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Chiral symmetry breaking of a double-stranded helical chain through bend-writhe coupling
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This paper explores asymmetric elasticity of a double-stranded helical chain, which serves as a minimal model
of biopolymers. The model consists of two elastic chains that mutually intertwine in a right-handed manner,
forming a double-stranded helix. A simple numerical experiment for structural relaxation, which reduces the total
elastic energy of the model monotonically without thermal fluctuations, reveals possible asymmetric elasticity
inherent in the helical chain. It is first shown that a short segment of the double-stranded helical chain has a
tendency to unwind when it is bent. It is also shown that a short segment of the helical chain has a tendency to
writhe in the left direction upon bending. This tendency gives rise to a propensity for a longer segment of the
chain to form a left-handed superhelix spontaneously upon bending. Finally, this propensity of the helical chain
to form a left-handed superhelix is proposed to be a possible origin of the uniform left-handed wrapping of DNA
around nucleosome core particles in nature. The results presented here could provide deeper insights into the
roles and significance of helical chirality of biopolymers.
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I. INTRODUCTION

Helical motifs are ubiquitous among biopolymers at various
scales. Examples include the double-stranded helix of DNA
and the α helix of proteins. At larger scales, actin filaments
and microtubules are also helical, i.e., helical aggregates of
biopolymers. It is of fundamental interest to explore cross-
correlations between helical motifs of biopolymers at smaller
scales and those at larger scales. One of the most prominent
examples where helical motifs appear at various scales is
the chromatin [1,2], the packaging architecture of DNA in
a eukaryotic cell nucleus. Chromatin indeed appears as a
hierarchical “nest” of helical motifs of DNA, although many
of its structural details still remain unknown. It is thereby
an important challenge to understand the essential designing
principles that underlie both the local and global structures of
chromatin [3–9].

Given the ubiquity of helical motifs of biopolymers,
helical chirality is an intriguing property that can underlie
the hierarchical organization and dynamics of biopolymers.
For example, both the double-stranded helix of the regular
B-form DNA and the α helix of proteins are right handed.
It is naturally expected that the right-handed helical chirality
of these biopolymers gives rise to unique elastic properties
that differ markedly from a simple wormlike chain without
helical chirality. Indeed, it has been shown experimentally
that the twisting stiffness of DNA is asymmetric with respect
to the right and left twist [10–12]. It has also been shown
experimentally that stretching and twisting of DNA are
coupled in an asymmetric and nontrivial manner [13–15].
Marko and Siggia [16] have theoretically argued that DNA
unwinds upon bending as a result of an asymmetric coupling
between bending and twisting.
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An interesting question along this line is whether and how
such local asymmetric elasticity of biopolymers rules higher-
order structures. Recent studies have revealed some important
links between local asymmetric elasticity of biopolymers and
their higher-order structures. Kulić et al. [17] theoretically
proposed that toroidal condensates of DNA relaxes bending
energy by twisting its body through the bend-twist coupling
and discussed the significance of this effect in the plectonemic
supercoiling of the genomes of phages. Velichko et al. [18,19]
showed numerically that the number of double-helical turns
affects the conformation of adsorbed DNA on a surface and
changes the scaling properties of DNA. Besteman et al. [20]
found via magnetic tweezers experiments that the profile of
the condensation force of DNA depends on the direction
of imposed twist. Dobrovolskaia et al. [21] revealed the
significance of applied torsional stresses on linker DNA
in nucleosome arrays. Higuchi et al. [22] showed numeri-
cally that torsional stress on DNA can induce a wrapping-
unwrapping transition around nucleosome core particles. It is
also known that the helical chirality of the DNA double strand
is responsible for an asymmetric (chiral) interaction between
DNA molecules, giving rise to the chiral cholesteric-like
assemblies of DNA [23,24].

In the present study, we investigate the asymmetric nature
of the couplings among bending, twisting, and writhing of
a double-stranded helical chain at a coarse-grained level.
We explore whether such an asymmetric nature can rule
the chirality of higher-order structures, such as superhelices
of biopolymers. In the example of DNA, one of the most
important superhelical structures is the wrapped structure of a
nucleosome [1–4], a fundamental repeating unit of chromatin.
As is known, DNA wraps around a histone core particle about
1.75 times in a left-handed manner to form a nucleosome. The
uniformity of the left-handed wrapping of DNA is a remarkable
higher-order chirality and is expected to be crucial for the
organization and functions of chromatin. Therefore, exploring
the link between the asymmetric elasticity of DNA and the
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chirality of the wrapped structure of DNA is one of the major
objectives of the present study.

The present study is concerned with the minimal and
general prerequisites for the selection of chirality in the
writhing and wrapping of a double-stranded helical chain.
Therefore, our model as well as our numerical analysis
employed here is simplified to a great extent: The model
polymer consists of two elastic chains that mutually intertwine
in a right-handed manner to form a double-stranded helix.
The model rules out the difference between the major and
minor grooves and the sequence-dependent elasticity of DNA,
which have been scrutinized at the atomic or base level in
Refs. [25–29], for example. Our present model does not
directly treat stacking interactions between bases [30–33] and
electrostatic effects [34,35], which are known to be important
in structural dynamics of DNA. For the selection of chirality
of the wrapped structure of DNA, roles of the size [36,37] and
chirality [38,39] of the nucleosome core particles should be
of complementary importance. However, we do not deal with
these interesting issues in the present study since the present
study specifically focuses on the chirality and elasticity of
the DNA side. Thus, the nucleosome core particle is modeled
as an isotropic sphere in the present study. It is remarkable,
however, that despite of the large amount of simplification,
our proposed model in this study can reveal an intrinsic
propensity of a right-handed helical chain to form a left-handed
superhelix and to wrap around a core particle in a left-handed
manner.

This paper is organized as follows. In Sec. II, we introduce
an elastic model of a double-stranded helical chain with
particular attention to DNA. In Sec. III, by taking a short
segment of the model chain with 22 base pairs, we study
the couplings among its bending, twisting, and writhing. It
is shown that the double-stranded helical chain has a general
tendency to unwind when it is uniformly bent. It is then shown
that the right-handed double-stranded chain has a propensity
to writhe in the left direction upon bending. This propensity
of the chain to writhe in the left direction can be a basis
for the assumption that was introduced in our previous study
on chiral selection in DNA wrapping [40]. In Sec. IV, we
take a longer segment of the model chain with 78 base
paris to study the chirality of the superhelices of DNA. It
is shown that a long segment of the chain has a propensity
to form a left-handed superhelix when it is bent. We finally
propose that this propensity can be a prime factor for the
uniform left-handed wrapping of DNA around nucleosome
core particles. This paper concludes in Sec. V with some
remarks on future directions of research.

