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Anisotropic spontaneous curvatures in lipid membranes
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Symmetry restrictions due to fluidity require the strain energy in the Helfrich theory of lipid membranes to be
locally isotropic in nature. Although this framework is suitable for modeling the interaction of membranes with
proteins that generate spherical curvature such as clathrin, there are other important membrane-bending proteins
such as BIN-amphiphysin-Rvs proteins that form a cylindrical coat with different curvatures in the longitudinal
and the circumferential directions. In this work, we present a detailed mathematical treatment of the theory of
lipid membranes incorporating anisotropic spontaneous curvatures. We derive the associated Euler-Lagrange
equations and the edge conditions in a generalized setting that allows spatial heterogeneities in the properties
of the membrane-protein system. We employ this theory to model the constriction of a membrane tubule by a
cylindrical scaffold. In particular, we highlight the role of the equilibrium equation in the tangential plane in

regulating the spatial variation of the surface tension field.
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I. INTRODUCTION

Cellular membranes undergo dynamic remodeling for
successful execution of various processes such as cellular
transport, cell mobility, and cell division, to name a few [1-6].
This in general entails local bending of the membrane
that could single handedly or collectively be caused by
(1) curvature-inducing proteins or lipids, (ii) active force-
generating cytoskeletal filaments, and (iii) symmetry-breaking
enzymes [5,6]. In the existing literature on membrane mechan-
ics, this bending effect has been modeled on the continuum
scale by introducing a so-called spontaneous curvature field.
The application of this concept has ranged from studies
modeling shapes of biological structures such as red blood cells
to studies modeling processes such as cellular transport [1,3].

The idea of a spontaneous curvature field is tied to the
form of the strain energy function of a lipid membrane.
For the Helfrich model, the strain energy depends on the
local mean curvature and the Gaussian curvature of the
surface [7-9]. This was rigorously proven on the basis of
symmetry restrictions that ensure membranes offer vanishing
resistance to in-plane shear deformations as they behave like
two-dimensional fluids [10,11]. For the classical Helfrich
model with quadratic dependence on mean curvature and
linear dependence on Gaussian curvature, a preferred geometry
imposed by curvature-inducing proteins can be generated
by prescribing a resting mean curvature and a Gaussian
curvature. In general, the preferred mean curvature, called
the spontaneous curvature, has been used in the literature
to regulate the membrane geometry by shifting the vertex
of the parabolic energy landscape (associated with the mean
curvature) to the prescribed curvature.

This approach works well for proteins that form spherical
coats and induce an isotropic curvature. One excellent example
of such a protein is clathrin, which plays an important role in
the various vesicle-mediated transport processes in cells [2,3].
However, there is a different set of curvature-inducing proteins
called the BIN-amphiphysin-Rvs (BAR) proteins that generate
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acylindrical curvature instead of a spherical curvature [12—15].
Figure 1 shows the two types of protein scaffolds and their
effect on membrane geometry. As the normal curvatures along
the longitudinal axis and the circumferential direction of a
cylinder are different, spontaneous curvatures generated by
such proteins are anisotropic in nature. As a consequence,
the standard Helfrich model is not equipped to model
such membrane-protein interactions because of the inherent
isotropy built into the system.

To address this issue, several studies have proposed a modi-
fied quadratic strain energy in different contexts. A generalized
energy for membranes where tilting and chirality of lipids
give rise to anisotropic spontaneous curvatures was proposed
in [16]. In a series of papers, the effect of anisotropic inclusions
was studied via a mismatch tensor that energetically penalized
the difference between the intrinsic curvatures preferred by
the inclusions and the local membrane curvatures along the
preferred directions [17-19]. For a nematic membrane made
of rodlike molecules, a strain energy that incorporated sponta-
neous curvatures in both the normal curvatures and the twist
was proposed in [20]. Models for BAR protein attachment
that account for membrane-protein electrostatic interactions
and symmetry breaking by loop insertion have been reviewed
in [21]. In addition to these works, computational models
and an all-atom molecular dynamics model have been de-
veloped to investigate the interaction of BAR proteins with the
lipid membrane [22-29]. For an extensive list of theoretical
and computational studies on membrane-protein interactions,
we refer the reader to [30,31].

