stimulation is small, Ca2+ is released
in a spatially confined way from clusters of intracellular
Ca2+ channels. Here, molecular interactions within a single
cluster lead to coherent opening of its channels and result
in elementary events called sparks or puffs [2,3]. For larger
stimulation, Ca2+ forms spatiotemporal waves or whole-cell
oscillations involving release by many clusters. The transition
from local puffs to global waves and oscillations is a prime
example to study the onset of collective activity in cells.

In recent years various physical concepts of emergent
phenomena have been invoked to link local and global
dynamics, among them percolation [4], nucleation [5], and
self-organized criticality [6]. However, no model has been
proposed that correctly represents dynamics at all levels of
complexity, from single channel gating to puffs and whole-cell
release. A chief obstacle for a consensual theory is the
high level of noise, which is caused by the low number
of ion channels per cluster. Consequently, recent models
of Ca2+ puffs observed in electrically nonexcitable cells
have been mathematically expressed with discrete stochastic
variables and master equations [7]. A number of studies
have indicated that these models can generally reproduce the
experimental observations [8–10], but a deeper understanding
of the underlying dynamics remained elusive.

To tackle this problem we here derive continuous rate
equations for local signals. Our approach invokes the standard
Kramers-Moyal expansion of the governing master equations,
but it incorporates in a nonstandard way the dependence of
local Ca2+ concentration on the number of open channels. We
carry over the discreteness of the Markov chain close to the rest
state while approximating it with the continuum description
for the fast evolution during a puff [11]. This method resolves
the limitation of prior attempts at Langevin modeling of Ca2+

puffs, which were consistent for large numbers of channels
only [12,13]. In fact, the number of channels N in a cluster is

small (N ≈ 10), and an earlier study had concluded that noise
would be too large to use approximations with continuous
channel fractions [14]. In contrast, here we demonstrate that
consistent Langevin equations can be derived when they are
adapted to the intracluster distribution of Ca2+ and when
“microscopic” parameters are chosen in accord with single
channel behavior.

Simulations with the resulting set of stochastic differential
equations are compared to those with the original discrete
model and with recent experimental findings showing the
validity of our approach. Langevin equations for Ca2+ puffs
are thus useful and accurate even for realistically low channel
numbers. Importantly our mathematical model allows the anal-
ysis of its deterministic limit using methods from dynamical
systems theory. The nonlinear analysis reveals the excitability
at the core of the equations. Since excitable systems necessitate
perturbations or noise for nontrivial dynamics, our analysis
thus provides clear evidence for the noise-induced nature of
Ca2+ puffs.

Finally, when we increase the number of channels in
a cluster, we find a bifurcation from excitable to bistable
behavior. The bistability causes a biphasic release dynamics
very much resembling that of global Ca2+ release seen in
oocytes [15]. This suggests that the puff-to-wave transition
is a bifurcation in the local dynamical behavior and that the
bifurcation mediates global synchronization. Our results thus
shed light on the poorly understood functioning of local Ca2+

signaling and may lead to a novel understanding of whole-cell
signals.

II. DERIVATION OF A MINIMAL DISCRETE MODEL

We start with the channel scheme of De Young and Keizer
(DYK) [16], which models the relevant molecular processes of
a single inositol 1,4,5-trisphosphate receptor (IP3R) channel
[17]. IP3Rs are Ca2+ release channels located in the membrane
of the endoplasmic reticulum (ER). They open in response to
increased cytosolic concentrations of IP3 produced in vivo after
hormone stimulation of cells. The basic molecular interactions
of the channel include the binding of IP3 and Ca2+ to the
receptor promoting the opening of a channel as well as
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FIG. 1. (a) Markov chain model of the gating behavior of a
single subunit of the IP3R channel according to the DYK model.
Channel states (000, 100, . . . ) are denoted with respect to the binding
state (unbound 0, bound 1) of the IP3 binding site, the activating
Ca2+ binding site, and the inhibiting Ca2+ binding site, respectively.
c denotes Ca2+ concentration and p denotes IP3 concentration. (b)
Four-state Markov chain of the channel-based model derived in this
study. The state a represents the open channel. An upward transition
corresponds to activation, whereas a transition to the right corresponds
to inhibition.