II. ELASTIC MODEL OF A DOUBLE-STRANDED
HELICAL CHAIN

In this section, we introduce a simplified model of a double-
stranded helical chain. This model is of particular interest for
the study of asymmetric (chiral) elasticity of biopolymers.

A. Construction of the model

The model consists of two elastic chains that mutually in-
tertwine in a right-handed manner around a central backbone.
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FIG. 1. (Color online) (a) Illustration of the central backbone of
the double-stranded helical chain with N = 5 base pairs, showing
bending angles {�i |i = 2, . . . ,N − 1}, dihedral angles {�i |i =
2, . . . ,N − 2}, and local frames (x̂i , ŷi , ẑi). (b) Illustration of the two
elastic chains (P chain and Q chain) intertwining around the central
backbone. The bridges linking the two chains are also shown, where
{ϕi} are the twist angles measured with respect to the local frames
defined in (a). The distance between two adjacent nodal points of
the central backbone is fixed to d = 0.34 nm. The half length of the
bridges is fixed to σ = 1 nm.

Figure 1(a) illustrates the central backbone of the model, and
Fig. 1(b) shows the two elastic chains intertwining around the
central backbone for the example of the model with N = 5
“base pairs.” Since the model is largely based on DNA, we
use the term “base pairs” for the links (bridges) between the
two chains in Fig. 1(b). As will be clear in the following,
the central backbone is merely for the parametrization of the
overall conformation of the two chains intertwining around
it and does not affect the elastic energy of the system
directly.

Conformation of the central backbone is parameterized in
the same way as the standard model of polymer chains [41]
as follows. The central backbone consists of N successive
nodal points, where N corresponds to the number of base
pairs of the model. The distance between every two adjacent
nodal points is fixed to d [see Fig. 1(a)]. Since d determines
the distance between two adjacent base pairs of the chain,
we set this parameter to be d = 0.34 nm based on the DNA
structure [1,2]. Let the position of the i-th nodal point be
represented by the three-dimensional vector ri (i = 1, . . . ,N).
The first nodal point of the backbone is located at the origin of
the space without loss of generality, i.e., r1 = (0,0,0). We then
introduce a three-dimensional orthonormal frame, F1, which
consists of three orthogonal unit vectors of axes (x̂1, ŷ1,ẑ1)
[see Fig. 1(a)]. The ẑ1 axis of this frame is set parallel to the
vector r2 − r1, which connects the first and the second nodal
points. The ŷ1 axis is defined to be perpendicular to the ẑ1

axis and to lie within the plane spanned by the three nodal
points, r1, r2, and r3. The x̂1 axis is defined as x̂1 = ŷ1 × ẑ1.
Thus, the position of the second nodal point is represented as
r2 = (0,0,d) with respect to the frame F1.

The second frame F2 is defined to be the same as the
first one, i.e., (x̂2, ŷ2,ẑ2) = (x̂1, ŷ1,ẑ1). The third frame F3

is obtained by rotating F2 by an angle �2 around the x̂2 axis
so the ẑ2 axis is parallel to the vector r3 − r2. The fourth frame
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F4 is obtained by rotating the frame F3 by an angle �2 around
the ẑ3 axis and then by an angle �3 around the x̂3 axis so the
ẑ3 axis is parallel to the vector r4 − r3.

Thus, by introducing the matrices,

Ri−1
i (�i−2,�i−1) ≡

⎛
⎜⎝

cos �i−2 − sin �i−2 0

sin �i−2 cos �i−2 0

0 0 1

⎞
⎟⎠

×

⎛
⎜⎝

1 0 0

0 cos �i−1 − sin �i−1

0 sin �i−1 cos �i−1

⎞
⎟⎠ ,

(i = 3, . . . ,N) (1)

and a vector d = (0,0,d)T , the positions of the third and fourth
nodal points, r3 and r4, are represented, respectively, as

r3 = r2 + R2
3(0,�2)d, (2)

r4 = r3 + R2
3(0,�2)R3

4(�2,�3)d. (3)

Similarly, the fifth and later nodal points are represented in a
general form as

ri = ri−1 + R2
3(0,�2)R3

4(�2,�3) · · · Ri−1
i (�i−2,�i−1)d,

(i = 5, . . . ,N). (4)

Note that the three columns of each matrix Ri−1
i (�i−2,�i−1)

represent the three axes of the i-th frame, Fi , with respect to
the (i − 1)-th frame, Fi−1. The angle �i is the bending angle
of the backbone at the i-th nodal point, while the angle �i

represents the dihedral angle between the plane spanned by
the three nodal points {ri−1,ri ,ri+1} and the plane spanned
by the three nodal points {ri ,ri+1,ri+2}. The ranges of these
angles are

0◦ � �i � 180◦, − 180◦ � �i < 180◦. (5)

Thus, the configuration of the central backbone of N nodal
points is determined uniquely by the N − 2 bending angles
{�i |i = 2, . . . ,N − 1} and the N − 3 dihedral angles {�i |i =
2, . . . ,N − 2}.

Next, we introduce the two elastic chains that intertwine
around the central backbone in a right-handed manner. These
two chains, called the P chain and the Q chain, can be regarded
as the sugar-phosphate chains of DNA and are mutually
bonded with the rigid bridges representing hydrogen-bonded
base pairs [see Fig. 1(b)]. Each of the P and Q chains
consists of N nodal points connected with N − 1 harmonic
springs to one another. Positions of these nodal points with
respect to the space-fixed frame are represented by the three-
dimensional vectors {Pi |i = 1, . . . ,N} for the P chain and
{Qi |i = 1, . . . ,N} for the Q chain, respectively. The first nodal
points of the two chains, P1 and Q1, are placed so the center
of these two points coincides with the point r1 and the vector
(Q1 − P1) is parallel to the x̂1 axis of the frame F1. Since the
point r1 and the x̂1 axis are fixed to the space, the points P1

and Q1 are also fixed to the space.
The points Pi and Qi (for i = 1, . . . ,N) are bonded with

a rigid bridge, whose length is fixed to 2σ . Since this
bridge represents the hydrogen-bonded base pair for DNA and

determines the diameter of the model chain, we set the value of
σ to be σ = 1 nm [1,2]. The vector (Qi − Pi) (i = 2, . . . ,N)
can rotate rigidly with its center fixed to the nodal point of
the central backbone ri . The rotation of the vector (Qi − Pi)
is restricted within the plane perpendicular to the ẑi axis
(i.e., within the x̂i- ŷi plane). The angle between the x̂i axis
and the vector (Qi − Pi) is defined as ϕi(i = 1, . . . ,N). Note
that ϕ1 ≡ 0◦ since the vector (Q1 − P1) is always parallel
to the x̂1 axis. Thus, by introducing the three-dimensional
vectors hi = (σ cos ϕi,σ sin ϕi,0)T (i = 1, . . . ,N), the points
{Pi} and {Qi} are represented with respect to the space-fixed
frame as