In this paper we build upon these works to present a detailed
derivation of a generalized theory to model interactions of a
membrane with nonspherical protein scaffolds. In particular,
we derive the Euler-Lagrange equations in a fully nonlinear
setting for an inhomogeneous membrane that is equipped
to capture spatial variations in membrane and protein coat
properties. In addition to the modified shape equation, we
present the force equilibrium equation in the tangential plane
in the context of anisotropic membranes. Furthermore, we
derive the explicit expressions for forces and moment that act
locally at any arbitrary boundary in such a membrane. The
paper is organized as follows. In Sec. II we discuss the strain
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FIG. 1. (Color online) Different types of protein scaffolds around
the membrane (shown in red): (a) a spherical scaffold made by
proteins such as clathrin and (b) a cylindrical scaffold such as those
made by BAR proteins.

energy function for a membrane with anisotropic curvatures.
In Sec. IIT we compute the variations and derive the Euler-
Lagrange equations and the edge conditions. In Sec. IV we
customize the governing equations for axisymmetric surfaces
and model the interactions of a cylinder and a spherical vesicle
with crescent-shaped proteins. Finally, we summarize our
results in Sec. V.

II. STRAIN ENERGY

The lipid membrane and the protein scaffold form a
nonstandard composite system. It bears similarity to fiber-
reinforced solid materials that exhibit anisotropy generated
by the directionality of the fibers [32]. However, there is a
fundamental difference that distinguishes the two materials.
In a fiber-reinforced material, the fibers are embedded in the
matrix and as a result, the fibers get convected with the matrix
when subjected to a deformation. In contrast, BAR proteins
are not transmembrane proteins and sit outside the outer
monolayer. Thus, while the protein shell is more solidlike, the
membrane inside still remains fluid, allowing lipids to diffuse
over the surface. Furthermore, the curvature-inducing proteins
are more dynamic and can diffuse and reorient on the surface
and self-assemble in different configurations depending on
their spatial distribution and membrane geometry. As a result,
these proteins cannot be modeled as embedded entities that get
convected with a deforming membrane. This fact limits the use
of symmetry arguments in a reference configuration typically
used to obtain restrictions on the constitutive functions of
fiber-reinforced materials. To circumvent this problem, we
impose symmetry restrictions in the current configuration,
similar to the approach proposed in [17-19]. This ensures in-
corporation of directional effects from the curvature-inducing
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FIG. 2. (Color online) Protein attachment on the membrane: (a)
orientation of the protein in the tangential plane and (b) 180° rotation
of the protein about the surface normal leads to an indistinguishable
state.

proteins without picking up unphysical effects due to protein
embedding.

Let w be a two-dimensional surface with a nonuniform
distribution of crescent-shaped bar proteins that tend toward
anisotropic curvatures. The locus of points on w is tracked
by the position vector r(6*), where 8* (u = 1,2) are the
surface coordinates. Here and henceforth, greek indices range
over {1,2} and, if repeated, are summed over that range.
The basis vectors on the tangential plane at any point are
given by a, =r,, where (), = d()/96%. This yields the
metric aqg = a, - ag and the unit surface normal vector
n = a; xay/ |a; xa,|. The local curvature tensor field is given
by b = bypa® ® a, where

byg =M T =—a, -Ng @))

are the coefficients of the second fundamental form,
a¥ = q*f ag are the contravariant basis vectors, and
(a®?) = (aqp)~" is the dual metric [33].

We assume that the curvatures induced by the proteins
depend on both the geometry of the proteins and their local
concentrations. The orientation of a protein on the surface
is given by a unit vector A(6*) that is tangential to the one-
dimensional curve that captures the in-plane protein geometry
as shown in Fig. 2(a). The orientational vector A and the surface
normal n furnish a third orthonormal vector £ = nx A, which
together form a local triad {A, t,n} at any point on the surface.