inhibitory binding of Ca2+ closing the channel. IP3 receptors
are tetramers, and we will initially assume that each of the three
types of binding sites occurs on each of the four IP3R subunits,
see Fig. 1(a). Because of experimental evidence of subunit
cooperativity we assume that a channel is open if at least
three of its four subunits have IP3 and activating Ca2+ bound
but inhibiting Ca2+unbound [state 110 in Fig. 1(a)]. Released
Ca2+ of an open channel spreads within the surroundings and
triggers other channels to open.

In our previous papers [8,18,19] we have considered
a detailed three-dimensional reaction-diffusion model for
spreading Ca2+. The main conclusion of this analysis was
that Ca2+ released from spatially separated channels remains
inhomogeneously distributed within the cluster domain. Be-
cause of the large difference in Ca2+ concentration in the ER
store and cytosol, steep gradients around each open channel
occur, which roughly correspond to the 1/r solution of the
three-dimensional Laplace equation for point sources. As a
result, Ca2+ profiles of open channels partly overlap, but
the extent and the significance of this overlap depend on
the distance of channels in the cluster. Since the distance of
channels is not directly known from experiments, in Ref. [8]
we set out to estimate it. We compared detailed numerical
simulations with experimental puff data using the channel
distance as a free parameter in our model. We found that the
broad distribution of puff peak amplitudes in mammalian cells
[20] is matched best in a model of large channel distance and
small domain overlap so that [Ca2+] at adjacent channels is an
order of magnitude smaller than the Ca2+ at the open channel.
Intuitively, this can be understood from the fact that coupling
of channels in a tight cluster would inhibit some channels in
an active cluster before they open and thus yield a decaying
amplitude distribution very different from the experimentally
observed broad distribution [8].

Hence, the action of released Ca2+ on the receptors has
to be distinguished according to its [Ca2+] scale. At an
open channel, Ca2+ concentration is high, and binding to the
receptor is relatively fast (feedback Ca2+ scale). Further away
from the open channel—at locations of closed channels in
the cluster—Ca2+ concentration measures on a much smaller
scale. This Ca2+ is particularly important for propagation
of channel activation within the cluster (Ca2+ feedforward).
Therefore, in our model we will distinguish the feedback at
high Ca2+ concentration, denoted cs below, onto a releasing
channel from the feedforward, at lower Ca2+ concentration c,
directed at closed channels in the cluster [8,21].

The finding that Ca2+ coupling in the cluster separates
into the two scales implies that mean concentrations of Ca2+

and fractions of bound ligand sites cannot be introduced in
a straightforward way. Said in another way, the assumption
of mixing between receptor channels and their ligands does
not hold, and it is thus difficult to derive models based on
populations of binding sites as was performed by Hodgkin
and Huxley for neuronal action potentials [22]. Since binding
sites of IP3R channels in the cluster may experience different
Ca2+ concentrations, one needs to distinguish them depending
on whether they belong to an open or a closed channel. For
instance, an inhibitory subunit which belongs to an open
channel is subjected to much higher [Ca2+] than a subunit
that belongs to a closed channel. This introduces a correlation
in the binding probability. In simulations, for each channel
the state of all subunits must be stored, and a reduction
to simple activating and inhibiting gating variables is not
possible. Rather, the channel’s state must be assigned to a
node on a large transition space. Since each subunit allows for
8 different states in the DYK model, the complete transition
lattice consists of 84 states, which is far too large to be used
for a differential equation model.