P2 = r2 − h2, (6)

Q2 = r2 + h2, (7)

P3 = r3 − R2
3(0,�2)h3, (8)

Q3 = r3 + R2
3(0,�2)h3, (9)

Pi = ri − R2
3(0,�2)R3

4(�2,�3) · · ·
× Ri−1

i (�i−2,�i−1)hi (i = 4, . . . ,N), (10)

Qi = ri + R2
3(0,�2)R3

4(�2,�3) · · ·
× Ri−1

i (�i−2,�i−1)hi (i = 4, . . . ,N ). (11)

In this manner, the angles �i(i = 2, . . . ,N − 1), �i(i =
2, . . . ,N − 2), and ϕi(i = 1, . . . ,N) parametrize the con-
formation of the double-stranded helical chain uniquely.
While the angles {�i} and {�i} characterize rather global
conformations of the model, i.e., bend and writhe of the
central backbone, the angles {ϕi} characterize local twist of
the double-stranded helix. As is evident, the present model
incorporates neither the major groove nor minor groove of
DNA [26] nor the structural differences of different base
pairs [27].

B. Equilibrium conformation and energy functions

We incorporate here elastic energies into the double-
stranded helical chain based on the coordinates introduced
in the previous subsection. For this sake, we first define the
equilibrium conformation of the model, which corresponds
to the minimum of the total elastic energy. We assume that
the backbone of the model chain is straight, i.e., �i = 0◦ for
all i, at the equilibrium conformation as shown in Fig. 2(a)
for an example of the system with N = 5 base pairs. We also
assume that every two adjacent bridges form the same constant
angle ϕ0 at the equilibrium conformation when the bridges are
vertically projected onto a plane perpendicular to the central
backbone of the chain as shown in Fig. 2(b). Thus, each ϕi

takes the value

ϕi = (i − 1)ϕ0 (i = 1, . . . ,N), (12)

at the equilibrium conformation. Here it should be noted that
all x̂i- ŷi planes are parallel at the equilibrium conformation
because of the condition �i = 0◦ for all i. The actual value
of ϕ0 is set to ϕ0 ≡ 36◦. This is based on the fact that the
double-stranded helix of DNA completes one cycle per every
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FIG. 2. (Color online) Equilibrium conformation of the double-
stranded helical chain with five base pairs. Panel (a) shows a side
view, where θ0 is the equilibrium bending angle at each nodal point
of the two elastic chains and l0 is the equilibrium length of the bonds
in the two elastic chains. Panel (b) shows a cross-sectional view of the
double-stranded helical chain at the equilibrium conformation, where
ϕ0 ≡ 36◦ is the equilibrium angle between two adjacent bridges of
base pairs projected onto the cross section.

360◦/36◦ = 10 base pairs approximately. The positive value
of ϕ0 assures that the double-stranded helical chain is right
handed as in B-form DNA and actin filaments.

All the contributions to the elastic energy of the system
originate from the bonding, i.e., stretching and contraction,
and the bending of each of the two sugar-phosphate chains, P
chain and Q chain. That is, the elastic energy does not depend
directly on the central backbone of the model. This is why the
central backbone is just for the parametrization of the P chain
and Q chain as noted at the beginning of this section.

As for the bonding energy, we adopt a simple harmonic
potential to every bond between two adjacent nodal points of
the P and Q chains. Therefore, the sum of the bonding energies
of the two chains is written as

Ebond

kBT
=

N−1∑
i=1

1

2
kbond(|Pi+1 − Pi | − l0)2

+
N−1∑
i=1

1

2
kbond(|Qi+1 − Qi | − l0)2, (13)

where the first sum is the bonding energy of the P chain and
the second sum is that of the Q chain. In the present study,
energies are measured with respect to kBT , where kB is the
Boltzmann constant and T is temperature. In Eq. (13), kbond is
the force constant for bonding and is common to all the bonds
in the P chain and Q chain. l0 is the equilibrium distance of all
the bonds in the P chain and Q chain.

Harmonic potential is also used for the bending energy of
the P and Q chains at each nodal point. Thus, the sum of the
bending energies of the two chains is written as

Ebend

kBT
=

N−1∑
i=2

1

2
kbend

(
θ

(P )
i − θ0

)2 +
N−1∑
i=2

1

2
kbend

(
θ

(Q)
i − θ0

)2
,

(14)
where θ

(P )
i and θ

(Q)
i are the bending angles of the P

and Q chains at the respective nodal points. They are

defined by

θ
(P )
i = cos−1

(
Pi − Pi−1

|Pi − Pi−1| · Pi+1 − Pi

|Pi+1 − Pi |
)

,

(i = 2, . . . ,N − 1), (15)

θ
(Q)
i = cos−1

(
Qi − Qi−1

|Qi − Qi−1| · Qi+1 − Qi

|Qi+1 − Qi |
)

,

(i = 2, . . . ,N − 1). (16)

In Eq. (14), θ0 is the equilibrium value for the bending angles,
θ

(P )
i and θ

(Q)
i . Since the P and Q chains have a natural bending

angle at the respective nodal points already at the equilibrium
conformation of the system [see Fig. 2(a)], the equilibrium
bending angle θ0 is not zero.

By inspection of the equilibrium conformation shown in
Fig. 2, the actual values of the equilibrium bond distance l0 in
Eq. (13) and the equilibrium bending angle θ0 in Eq. (14) are
determined uniquely in terms of the parameters σ , d, and ϕ0

as

θ0 = cos−1

[
2σ 2 cos ϕ0(1 − cos ϕ0) + d2

2σ 2(1 − cos ϕ0) + d2

]
, (17)

l0 =
√

2σ 2(1 − cos ϕ0) + d2, (18)

which give θ0 = 31.4◦ and l0 = 0.705 nm, respectively, for
σ = 1 nm, d = 0.34 nm, and ϕ0 = 36◦. The total elastic energy
of the system is the sum of Eq. (13) and Eq. (14),

E = Ebond + Ebend, (19)

which takes the minimum value, E = 0, at the equilibrium
conformation of the system, where |Pi+1 − Pi | = |Qi+1 −
Qi | = l0 and θ

(P )
i = θ

(Q)
i = θ0 for all i.