Since a membrane behaves as a fluid shell offering bending
resistance, the strain energy function depends on the curvature
tensor b. However, unlike the classical model, for the present
case we assume an additional dependence on a structural tensor

M=AQA—uQ®pu 2)

to capture the anisotropic spontaneous curvatures generated
from membrane-protein interactions. Such a structural tensor
is routinely used to define orthotropic symmetry in two-
dimensional materials [34]. In the present setting, we do not
resort to a reference configuration and require the model to
have orthotropic symmetry in the current configuration. This
is motivated by the fact that a crescent-shaped protein rotated
by 180° cannot be distinguished from the original protein. As a
consequence, the normal spontaneous curvatures they generate
are also indistinguishable [Fig. 2(b)]. As is necessary for any
material, we require the strain energy density W(b,M) to be
Galilean invariant. This yields a list of invariants

I = {tr(b),tr(M),det(b),det(M), tr(Mb)}. 3)
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Since the second and fourth invariants above are constant scalar
fields, the irreducible basis comprises three elements H, K,
and D, where H = tr(b)/2 is the mean curvature, K = det(b)
is the Gaussian curvature, and D = tr(Mb)/2 is the curvature
deviator. In addition to H and K present in the Helfrich model,
W now is dependent on a new element D because of the
directionality imposed by an orthotropic protein scaffold.

To get insight into the invariants, we compute them in terms
of the local principal curvatures. In the {ay,ag} and {A,p}
bases, they can be expressed as

H = 1a"Pbos = (i + k,)/2, (4a)
K = 16" bogbgy = Kk, — T2, (4b)
D= %baﬂ()"a)‘ﬁ _ Maﬂﬂ) = (15 — K,)/2, (40)
where
k0. = buph“AP . K = bopp®pt?, T = bopdu”  (5)

are the normal curvatures along A, g, and the twist, respec-
tively. Above, A* and u* are the projections of A and p along
the tangential vectors with

AY =A-a%,
pe = p-a* = @nxr)-a® =2V ayy, (6)

where ¢ = g V2e* g = det(aqp), and ¢*? is the permu-
tation tensor with e'> = —¢?! =1 and zero if = 8. From
Eq. (4¢) it is evident that D is the difference in the normal
curvatures along the two orthogonal directions allowing us
to prescribe a new spontaneous curvature Dy that captures
the protein-induced anisotropic curvatures. This is similar to
prescribing Hj, the spontaneous curvature associated with the
mean curvature in the Helfrich model. Since {H, D} together
uniquely determine {k;,«,} and vice versa [see Eq. (4)],
prescribing {Hy, Do} is analogous to imposing preferred
curvatures {k;),k})} in the two directions A and . In contrast,
imposing a set of {Hy,K(} can lead to infinitely many
combinations of {K)?,Kg}. Hence, the unique direction of
attaching proteins cannot be deciphered in a model that
depends solely on H and K.

III. VARIATIONS

The integration of the strain energy per unit area over the
entire surface w gives the total strain energy

E:/W(H,D,K;H“). )

An explicit dependence on surface coordinates allows mod-
eling of heterogeneous membranes with spatially varying
properties [35]. To impose the area and the volume constraints,
we obtain an augmented potential energy functional

E- / [W(H,D.K:6%) + M0“)da — pV(@), (8

where A(6%) is the surface tension field and p is the trans-
membrane pressure [36]. We allow tension to vary spatially in
order to prevent local areal dilation. This assumption is based
on the observation that a bilayer can only endure a maximum
of 2%—-3% stretch before tearing apart [37].