Our aim is therefore to drastically reduce the number of
channel states in the tetrameric DYK model by eliminating
the subunit dynamics and derive a small Markov chain for the
state of the entire channel. First, we ignore the IP3 binding and
unbinding by invoking the relatively high IP3 concentration
under which Ca2+ puff experiments are performed. The IP3

binding sites can then simply be assumed to be saturated.
Alternatively, lower IP3 concentration can be converted into
a smaller total number of channels N . Then, in the subunit-
free gating scheme considered in the following, each channel
can assume one of four remaining states of the upper plane
in the DYK box: a rest state (denoted z instead of 100 to
distinguish the channel state z from the subunit state 100),
an open state with activating Ca2+ bound (a), a closed state
with both activating and inhibiting Ca2+ bound (g), and a
closed state with inhibiting Ca2+ bound (h), see Fig. 1(b).
Transition rates are calculated from the rates k±

a,i and the c
and cs values if applicable. Note that for an open channel
residing in state a, the only transition involving Ca2+ binding is
determined by the large-scale Ca2+ concentration cs, whereas
for a closed channel (states z and h) Ca2+ binding occurs based
on c.

In the scheme in Fig. 1(b), the individual transition rates
are to be determined from the effective rates between the
compound states based on the original subunit dynamics.
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Transitions on lattices of subunit states may result in nontrivial
kinetic rates of transitions between compound states. However,
preliminary simulations have shown that here the subunit
dynamics is significant mostly for the rate of generation of
puffs and not as much for their termination. Therefore, all
reactions in the four-state model are here chosen to be of
standard zero or first order except for the transition from
z to a.

To calculate the rate of the z-a transition of a single
channel, we have to consider the mean first passage time for a
transition from the rest to the open state in the tetrameric DYK
model. The refractory period due to inhibition is typically
short so that it can be assumed that all four subunits may
be involved in the activation process. In the tetrameric DYK
model, the open transition occurs as a transition between
a state with two activated subunits to the one with three
activated subunits, and we thus need to calculate the mean first
passage time of this transition. This can simply be performed
in the following way: The probability that a single subunit is
activated is Pact = a5c/(a5c + b5). Here a5 and b5 denote the
forward and backward rates of the activating Ca2+ binding
[see Fig. 1(a)]. The probabilities that none, one, or two of
the four subunits are activated thus are as follows: P0 =
(1 − Pact)4, P1 = 4Pact(1 − Pact)3, and P2 = 6P 2

act(1 − Pact)2.
The probability to be in state P2 provided that the channel is
not open, is

P (2|{0,1,2}) = P2

P0 + P1 + P2
. (1)

The rate of escaping the z state can be calculated as k+
a c with

k+
a (c) = 2a5P (2|{0,1,2}).

Thus, in our four-state scheme k+
a = k+

a (c) depends in a
strongly nonlinear way on the mean cluster concentration c

(see below), whereas all other k+,−
a,i ’s are constant parameters.

The activation rate k+
a can be estimated from the activation

and deactivation constants a5 and b5 given below.
The mean cluster concentration was defined in dependence

on the number of open channels n (i.e., the number of channels
in state a), based on spatial numerical simulations [8],

cd(n) = c0 + c1n, (2)

where c0 is the rest level concentration (here taken at
0.025 μM) and c1 is a coupling constant (c1 = 0.74 μM).
We have here introduced the variable cd(n), which gives the
typical intracluster Ca2+ concentration for a quasistationary
number of open channels. In a time-dependent setting, i.e.,
after opening or closing of a channel, we postulate, most
simply, that the c variable obeys equilibration with rate λ,

dc

dt
= λ(cd − c). (3)

In the following, however, we study the case of large λ (λ =
1000 s−1) in accordance with our earlier finding that small λ

is incompatible with the presence of Ca2+ puffs [18] and the
lacking evidence of slow domain collapse in puff experiments
[20].
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FIG. 2. (Color online) (a) Evolution of Ca2+ concentration c(t)
in simulations with N = 10 channels in the discrete model four-state
model. (b) Graph of domain Ca2+ concentration in dependence
on open-channel numbers for the discrete model (dots) and the
continuous model [line: Eq. (4), with N = 6, c0 = 0.025 μM, and
c1 = 0.74 μM]. (c) Evolution of c(t) in simulations with N = 10
channels for the Langevin model. (d) Illustration of the failure
of puff generation in a standard continuous representation using
cd(a) = c0 + c1Na instead of Eq. (4).