So far, we have determined all the parameter values of the
model chain based on the structural data on DNA except for the
force constant for bonding, kbond, and that for bending, kbend.
Since no direct experimental data are available for these two
parameters, we adopt kbond = 100 nm−2 and kbend = 100 rad−2

unless otherwise noted. With these parameter values, the
persistence length [42,43] of the present model is considered
to be about 10–15 nm as is estimated from the total energy of
the system upon bending (see the Appendix for the estimation
of the persistence length of the model). Although this value
is smaller than the persistence length of real DNA (around
50 nm), it is expected that the physical characteristics of
DNA with a large difference between the persistence length
and the diameter holds under such parametrization. In the
present model, a larger value of kbend gives a larger persistence
length in general. In the following sections, we occasionally
change these parameter values in order to show that the basic
propensities of the model are qualitatively independent of the
details of these parameter values.

III. COUPLINGS AMONG BENDING, TWISTING, AND
WRITHING OF A SHORT SEGMENT OF THE

DOUBLE-STRANDED HELICAL CHAIN

In this section, we investigate the couplings among bending,
twisting, and writhing of a short segment of the double-
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stranded helical chain with N = 22 base pairs. First, it is shown
that the chain tends to unwind when it is uniformly bent. It is
also shown that the chain tends to writhe in an asymmetric
manner in the left direction when it reverts back from a bent
conformation to the equilibrium straight conformation.

A. Asymmetric coupling between bending and twisting

We first investigate the effect of bending on the twist
of the double-stranded helical chain. We take up a short
segment of the chain with N = 22 base pairs and set the
initial conformation so the central backbone of the model is
uniformly bent and forms a planar arc as shown in Fig. 3(a).
(In this figure and hereafter, the central backbone of the chain
is not shown.) Specifically, we set all the bending angles of
the central backbone as �i = 10◦ (for i = 2, . . . ,N − 1) and
all the dihedral angles of the central backbone as �i = 0◦ (for
i = 2, . . . ,N − 2). Initial twisting angles of the double strand
{ϕi} are set to the values at the equilibrium conformation of the
system, i.e., ϕi = (i − 1)ϕ0 (for i = 1, . . . ,N) as prescribed in
Eq. (12). The length of the respective bonds in the P and Q
chains, |Pi+1 − Pi | and |Qi+1 − Qi |, and the respective bend-
ing angles of these two chains defined in Eq. (15) and Eq. (16)
are adjusted in accordance with the above-mentioned initial
conformation. This initial conformation induces an elastic
stress, i.e., nonzero total energy, in the system through Eq. (13)
and Eq. (14). In the real world, this initial conformation may be
realized when a double-stranded helical chain is abruptly bent
due to a strong force before the twisting degrees of freedom
relax.

Starting from this initial conformation, we let all the
twisting angles {ϕi} of the system relax by gradually and
monotonically lowering the total elastic energy of the system.
Throughout this relaxation process, all the bending angles and
all the dihedral angles of the central backbone are fixed to the
initial values, i.e., �i = 10◦ and �i = 0◦ (for all i). That is,
the central backbone of the double-stranded chain is fixed to
the uniformly bent conformation without writhe throughout
this relaxation process.

(a) (b) (c)

0th step 50,000th step 100,000th step

FIG. 3. (Color online) Snapshots of the double-stranded helical
chain with N = 22 base pairs in the course of structural relaxation
under the condition that the backbone of the chain is uniformly
bent and fixed to a planar-arc conformation. Panel (a) is the initial
conformation, while panels (b) and (c) are the conformations at the
50 000th and 100 000th steps in the relaxation process, respectively.

The numerical procedure for the structural relaxation
employed here is essentially a Monte Carlo method with zero
temperature: Suppose that we have a “current” conformation
of the double-stranded helical chain. Then, one of the twisting
angles, e.g., ϕi , is chosen randomly and replaced with a
trial value, ϕ

try
i = ϕi + �ϕ, where �ϕ is a small random

number within the range −0.01◦ � �ϕ � 0.01◦, to yield a trial
conformation of the system. Note that this trial conformation
slightly differs from the “current” conformation due to the
replacement of ϕi with ϕi + �ϕ. If the total energy of the trial
conformation is lower than that of the “current” one, the trial
conformation is accepted as a new “current” conformation.
If the trial conformation has higher total energy than the
“current” one, the trial conformation is rejected, and another
trial conformation is examined. This procedure is repeated
until the total elastic energy of the system converges to a
minimum value.

Figure 3 shows the snapshots of the double-stranded helical
chain in the course of structural relaxation. As one can see from
Figs. 3(a)–3(c), the short segment of the helical chain unwinds
in the course of this relaxation process. Note that the base pair
at the bottom of the pictures in Figs. 3(a)–3(c) is fixed to the
space and does not move during the relaxation process. As a
result, the lower part of the chain in Figs. 3(a)–3(c) does not
change very largely in the relaxation process, while the upper
part of the chain unwinds largely.

To be more quantitative, the solid curve in Fig. 4(a)
shows the evolution of the total elastic energy of the system,
E = Ebond + Ebend defined in Eq. (19), in the relaxation
process of Fig. 3. We confirm that the elastic energy decreases
monotonically and approaches an asymptotic value, which
corresponds to the minimum of the total elastic energy under
the conditions that the backbone is uniformly bent and fixed
to the planar-arc conformation. The broken curve in Fig. 4(a)
shows the evolution of the bonding energy Ebond, while the
dotted curve shows the evolution of the bending energy
Ebend, respectively. We see from these two curves that the
decrease of the total elastic energy is the result of the decrease
of the bending energy Ebend. Indeed, the bonding energy
Ebond has slightly increased in the structural relaxation. This
slight increase of the bonding energy is overwhelmed by the
significant decrease of the bending energy.

Figures 4(b) shows the change in the twisting number of
the system defined by

Tw = ϕN/360◦, (20)

which is a measure of the number of helical turns in the
double-stranded helical chain. It is evident that the twisting
number Tw decreases monotonically from Tw = 2.1 to about
Tw = 2.0 in the structural relaxation. This confirms that
the double-stranded helical chain unwinds in the process of
reducing the elastic stress induced by the bending of the
chain. This result appears to be consistent with the theoretical
prediction of Marko and Siggia [16] that DNA unwinds upon
bending.