PHYSICAL REVIEW E 89, 062715 (2014)

We consider a family of surfaces generated by r(6%;e).
The virtual displacement of the surface is given by u(6%) =
%r(@"‘;e)|e=o =r, where the superposed dot refers to the
derivative with respect to the parameter € [38]. Variation of
E in Eq. (8) yields

E= f Wda + /(W +M)(J/J)da — pV, )
where J = . /a/A is the ratio of the material area after
deformation to that before and

W =WyH+ WxK + WpD. (10)

The variations of the mean curvature and the Gaussian
curvature were derived in [38] and are given by

2H = daﬂbwﬂ — b"‘ﬁaaﬁ,
K = —Ka® s + 6 by.

(11a)
(11b)

In this paper we focus on the variation of the curvature deviator,
which, with the help of Eq. (4c), can be expressed as

D = 1, — &) (12)
Using Eq. (5), variations of «;, and «, can be expressed as
K = bagh®AP + 2bog A2,
ko = bapi® 1P + 2bg i . (13)
From Eq. (6) and the relation a* = a“”a,,, we can compute
A =a"(-a,)+ (A -a,)a®,
n* = mxi)-a% + (nxA) - a%.

(14a)
(14b)

It is important to emphasize that in the current model A
is prescribed a priori. As a result, it is unaffected by the
virtual displacements and A = 0. However, since 4 = nxA,
L # 0 because of the variations of n. Since n-n =1, n is
perpendicular to n and lies in the tangential plane. As a result,
nx\ is oriented along the normal whose projection in the
tangential plane vanishes. This simplifies Eq. (14b) to
/:La :aay(’l"ay)+(ﬂ'ay)aay~ (15)
Substituting Egs. (13), (14a), and (15) in (12), we can finally
obtain
D = jbup(3 — uuP) + bogla*’a,, - GPA — pP )
+a“a, - (WA — pfpl. (16)

A. Tangential variations

For tangential variation u = u*a;, we can show (see [38]
for details)

a, =u"a, +u"b,,n (17)
and
a%r = —

a“eay‘/’(u@;w + btw;@). (18)

Here and henceforth a semicolon signifies the covariant deriva-
tive along the tangential direction. Substitution of Egs. (17)
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and (18) in (14a) furnishes
A = =0a®a" (ugy + uyp) +a*ulgh,. (19

Since the metric is covariant constant,

ay‘/’uw;g = u;yg, a“eug;,,, = uf‘\/,. (20)

Combining Egs. (19) with (20) yields

A= —=2Vu,. (21)
Following a similar procedure, we can show

p = —puVul,. (22)

We employ Egs. (13), (21), and (22) along with the
Mainardi-Codazzi equations and the variation of the covariant
components of the curvature tensor [38]

bap = ul,byp + ulshyy + u"byacp (23)
to compute
K5, = Whapy MM, Ky = U"bgpu® 1P (24)

Substitution of Eq. (24) in Eq. (12) finally furnishes the
variation of the curvature deviator

D = u"bup,(A2P — i 1uP))2. (25)

Having obtained D, we can now proceed to derive_ the force
equilibrium equation in the tangential plane. Since V vanishes
for tangential variations and J/J = u’y [38], we can write
Eq. (9) as

E = /[W —u"(W + A),,]da + /[u”(W + M), da, (26)

where
W,=WyH,+WgK,+WpD,+0W/06". 27

Making use of H = u"H,, and K = u"K ,, (derived in [38])
together with Egs. (10) and (25)—(27) and the Stokes theorem,
we compute the Euler-Lagrange equation

Ay =—0W/30" — Wplbus(L“2F), 1. (28)

The above equation allows for the computation of the surface
tension field on the surface. It generalizes the tangential
equilibrium equation derived in [11,38] for homogeneous
membranes and in [35] for membranes interacting with
isotropic curvature-inducing proteins. The first term on the
right-hand side is a result of spatial heterogeneities in mem-
brane properties and holds for both isotropic and anisotropic
membranes. The second term is specific to anisotropic mem-
branes and is governed by the functional dependence of the
strain energy on D and the orientation of the proteins. If
the membrane is homogeneous and isotropic, the right-hand
side would vanish, furnishing a uniform surface tension over
the entire surface. However, if the properties vary spatially or
have a directionality, as is expected in the present context, the
right-hand side can be nonzero, forcing the surface tension to
evolve over the surface.
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B. Normal variations