III. SIMULATIONS WITH DISCRETE AND
CONTINUOUS MODELS

A master equation for the discrete number of channels in
each of the four states can be formulated from the gating
scheme in Fig. 1(b). These equations are simulated by using
random Markovian transitions for all N channels in a cluster
and time-advancing Eqs. (2) and (3). Figure 2(a) shows that
this approach produces Ca2+ dynamics resembling experimen-
tally observed Ca2+ puff sequences. Parameters for the gat-
ing dynamics we have used: a5 = 100 (μM s)−1, k−

a = b5 =
20 s−1, k+

i = 0.1 (μM s)−1, k−
i = 1.7 s−1, and cs = 300 μM.

These values have been taken to fit the single channel patch-
clamp data and have been adjusted for the reduction from a
subunit to a channel-based Markov chain and the fitting of
recent puff data in SH-SY5Y cells [9,23].

To obtain an equivalent Langevin model, we wish to replace
n in Eq. (2) by the product of the total number of channels N

and the fraction of channels in the open state a. Replacing the
discrete number of channels by its continuous counterpart Na

entails that cd can be larger than c0 even if less than one channel
is open. This misrepresentation is a source of inadequate
continuous modeling (see below), and we therefore introduce
a function that possesses a step at the crucial transition from
zero to one open channel,

cd(a) = c0 + c1Na 1
2 {1 + tanh[(Na − 1)/ε)]} (4)

[see Fig. 2(b)]. Introducing a step calcium dependence on
an open-channel number serves to make the Langevin model
consistent with integer values present in the master equation
[14] and is similar to the rounding to integer numbers that was
used in stochastic Hodgkin-Huxley models [24,25] to improve
accuracy in simulations. The tanh function is used to avoid a
sharp step, that would lead to a discontinuity and possibly
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numerical instability in a differential equation approach. The
parameter ε in (4) is chosen at 0.1 in all of the following and
characterizes the discreteness of the 0 to 1 step. In principle, the
interface could be made sharper by reducing ε, but this needs
smaller time steps for the differential equation approach and
reduces efficiency in simulations. We have tested that a smaller
ε value of 0.01 does not substantially change the outcome of
the numerical simulations.

Rate equations with Langevin noise for each gating state
can be derived from the reaction scheme in the standard way.
For the fraction of channels in the respective states one obtains

da

dt
= k+

a cz − k−
a a + k−

i g − k+
i csa + Gza + Gag, (5)

dz

dt
= −k+

a cz + k−
a a + k−

i z − k+
i cz − Gza + Ghz, (6)

dh

dt
= k+

i cz − k−
i h + k−

a g − k+
a ch + Ggh − Ghz, (7)

where g = 1 − a − h − z because of conservation of prob-
ability. The G.. terms are Langevin noises representing
stochasticity of the channel opening and closing. Following the
approach of Fox and Lu [26] one obtains terms for Gaussian
white noise with zero means and with

〈Gza(t)Gza(t ′)〉 = (k+
a cz + k−

a a)δ(t − t ′)/N, (8)

〈Gag(t)Gag(t ′)〉 = (k+
i csa + k−

i g)δ(t − t ′)/N, (9)

〈Ghz(t)Ghz(t ′)〉 = (k+
i cz + k−

i h)δ(t − t ′)/N, (10)

〈Ggh(t)Ggh(t ′)〉 = (k+
a ch + k−

a g)δ(t − t ′)/N. (11)

These equations are simulated together with Eqs. (3) and (4)
using the Euler-Maruyama method with a time step of 10−5 s.
Special care has to be given to the treatment of variables
that leave the [0,1] interval because of a fluctuation. Here we
avoided unphysical channel fractions by repeating time steps
whenever any of the gating variables leaves the unit interval.
This method has been used before in numerical simulations
of neuronal channel dynamics [26]. To test the approach,
we have determined the number of level crossings in sample
simulations (data not shown). On average, less than 3% of the
time steps have to be repeated because of boundary crossings.
We found no noticeable increase in the number of crossings
during specific segments of the trajectory.