In order to confirm the robustness and generality of the
above propensity of the double-stranded helical chain to
unwind upon bending, we carried out the similar numerical
experiments to Fig. 3 for different values of the force constants,
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FIG. 4. (Color online) (a) The solid curve shows the evolution
of the total elastic energy of the double-stranded helical chain with
N = 22 base pairs, E = Ebond + Ebend defined in Eq. (19), in the
relaxation process shown in Fig. 3. The broken curve and the dotted
curve show the evolution of the bonding energy Ebond and the bending
energy Ebend, respectively. (b) Evolution of the twisting number Tw
defined in Eq. (20) in the same relaxation process as in (a).

kbond and kbend. We used the same double-stranded helical
chain as in Fig. 3 with N = 22 base pairs. All the bending
angles and dihedral angles of the central backbone were fixed
to �i = 10◦ and �i = 0◦ (for all i) respectively throughout
the structural relaxation. Figure 5(a) shows the dependence
of the difference between initial and final twisting number,
�Tw, on the force constant for bending kbend, where the force
constant for bonding is fixed to kbond = 100 nm−2. We see
that the twisting number always decreases in the structural
relaxation, i.e., �Tw < 0, except for the case kbend = 0, where
�Tw increases very slightly. As kbend becomes larger, the
double-stranded helical chain unwinds to a greater extent upon
bending, indicating that the bending stiffness of the two sugar-
phophate chains drives the unwinding of the double-stranded
helical chain upon bending. Figure 5(b) shows the dependence
of �Tw on the force constant for bonding kbond, where the force
constant for bending is fixed to kbend = 100 nm−2. Again, we
see that �Tw is always negative, indicating the robustness
of the unwinding of the double-stranded helical chain upon
bending. As kbond becomes larger, the amount of unwinding
decreases, indicating that the bond stiffness of the two chains
hinders the unwinding of the double-stranded helical chain.
The results of Figs. 3(a) and 3(b) clearly confirm that the
unwinding of double-stranded helical chain upon bending

is a robust and general propensity resulted from the helical
structure of the chain.

We next investigate more in detail the mechanism for
the unwinding of the double-stranded helical chain upon
bending observed above. Figure 6 compares the respective
bond lengths and bending angles of the double-stranded helical
chain before and after the relaxation process of Fig. 3. In
Fig. 6(a), the squares and triangles linked with solid lines
represent the initial lengths of the respective bonds in the P
chain or Q chain, l

(P )
i = |Pi+1 − Pi | and l

(Q)
i = |Qi+1 − Qi |

(i = 1, . . . ,21). The squares and triangles linked with broken
lines represent the final lengths of the respective bonds in the P
chain and Q chain. As can be seen, both at the initial and final
conformations, the length of the bonds in the P chain and that
in the Q chain change periodically with respect to the bond
number i. This periodicity is obviously due to the periodicity
of the helical structure of the two chains. One should note here
that the equilibrium length of the respective bonds in the P
and Q chains is l0 = 0.705 nm. By comparing the solid lines
and the broken lines in Fig. 6(a), we see that the final contour
lengths of the two chains are shorter and differ more largely
from the equilibrium length on average than the initial contour
lengths of the two chains. This is why the bonding energy of
the two chains slightly increases in the structural relaxation as
we have seen in Fig. 4(a). This small increase of the bonding
energy can be regarded as a necessary cost for the significant
decrease of the bending energy.

Since the bending energy decreases largely in the structural
relaxation process as we have seen in Fig. 4(a), we expect
that the major driving factor for the unwinding of the double-
stranded helical chain upon bending originates from the
relaxation of the bending angles of the two constituent chains
(P and Q chains). Figure 6(b) compares the initial and the final
bending angles of the two chains, θ (P )

i and θ
(Q)
i (i = 2, . . . ,21),

in the relaxation process of Fig. 3. In Fig. 6(b), the squares and
triangles linked with the solid lines represent the initial values
of the bending angles of the P chain and Q chain. The squares
and triangles linked with broken lines represent the final values
of the bending angles of the P chain and Q chain. Since the
equilibrium value for all the bending angles in the P and Q
chains is θ0 = 31.4◦ as computed from Eq. (17), we see that
almost all the bending angles of the P and Q chains are initially
greater than the equilibrium value. This is simply because the
bending of the central backbone of the double-stranded helical
chain induces additional bending at the respective nodal points
of the P and Q chains. Therefore, in the relaxation process, both
the P and Q chain deform so as to reduce their bending angles
and bring them close to the equilibrium value θ0 = 31.4◦ as
much as possible. One can confirm this by comparing the
solid lines (initial bending angles) and the broken lines (final
bending angles) in Fig. 6(b).

To summarize, the primary factor for the unwinding of the
double-stranded helical chain upon bending is in the decrease
of the bending angles of the two constituent helical chains (P
and Q chains). It has also been revealed that the contour lengths
of the two chains decrease in this process, which gives rise to a
slight energy cost in the system. In Sec. III C, we analytically
show that such decrease of the contour length of the two chains
induced by the decrease of the bending angles indeed gives rise
to the unwinding of the double-stranded helical chain.
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FIG. 5. (Color online) The vertical axis, �Tw, represents the difference between initial and final twisting numbers of the double-stranded
helical chain with N = 22 base pairs in the structural relaxation simulation. Panel (a) shows the dependence of �Tw on the force constant
for bending, kbend, where the force constant for bonding is fixed to kbond = 100 nm−2. Panel (b) shows the dependence of �Tw on the force
constant for bonding, kbond, where the force constant for bending is fixed to kbend = 100 rad−2.

B. Asymmetric coupling between bending and writhing

We study here the coupling between bending and writhing
of the double-stranded helical chain by using the same model
with N = 22 base pairs as in Sec. III A. We begin with
exactly the same initial conditions of the chain as in the
previous subsection shown in Fig. 3(a). That is, all the initial
bending angles of the central backbone are set to �i = 10◦ (for
i = 2, . . . ,N − 1), and all the dihedral angles of the central
backbone are set to �i = 0◦ (for i = 2, . . . ,N − 2). Initial
twisting angles of the double strand {ϕi} are set according to
Eq. (12). Respective initial bond lengths in the P and Q chains,
|Pi+1 − Pi | and |Qi+1 − Qi |, as well as the respective initial
bending angles of these two chains defined in Eq. (15) and
Eq. (16), are adjusted in accordance with the above conditions.