For normal variation u = u(6%)n, we follow a similar
procedure. Using Egs. (14a) and (15) and the relations

Ay = uon —ublag, Gup = —2ubyg, (29a)

bap = tt:ap — Uby b, (29b)
(see [38]), we derive

A =ubla® i, p* =ubla® . (30)

Substituting Egs. (29b) and (30) in (13), we compute the
variations of the normal curvatures

k3, = [ap + tbay by A*A7,

Ky = [t + Ubay by |1, @31
which together with Eq. (12) yield
D = (up + ubay b)) (A*1F — pu*uP)/2. (32)
Substituting Eq. (32), along with the relations
2H = Au +u(4H?* —2K), J/J = —2Hu,
K =2KHu + (bu 4).p (33)

from [38] in Eq. (9) and employing the Stokes theorem, we
compute the associated Euler-Lagrange equation

sIWp (2P — 1 1o + 3 WpAORP — p* 1P )bg, b
+A(3Wh) + (Wi).pa6"* + Wy (QH? — K)
+2H(KWg — W) —2HA = p. (34)

This is the modified shape equation in the context of
anisotropic membranes. Suppressing the dependence of W
on the curvature deviator D yields the original shape equation
for the isotropic lipid membranes [11,35,36,38].

C. Edge conditions

With the Euler-Lagrange equations (28) and (34) satisfied,
the variation of the energy E for a surface w with a boundary
dw reduces to Eg = B; + B, where

B, = / (W 4+ Mu®v.ds (35)
dw
and
B, = / [§(Wy — Wpn®u o — S[(Wh).o — (Wp).oIv*u
dw

+ (Wb + Wpr*2Pyvgu o
—[(Wi).ob* + (Wpr*2AP)gTvgulds. (36)

Equation (35) is the contribution from the tangential variations,
which remains the same as that for the isotropic case [36]. In
contrast, the contribution from the normal variations given by
Eq. (36) is altered by the inclusion of the curvature deviator.
We define a vector T as the unit tangent to dw as shown
in Fig. 3 by taking the derivative with respect to the arc
length parametrizing the boundary dw, T = %. The unit
normal to the boundary lying in the tangent plane to the
surface can then be defined by the vector v = 7 xn. Using the
orthonormality of v and 7, we can decompose the derivatives
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FIG. 3. (Color online) Three orthonormal vectors on a boundary
Jw.

uqinEq. (36)asu o = tyu’ + vyu ,, where u’ is the derivative
along 7 in the direction of increasing arc length and u , is
the normal derivative along v [36]. We combine this with
u,=—-7 -w—(k,v+t7) -uandu = u - ntorecast the edge
contributions for a piecewise smooth boundary as

Eg = (Fov+ F.t+ F,n) -uds
w
—/ Mr-wds+2fi~u,~, 37)
Jw i
where
M = Wy + 1. Wi + Wpr“2 vgv, — S W,
F,=W4+A—x,M,
F,=—-—tM,
Fo= (tWg) — 2(Wp),, — (W) gb* v,
+1(Wp).» — (WpA“2P).gvy — (WpA*APrgt, ),

f; = (W[l + Wplr*APvgz,])in. (38)

Square brackets indicate forward jumps in values within the
brackets at the corners of the boundary, where there is a jump
in T. Above, M is the bending moment per unit length, F), is
the in-plane normal force per unit length, F; is the in-plane
shear force per unit length, F, is the transverse shear force
per unit length and f; is the force applied at ith corner of
dw. As expected, the anisotropic contribution to the strain
energy results in modified expressions for the boundary forces
and moment, furnishing an extension to the edge conditions
derived for isotropic membranes [39-42].