Figure 2(c) shows a typical time evolution in the Langevin
simulations for comparison with the Markovian simula-
tion. It should be noted that with a standard representa-
tion n = Na, or cd(a) = c0 + c1Na, a state of intermediate
level and noisy activity results (d), which does not reflect
the original dynamics. Thus an adequate representation
of the original dynamics is only obtained by invoking
the [Ca2+] step at the transition from zero to one open
channel [14].

The puff frequencies for both methods are calculated from
simulation runs of 1000 s and are shown in Fig. 3. A single puff
event is defined to begin whenever the open-channel number
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FIG. 3. (Color online) (a) Frequencies of puffs depending on the
number of channels in a cluster N . Puffs are defined as openings of
more than one channel (�: Langevin; ◦: discrete). (b) Discrete and
continuous simulations agree well for a wide range of parameters. For
example, frequency of puffs increases with rest level concentration
c0 (N = 10 channels) and for both simulation methods.

n or Na exceeds 1.5 and to end when it falls below 0.5 for
more than 5 ms. The obtained frequencies agree very well
with experimental data in [22]. The Langevin model works
best for channel numbers around N = 8. For larger N > 12,
the definition of puffs from the time series becomes difficult
because of a transition in dynamical behavior (see below). We
have further tested the validity of our approach for a wide range
of system parameters. For example, in variation of rest level
concentration c0 in a range around 0.025 μM both methods
show an increase in puff frequency [Fig. 3(b)].

Equations (3)–(7) can be analyzed in the deterministic limit
where all noise terms G.. are set to zero. Figure 4 shows
the evolution of components a, g, and h starting in an initial
state where most of the channels reside in the rest state z

but a sufficiently large fraction of channels resides in the
open state a. The evolution exhibits the fast activation of
the open state fraction followed by a slower g component
and an even slower h component. This time course can be
considered the deterministic backbone of elementary Ca2+

release.
To further analyze the dynamical system without noise,

we have eliminated the c dynamics by a quasistationary ap-
proximation, where c = c0 + c1Na 1

2 {1 + tanh[(Na − 1)/ε]}.
We have further reduced the gating equations to a three-state
model (z,a,h′), where state h′ encompasses the two inhibitory
states g and h. Rates from the compound state h′ to a and z are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

G
at

in
g 

st
at

e 
fra

ct
io

n

a

g h

FIG. 4. (Color online) The dynamical evolution of gating state
fractions a, g, and h after initialization a = 0.11, g = 0.02, h =
0.02, and z = 0.85.
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given by k1 = k−
i g0 and k2 = k−

i (1 − g0), respectively, where
g0 = k+

a c/(k+
a c + k−

a ) is the fraction of g occupancy relative
to h. Rates from a and z towards h′ are the original rates
towards g and h, respectively. The resulting system consists
of two ordinary differential equations (ODEs),

da

dt
= k+

a cz − k−
a a + k1h

′ − k+
i csa, (12)

dh′

dt
= k+

i cz − k1h
′ − k2h

′ + k+
i csa, (13)

with z = 1 − a − h′. The two-dimensional system can be
studied using standard bifurcation theory. Figure 5 shows the
nullclines (a green, h′ red) as well as an exemplary trajectory
with initial conditions a = 0.12 and h′ = 0.1. The left and
right green segments join at h′ ≈ −29 so that the activator
nullcline forms an inverted N . The nullclines intersect at a
stable fixed point very close to the origin. Because of the
stability of the fixed point, a sufficiently large perturbation
is needed to initiate a Ca2+ puff by jumping beyond the
middle segment of the activator nullcline. Thus, the shapes
of the nullclines and of the trajectory resemble those known
from excitable systems where perturbations or noise drive the
nonlinear dynamics [27].