In the numerical experiments of Sec. III A, the central
backbone of the double-stranded helical chain are fixed and
only the twisting angles {ϕi} could relax. On the other hand,
in this subsection, we let the double-stranded helical chain
relax totally freely. That is, not only the twisting angles {ϕi}
but also the bending angles {�i} and the dihedral angles {�i}
of the central backbone can relax freely. With this numerical
experiment, one can investigate not only the coupling between
bending and twisting but also the coupling between bending
and writhing of the double-stranded helical chain.

Numerical procedure for the structural relaxation is similar
to the one in the previous subsection. However, in this subsec-
tion, not only one of the twisting angles ϕi but also one of the
bending angles �i and one of the dihedral angles �i of the
central backbone are chosen randomly and replaced with trial
values as ϕ

try
i = ϕi + �ϕ, �try

i = �i + ��, and �
try
i = �i +

�� to obtain a trial conformation, where �ϕ, ��, and ��

are small random numbers satisfying −0.01◦ � �ϕ � 0.01◦,
−0.005◦ � �� � 0.005◦, and −0.01◦ � �� � 0.01◦. If the
trial conformation has lower energy than the “current”
conformation, the trial conformation is accepted as a new
“current” conformation. If the trial conformation has higher
elastic energy than the “current” one, the trial conformation
is rejected, and another trial conformation is examined. This

procedure is repeated until the total elastic energy of the system
converges to a minimum value.

Figure 7 shows a typical relaxation process of the
double-stranded helical chain, where it took about 87 000 steps
for the total energy of the system to converge to a minimum
value. Figure 7(a) is the initial conformation of the model,
which is the same as Fig. 3(a) observed from a different
viewpoint. As the system relaxes, the initial bent conformation
changes to the straight conformation [Fig. 7(d)], which is the
equilibrium conformation. Importantly, the double-stranded
helical chain writhes in the left direction at the early stage of
the relaxation process, as is seen in Fig. 7(b). This propensity
of the double-stranded helical chain to writhe in the left
direction is expected to modulate its apparent stretchability
in a significant manner.

In order to observe the writhing of the double-stranded
helical chain more clearly, it is useful to highlight the behavior
of the central backbone of the double-stranded helical chain.
Thus, we pick up the 1st, 8th, 15th, and 22nd nodal points of
the central backbone of the double-stranded helical chain and
connect them together in this order with three straight sticks
to form a single chain. This single chain can be regarded as a
coarse-grained system of the original double-stranded helical
chain. Figures 8(a)–8(d) show the change in the conformation
of this coarse-grained system for the same relaxation process
as in Fig. 7. We see that the coarse-grained system forms
a planar bent conformation at the beginning (0th step) and
writhes in the left direction before it finally relaxes to the
straight conformation. Figure 8(e) shows the evolution of
the dihedral angle of the coarse-grained system, 	, in this
relaxation process. This dihedral angle 	 is initially zero at
the 0th step reflecting the planar configuration of the central
backbone of the double-stranded helical chain. Then 	 quickly
decreases to about 	 = −11.5◦ in the first 11 000 steps and
gradually reverts back to zero. The negative value of the
dihedral angle, 	 < 0, clearly characterizes the left-handed
writhe of the original double-stranded helical chain.

The results of Fig. 7 and Fig. 8 clearly indicate that the
bending and writhing of the double-stranded helical chain are
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FIG. 6. (Color online) (a) Initial and final lengths of the respec-
tive bonds in the P and Q chains of the double-stranded helix, l

(P )
i

and l
(Q)
i (i = 1, . . . ,21), for the structural relaxation shown in Fig. 3.

The squares and triangles linked with solid lines represent the initial
lengths of the respective bonds in the P chain or Q chain. The squares
and triangles linked with broken lines represent the final lengths of the
respective bonds in the P chain or Q chain. (b) Initial and final bending
angles of the P and Q chains, θ

(P )
i and θ

(Q)
i (i = 2, . . . ,21), for the

structural relaxation shown in Fig. 3. The squares and triangles linked
with solid lines represent the initial values of the bending angles of
the P chain or Q chain. The squares and triangles linked with broken
lines represent the final values of the bending angles of the P chain
or Q chain.

coupled in an asymmetric manner. These results justify the
conjecture that the right-handed double-stranded helical chain
tends to writhe in the left direction when it is bent as was
postulated in our previous study on the wrapping of DNA [40].
Later in this paper, we demonstrate that the tendency of the
right-handed double-stranded helical chain to writhe in the left
direction upon bending can make the chain select left-handed
wrapping around a core particle in a nucleosome.

Figure 9(a) shows the evolution of the total energy E =
Ebond + Ebend defined in Eq. (19) (solid curve), total bonding
energy Ebond (broken curve), and total bending energy Ebend

(dotted curve) of the double-stranded helical chain in the
relaxation process of Fig. 7. The total energy decreases
monotonically to zero since the process is a free relaxation
process. In roughly the first 11 000 steps, the total bending
energy decreases drastically while the total bonding energy

0th step 40,000th step 80,000th step11,000th step

(a) (b) (c) (d)

FIG. 7. (Color online) Structural relaxation of the double-
stranded helical chain with N = 22 base pairs, where all the degrees
of freedom of the model are allowed to relax. The chain is uniformly
bent at the beginning as shown in (a). As the system relaxes, its
conformation changes to (b) at the 11 000th step, to (c) at the 40 000th
step, and eventually to (d) at the 80 000th step. The double-stranded
helical chain writhes in the left direction in the course of this relaxation
process as seen in (b).

does not change largely. These steps correspond to the
conformational change from Fig. 7(a) to Fig. 7(b). Therefore,
one can see that the writhing of the double-stranded helical
chain in the left direction occurs during the process of relaxing
the initial bending stress of the P and Q chains.

Figure 9(b) shows the evolution of the twisting number
defined by Eq. (20) for the relaxation process of Fig. 7. We see
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FIG. 8. (Color online) [(a)–(d)] Structural changes of the coarse-
grained system of the double-stranded helical chain for the same
relaxation process as in Figs. 7(a)–7(d). (e) Evolution of the dihedral
angle of the coarse-grained system 	 in the process of (a)–(d).
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FIG. 9. (Color online) (a) Evolution of the total energy E =
Ebond + Ebend defined in Eq. (19) (solid curve), total bonding energy
Ebond (broken curve), and total bending energy Ebend (dotted curve) of
the double-stranded helical chain in the relaxation process of Fig. 7.
(b) Evolution of the twisting number defined in Eq. (20). (c) Evolution
of the writhing number defined in Eq. (21).

that the twisting number does not change very largely in this
relaxation process as compared to the process of Fig. 3 [see
Fig. 4(b)]. Figure 9(c) shows the evolution of the sum of the
dihedral angles of the central backbone,

W =
N−2∑
i=2

�i/360◦, (21)

which serves as a measure of the degree of writhing of
the system. This quantity decreases in the negative direction
from zero in roughly the first 11 000 steps, characterizing the
writhing of the system in the left direction.