IV. EXAMPLE

In this section we test the proposed theory by simulating the
constriction of a cylindrical tubule by an exterior scaffold made
of crescent-shaped proteins, such as BAR protein dimers. To
this end, we customize the equations derived in the previous
section for axisymmetric surfaces parametrized by meridional
arc length s and azimuthal angle 6. For such a surface,

r(s,0) = r(s)e.(0) + z(s)k, (39)
where r(s) is the radius from axis of revolution, z(s) is the ele-

vation from a base plane, and (e, ,e,,k) form the coordinate ba-
sis. Since (r')* + (z')* = 1, we can define an angle ¥ such that

¥'(s) =cosy, Z/(s)=siny. (40)

Above and in the rest of the section, () = d()/ds. With
9! = s and 62 = 6, we can easily show that

a; =r'e, + 7k,
n = —sin(y)e, + cos(¥)K. 41

a; = rey,
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Using Eq. (41) and its derivative, we can show that the metric
(aup) = diag(1,r?), the dual metric (a®#) = diag(1, %), and
the covariant components of the curvature tensor (byg) =
diag(y’,r sin i). Together they furnish the two invariants
sin
2H = '+ —

K = H?> —[H — (siny)/r]%.

(42a)

(42b)

The BAR proteins align in a helical pattern on the mem-
brane tubule [14]. The lateral and tip to tip interactions between
the dimers help to deform the underlying membrane [27].
To achieve this efficiently, the BAR proteins maintain close
proximity and orient themselves on the cylindrical surface with
low tilt angle [13] (tilt with respect to the longitudinal axis of
the tubule). Thus, for our simulations, we neglect the small tilt
angle and assume a continuous distribution of crescent-shaped
dimers aligned in the circumferential direction. As a result, the
two orientation vectors are given by

A= —ey, M =cosye, + sinyk. (43)

The corresponding normal curvatures in the two directions
become k; = (siny)/r and k,, = . Together, they yield the
curvature deviator D = [(siny)/r — ¥']/2.

We consider an extension of the Helfrich energy W that is
quadratic in the mean curvature H and the curvature deviator
D. For the time being, we suppress the dependence of W on
the Gaussian curvature K as the influence of protein coat
on the Gaussian modulus is not yet known. We discuss
the possible consequences of different Gaussian moduli in
Sec. IV A. The generalized form of W can therefore be
written as

W(H,D;s) = ki(s)[H — Ho(s)]* + ka(s)[D — Do(s)]*
+2ki2(s)[H — Ho(s)I[D — Do(s)],  (44)

where Hy(s) and Dy(s) are the preferred H and D values that
arise because of the anisotropic curvatures generated by the
protein scaffold. In addition to the spontaneous curvatures,
we assume that the protein scaffold also alters the effective
bending moduli and hence allows them to vary spatially. In
the absence of the protein coat, the last two terms vanish,
furnishing the standard Helfrich energy. To get some additional
insight into the membrane-protein system, we can express the
above energy in terms of the normal curvatures in the A and
J directions in lieu of the mean curvature and the curvature
deviator. With the help of Egs. (4a) and (4¢), Eq. (44) can be
written as

W = ki) — 2] + ko) — 2]
+ 2kpa(5)[ K5 — 10 ()] [ — 11 (5)]. (45)

The link between the Eqs. (44) and (45) is provided by the
relations

ki = ki +ky +2kin, ko = ki + ko — 2kya,
kin = (k1 — ko), (46)
Hy = (KE + KS_)/Z, Dy = (K)? — Kg)/2.

In Eq. (49), {Kf,/cg} and {k;,k,} are the spontaneous curvatures
and the bending moduli along the directions A and p and hence
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provide a more intuitive picture of the effect of the protein
scaffold on the membrane in the two directions.