It is often found that excitable systems can be tuned to
regimes of oscillatory or bistable dynamics by an alteration of
the nullclines. If, in Fig. 4(b), the inhibitor nullcline shifts or
turns to the right or the activator nullcline moves to the left,
their nullclines may intersect three times creating a second
stable fixed point on the right branch of the a nullcline. In
the two-dimensional ODEs (12) and (13), this happens by
decreasing cs, decreasing c1, or increasing the number of
channels N (see the inset in Fig. 5). The number N can
be interpreted as the number of activatable channels in the
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FIG. 5. (Color online) Nullclines and exemplary trajectory of a
Ca2+ puff for the three-state model. The green dashed and red solid
curves are nullclines of a and h′ variables, respectively. The crossing
point of the two nullclines is a fixed point marked by an “x.” A
perturbation away from the fixed point (marked by the dotted arrow)
triggers an excitable trajectory (thin black line with arrows). In the
final segment the trajectory follows the a nullcline towards the fixed
point.

cluster, which can be increased experimentally by larger IP3

concentration. This raises the intriguing possibility that upon
IP3 increase the system undergoes a transition from excitable
to bistable behavior. In the latter case, one finds that an
initial perturbation away from the low-inhibition fixed point
(h′ ≈ 0.1) results in a large initial spike along the a nullcline
and back to the second fixed point with small open fraction a

and large inhibition (h′ ≈ 0.9).
We propose that the bistable behavior embodies Ca2+

release in the form of global waves observed in many
nonexcitable cells and in ryanodine receptor mediated release.
According to current understanding, Ca2+ signals propagate
by diffusion of Ca2+ from active clusters to inactive adjacent
clusters, but it is unclear how to accommodate the very
different time courses and periods of puffs and waves in this
framework [7,10]. In this respect it is interesting to note that
release through IP3R channels in Xenopus oocytes involves
two different processes. For small [IP3], calcium currents last
only shortly (around 100 ms) whereas for larger [IP3], i.e.,
during a wave, Ca2+ efflux is initially as large as during a
puff but proceeds as a leak flux for several seconds [15]. This
transition has been attributed to the effects of coupling, but a
detailed mathematical model of the puff-to-wave transition
shows the two phases have not been devised. Our finding
of a bifurcation to bistability for increased channel number,
however, suggests a different mechanism consistent with the
two distinct release phases. Here the transition is caused by a
change in local behavior of the single cluster. Furthermore, it
is conceivable that the persistent leak flux causes much larger
Ca2+ release than during a puff and that the larger coupling
is thus the consequence and not the cause of the puff-to-wave
transition. This issue will be discussed in detail in a future
paper.

IV. CONCLUSIONS

To summarize, we have devised a differential equation
model for subcellular Ca2+ release that explicitly takes into
account the very small number of channels in a cluster. We
uncover what is perhaps the smallest system in the living
world for which molecular interactions can be cast into an
equation system with deterministic excitability. This approach
also clarifies the role of noise in the system and provides the
missing link that clearly demonstrates the noise-induced nature
of Ca2+ puffs.

We emphasize that, because of the nonstandard represen-
tation of the [Ca2+] versus open-channel-number relation,
the setup of our model and the resulting dynamics are very
different from prior attempts at Langevin modeling of Ca2+

puffs [12,13]. These studies exploited the Li-Rinzel scheme,
which was derived to model Ca2+ oscillations on much longer
time scales [28]. Additionally, the activator variable was
dynamically enslaved to the Ca2+ concentration, whereas noise
was incorporated in the inhibitor variable. In our model, the
dominant noise effect is caused by the activator fluctuations.
Most importantly, however, our model is by construction
adapted to the small channel numbers typically found in IP3R
clusters, whereas the earlier models described the stochastic
behavior in the master equations for large channel numbers
only. This difference is particularly evident from the fact that
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our model in the deterministic limit decisively depends on the
number of channels N , which is not usually the case for such
continuous approximations.

Our approach of using continuous gating variables can be
likened to that in studies of neuronal dynamics with schemes
as for example that from Hodgkin and Huxley. Accordingly,
our approach of two-dimensional phase-plane analysis follows
that of the FitzHugh-Nagumo model [29]. A phase-plane
analysis was also carried out for a cluster of ryanodine
receptor channels [30,31]. However, there the structure of
intersecting nullclines and the existence of bistability in the

two-dimensional phase plane was not observed. Our incorpo-
ration of multiple [Ca2+] scales into differential equations may
hence spur the development of realistic and transparent mod-
els for subcellular, intracellular, and intercellular dynamics
of Ca2+.
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