In order to confirm the robustness and generality of the
left-handed writhing of the double-stranded helical chain upon
bending, we carried out similar numerical experiments to

Fig. 7 for different values of the force constants, kbond and
kbend. We used the double-stranded helical chain with N = 22
base pairs. Initially, all the bending angles and dihedral angles
of the central backbone were set to �i = 10◦ and �i = 0◦
(for all i), respectively. We then let the system relax freely
in the same manner as in Fig. 7 and observed the evolution
of the dihedral angle of the corresponding coarse-grained
system, 	, which is defined in the same manner as in Fig. 8.
Figure 10(a) shows the evolutions of 	 of the double-stranded
helical chain whose force constant for bonding is kbond = 100
nm−2 and that for bending is kbend = 10, 50, 100, 200 rad−2,
respectively, from the top to the bottom curves. We clearly
see that the dihedral angle 	 deviates always in the negative
direction in the course of structural relaxation, indicating the
left-handed writhing. The larger the force constant for bending
is, the more largely the double-stranded helical chain writhes in
the left direction. Thus we see that the bending stiffness of the
two sugar-phosphate chains drives the left-handed writhing of
the double-stranded helical chain upon bending. Figure 10(b)
shows the evolutions of 	 of the double-stranded helical chain
whose force constant for bending is kbend = 100 rad−2 and that
for bonding is kbond = 10, 50, 100, 200 nm−2, respectively,
from the bottom to the top curves. Again, we see that the
dihedral angle 	 deviates always in the negative direction in
the course of structural relaxation, indicating the left-handed
writhing. The larger the force constant for bonding is, the
less the double-stranded helical chain writhes in the left
direction. Thus we see that the bonding stiffness of the two
sugar-phosphate chains hinders the left-handed writhing of
the double-stranded helical chain upon bending. The results
of Figs. 10(a) and 10(b) clearly indicate that the left-handed
writhing of the double-stranded helical chain upon bending is
a robust and general propensity resulted from the right-handed
nature of the double-stranded helical chain.

Next, we investigate more in detail how the system relaxes
its initial elastic stress by writhing in the left direction. The
squares and triangles linked with the solid lines in Fig. 11(a)
represent the initial lengths of the respective bonds in the P
chain and Q chain, l

(P )
i = |Pi+1 − Pi | and l

(Q)
i = |Qi+1 − Qi |

(i = 1, . . . ,21), while the squares and triangles linked with
the broken lines in the same figure represent the lengths of the
bonds in the P chain and Q chain at the 11 000th step, which
corresponds to Fig. 7(b). In the same manner, the squares and
triangles linked with the solid lines in Fig. 11(b) represent the
initial bending angles, θ (P )

i and θ
(Q)
i (i = 2, . . . ,21), of the two

chains, while the squares and triangles linked with the broken
lines in the same figure represent the bending angles of the
two chains at the 11 000th step.

In Fig. 11(b), most of the bending angles of the two
chains are larger than their equilibrium value θ0 = 31.4◦ at
the beginning because of the bending of the central backbone
of the double-stranded helical chain. This situation is exactly
the same as in Fig. 6(b). After the first 11 000 steps, these
bending angles decrease and approaches to the equilibrium
value on average. The bond lengths shown in Fig. 11(a) also
tend to decrease slightly in the first 11 000 steps. Thus, we
see that the bending angles of the two chains relax largely and
the contour length of the two chains decreases slightly when
the system writhes in the left direction as in Fig. 7(b) starting
from the planar conformation as in Fig. 7(a). It is noteworthy
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FIG. 10. (Color online) Evolutions of the dihedral angle, 	, of the coarse-grained system of the original double-stranded helical chain with
N = 22 base pairs in the course of structural relaxation. 	 is defined in the same manner as in Fig. 8. Panel (a) shows the evolutions of 	,
where the force constant for bonding is kbond = 100 nm−2 and that for bending is kbend = 10, 50, 100, 200 rad−2 respectively from the top
to the bottom curves. Panel (b) shows the evolutions of 	, where the force constant for bending is kbend = 100 rad−2 and that for bonding is
kbond = 10, 50, 100, 200 nm−2, respectively, from the bottom to the top curves.

that these behaviors of the bending angles and bond lengths
of the two chains are quite similar to those observed in Fig. 6.
In the next subsection, we semianalytically show that these
behaviors of the bending angles and bond lengths can indeed
be the origin for both the unwinding of the double-stranded
helical chain and the left-handed writhing of the backbone of
the chain.

C. A semianalytical account for the asymmetric couplings

We give here a semianalytical explanation for the numerical
results presented in Sec. III A and in Sec. III B. We specifically
focus on the mechanisms for the unwinding of the double-
stranded helical chain upon bending as we have seen in
Sec. III A and those for the left-handed writhing of the
double-stranded helical chain upon bending as we have seen
Sec. III B. Indeed, as we see below, these two mechanisms can
be explained on the same footing.

Bending of the central backbone of the double-stranded
helical chain generally increases the bending angles of the
two constituent chains, θ

(P )
i and θ

(Q)
i , on average as we

have seen in Fig. 6(b) and in Fig. 11(b). As a result, once
the double-stranded helical chain is bent, both of the two
constituent chains respond to reduce their bending angles,
θ

(P )
i and θ

(Q)
i . Note here that if the two constituent chains

assume more parallel conformations to the central backbone,
the bending angles of these two chains, θ

(P )
i and θ

(Q)
i , can

become smaller. On the other hand, if the two constituent
chains assume more perpendicular conformation to the central
backbone on average, the bending angles of these two
constituent chains, θ

(P )
i and θ

(Q)
i , become larger. This can be

understood by noting that an imaginary cylindrical surface
around the central backbone where the two constituent chains
lie has larger curvature in the perpendicular direction to the
central backbone than in the parallel direction. Therefore,
the two constituent chains tend to be more parallel to the
central backbone on average when the central backbone of

the double-stranded helical chain is bent. This tendency in
turn forces the two constituent chains to shrink their contour
lengths since the two constituent chains must stay intertwined
around the central backbone whose contour length is fixed.
We have indeed observed this shrinking of the two constituent
chains in Fig. 6(a) and Fig. 11(a). Thus, in the following, we
interpret this tendency of the two constituent chains to shrink
their contour lengths upon bending in terms of the responses
of twisting angles, {ϕi}, and writhing (dihedral) angles of the
central backbone, {�i}. We then explain the numerical results
of Sec. III A and of Sec. III B in terms of the responses of these
angles.