The shape equation (34) for W(H, D; s) and axisymmetric
geometry reduces to

!/

L
p=—+4+WyQH*—K)—2H(W 4+ 1 — WpD)
r

Jr(WD)’rCOS 1/f’

(47)

where
L/r = i[(Wy) = (Wp)1. (48)

The equilibrium equation in the tangential plane [Eq. (28)]
takes the form

N=-W. (49)

We account for the area incompressibility of the membrane
by transforming the independent variable from arc length s to
area a employing the relation da/ds = 2nxr. In addition, we
nondimensionalize the system of equations and define

Fr=r/Ry, Z=27/Ry, a :a/ZnRé, Ky = Roky,

<. = Rok,, H=RoH, D=RyD, X%=2.R;/ko.
L=RyL/ky, ki=ki/ko, k»=ks/ko,

k12 = ki2/ ko, (50)

where Ry is a reference radius of curvature and k( is the
bending modulus of the uncoated membrane.

The uncoated tubule has a uniform circumferential radius
(kc;, = 0.5) with ]E] =1, /Ez = 1212 =0, and K)? = Kg =0. We
simulate the shape evolution of the tubule for a sequence
of nonuniform protein concentrations (C;,C5,C3) shown in
Fig. 4(a). In a realistic setting, such a changing spatial concen-
tration would correspond to a binding-driven accumulation
of the protein dimers. Since in the present study we do not
explicitly model the self-assembly dynamics of dimers, we
prescribe the protein concentration field a priori. We cap the
concentration to a maximum value as the protein size and
geometry would impose a physical restriction on the packing
density. We assume that the effective membrane parameters
influenced by the protein coat (Hy, Do,k ,k») depend linearly
on the protein concentration field [Fig. 4(b)]. A concentration-
dependent preferred curvature has indeed been experimentally
observed for the BAR domain attachments [12].

We assume that the protein scaffold prefers a narrower
tubule and prescribe a larger curvature (/ZS =1) in the
circumferential direction and zero curvature in the longitudinal
direction (/22 = 0). In the (H, D) framework, these maximum

directional curvatures transform to Hy = 0.5 and Dy = 0.5.
These values correspond to the maximum protein concentra-
tion and get scaled by the local concentration values in the
rest of the coated domain. In addition, we assume that the
protein coat results in increased effective bending modulus
and set £, = 2 and k, = 1 in the highest concentration region.
These parameters, computed from Eq. (46), assume a double
stiffening of the membrane in the A and p directions. This
choice of parameters is in agreement with a stiffness of
20 + 10kgT for the BAR proteins computed by the shape-
based coarse-graining approach [22].
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FIG. 4. (Color online) (a) Three prescribed spatially varying
protein concentration fields and (b) linear dependence of the various
protein-induced parameters on the concentration values.

For the above-mentioned parameters, we solve the differen-
tial equations (40), (42a), and (47)—(49) over an area domain
varying from 0 to d@y = 30 for vanishing transmembrane
pressure subject to the boundary conditions

20)=0, ¥(0)=n/2,
¥(ao) = m/2, Aao)=1/16. (51

The last boundary condition is obtained from the solution of
the standard shape equation to maintain the original cylindrical
geometry far away from the protein coat domain.

The computed tubule geometry and the surface tension field
are shown in Fig. 5. As the protein coat continues to grow,
the preferred circumferential and meridional curvatures are
effectively imposed and the tubule attains a smaller radius in
the coated domain [Fig. 5(a)]. It is important to note that the
changes in the geometry are accompanied by a concomitant
change in the surface tension values shown in Fig. 5(b).
The surface tension profile closely follows the concentration
profile. From a far away normalized resting tension of 0.06,
the surface tension increases to 0.27 in the protein coat domain
(for C5 concentration field), leading to an approximate increase
by 450%. Such a drastic change in the surface tension would
be specifically relevant to comprehend the role and energetics
of fission proteins that form cylindrical coats. The role of
the tangential equilibrium equation in capturing the spatial
variation in the surface tension thus cannot be undermined.

7(0) =2,
F(aop) =2,

A. Effect of Gaussian modulus

In the results presented so far, we had suppressed the
role of Gaussian energy because of lack of experimental or
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FIG. 5. (Color online) (a) Tubule shapes for the three concentra-
tion fields. The red curve is the protein-coated segment while the
green curve is the uncoated segment. (b) Surface tension field for the
three geometries.

numerical data on an estimate of the Gaussian modulus in
the protein-coated domain. If the modulus remains unaffected
by the scaffold, which appears rather non-intuitive, the
equilibrium equations and the boundary conditions remain
unchanged and the results presented before hold. If the
modulus changes spatially, like the other bending moduli, it
would affect both the geometry and the membrane stresses.
To get a quantitative insight into this effect, we revisit the
tubule problem with a modified strain energy W(H,D,K;s) =
W(H,D;s) + k(s)[K — Ko(s)], where the first term is the
energy in Eq. (44) and the second term is the contribution from
the Gaussian curvature. Since crescent-shaped dimers prefer
a cylindrical geometry, we set Ko(s) = 0. In the uncoated
domain, we set k = —ko based on the recent findings of
Hu et al. [43]. In the protein-coated domain, we perform a
parametric analysis and compute the equilibrium solution for
a few different values of k. A similar approach was adopted
by Das et al. to model the impact of Gaussian modulus on
the geometry of a membrane with two distinct phases of
lipids [44]. Since the constraint on the Gaussian modulus from
the stability condition is not known for anisotropic membranes
at present, we allow the modulus to span both the positive and
the negative regimes. The tubule shapes and the membrane
tension variations for three specific values of maximum k
(k = ko,—ko,—3ko) corresponding to the C3 concentration
field are shown in Fig. 6. The changes in the overall geometry
are rather subtle with minor variations occurring near the
membrane-coat interface. The changes in the membrane

PHYSICAL REVIEW E 89, 062715 (2014)

k= ko k= —ko k= —3kg
20
15
15 15
PN
10 10 10
5 5 5
%202 %2024 %2024
T T r

FIG. 6. (Color online) (a) Tubule shapes for the three prescribed
Gaussian moduli for the C; concentration field. The red curve is
the protein-coated segment while the green curve is the uncoated
segment. (b) Surface tension field for the three geometries.

tension, however, appear more significant, especially for
the positive value of the modulus. Overall, the variations
in the Gaussian modulus do not alter the qualitative response of
the tubule.

V. CONCLUSION

We have derived the generalized theory for lipid mem-
branes that interact with protein scaffolds inducing anisotropic
spontaneous curvatures. In addition to the mean curvature
and Gaussian curvature, the strain energy for a membrane
interacting with a protein scaffold with orthotropic symmetry
depends on the curvature deviator. Inclusion of this invariant
alters both the equilibrium equations and the edge conditions
as shown in this paper. The proposed theory is equipped to
model various kinds of spatial heterogeneities that may arise
because of the membrane-protein interactions. We show the
efficacy of the theory by modeling the squeezing of a tubule by
crescent-shaped proteins. We emphasize the role of the
equilibrium equation in the tangential plane by evaluating
the surface tension field on the surface and showing its
nonuniform behavior. Since membrane tension is a critical
component in several cellular processes and remains an enigma
in experimental studies, modeling-based quantitative estimates
of tension can prove to be of vital importance. We model
the influence of the Gaussian modulus on the equilibrium
geometry and the membrane tension. Although the influence
of the protein coat on the modulus is unknown at present, a
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comparison of the experimental data on tubule shapes with the
simulation results might provide an avenue to gain insight into
the nature of the modulus.

Overall, the proposed framework would be valuable in com-
prehending biological phenomena where membrane-protein
scaffold interactions play an important role. This bears
special relevance for modeling of endocytic pathways in
yeast and mammalian cells as cylindrical protein coats play
a critical role in both vesicle formation and fission. Lack
of an apt mathematical framework may lead to erroneous
conclusions about the need and roles of different compo-

PHYSICAL REVIEW E 89, 062715 (2014)

nents of the endocytic machinery. In addition, the proposed
framework would form the basis for formulating a dynamic
model to capture the self-assembly of such proteins on a
curved surface. This would be critical for understanding
curvature-based protein sorting and localization in cellular
membranes.
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