As a measure of the contour length of each of the two
constituent chains, we consider here the quantity

∑
i |Pi −

Pi−1|2 for the P chain and the quantity
∑

i |Qi − Qi−1|2 for the
Q chain. Here, the summations go over a single helical turn of
the P and Q chains, respectively. In the following, we present an
approximate expression for

∑
i |Qi − Qi−1|2 for a uniformly

bent conformation of the model DNA, i.e., �i = � (for all i),
and investigate the responses of the twisting angles {ϕi} and
the dihedral angles {�i}. By symmetry,

∑
i |Pi − Pi−1|2 of

the P chain can be treated in the same manner. We will restrict
ourselves to the regime where the amount of bending of the
central backbone is small, i.e., � � 1.

Based on Eq. (11), the bond vector Qi − Qi−1 is written as

Qi − Qi−1 = ri − ri−1 + R2
3(0,�2)R3

4(�2,�3) · · ·
× Ri−1

i (�i−2,�i−1)hi − R2
3(0,�2)

×R3
4(�2,�3) · · · Ri−2

i−1(�i−3,�i−2)hi−1. (22)

Applying the condition that the central backbone of the
double-stranded helical chain is uniformly bent, i.e., �i = �

(for all i) to Eq. (22), and approximating as sin � ∼= �

and cos � ∼= 1 based on the condition � � 1, we obtain
an approximate expression for the product of matrices
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R2
3(0,�2)R3

4(�2,�3) · · · Ri−1
i (�i−2,�i−1) as

R2
3(0,�2)R3

4(�2,�3) · · · Ri−1
i (�i−2,�i−1) ∼=

⎡
⎢⎣

cos(i − 3)� − sin(i − 3)� �
∑i−3

k=1 sin k�

sin(i − 3)� cos(i − 3)� −�
∑i−3

k=1 cos k�

�
∑i−3

k=1 sin k� �
(

1 + ∑i−3
k=1 cos k�

)
1

⎤
⎥⎦ , (23)

where we also assumed that all the dihedral angles {�i} of the central backbone are equal to � for simplicity based on the
similarity of the dihedral angles. Application of Eq. (23) to Eq. (22) gives

Qi − Qi−1
∼=

⎛
⎜⎜⎝

d�
∑i−3

k=1 sin k� + σ [cos{(i − 3)� + ϕi} − cos{(i − 4)� + ϕi−1}]
−d�

∑i−3
k=1 cos k� + σ [sin{(i − 3)� + ϕi} − sin{(i − 4)� + ϕi−1}]

d + σ�
[∑i−3

k=0 sin(k� + ϕi) − ∑i−4
k=0 sin(k� + ϕi−1)

]

⎞
⎟⎟⎠ . (24)

Thus, we obtain

|Qi − Qi−1|2 ∼= 4σ 2 sin2

(
� + ϕi − ϕi−1

2

)
+ d2

+ 2dσ�[sin{(i − 3)� + ϕi}
− sin{(i − 4)� + ϕi−1} − sin(� − ϕi−1)].

(25)

We now consider the situation in which all the dihedral
angles of the central backbone are constrained to zero, i.e.,
� = 0, and the twist angles between any two neighboring base
pairs take the same value, i.e., ϕi − ϕi−1 = ϕ (for all i), as in
the initial conditions of the numerical experiment in Sec. III A.
Then Eq. (25) reduces to

|Qi − Qi−1|2 ∼= 4σ 2 sin2

(
ϕ

2

)
+ d2 + 2dσ� sin{(i − 1)ϕ}.

(26)

The zeroth-order terms of � on the right-hand side of Eq. (26)
correspond to (the square of) the average bond length [see
Eq. (18)], while the first-order term of � represents the periodic
deviation from the average as a function of the bond number i.
Therefore, after summing Eq. (26) over a single period of the
helical turn of the Q chain, the first-order term of � vanishes,
and we obtain

k+n−1∑
i=k

|Qi − Qi−1|2 ∼= 4nσ 2 sin2

(
ϕ

2

)
+ nd2, (27)

where k is an arbitrary number of the nodal point located at
the beginning of the helical turn under consideration, and n is
the number of base pairs per a single helical turn (n = 2π/ϕ).
Since Eq. (27) is an increasing function of the twist angle ϕ

for 0 < ϕ < π , we see that ϕ must decrease in order to reduce
the contour length of the Q chain around ϕ = ϕ0 = 36◦. This
explains why the double-stranded helical chain unwinds when
the backbone of the chain is uniformly bent without writhe as
we have seen in Sec. III A.

The asymmetric coupling between bending and writhing
observed in Sec. III B can also be explained in the same
manner as above based on Eq. (25). This time, we consider
the differentiation (gradient) of the sum of Eq. (25) over a
single helical turn of the Q chain with respect to the writhing

angle �,

∂

∂�

k+n−1∑
i=k

|Qi − Qi−1|2
∣∣∣∣∣
�=0

= 2σ 2
k+n−1∑

i=k

sin(ϕi − ϕi−1)

+ 2σd�

k+n−1∑
i=k

(i − 3)(cos ϕi − cos ϕi−1). (28)

Here, we have evaluated the quantity at � = 0 since we
are interested in the response of the system when it is
uniformly bent without writhing as in the initial condition of
the numerical experiment in Sec. III B. For the simplification of
the right-hand side of Eq. (28), we now assume that the angles
between any two neighboring base pairs take the same value,
ϕi − ϕi−1 = ϕ0 (for all i), in view of the initial condition of the
numerical experiment in Sec. III B. We then use the following
relationships in order to simplify the second term of Eq. (28),

k+n−1∑
i=k

cos ϕi =
k+n−1∑

i=k

cos ϕ0(i − 1) = 0, (29)

k+n−1∑
i=k

cos ϕi−1 =
k+n−1∑

i=k

cos ϕ0(i − 2) = 0, (30)

k+n−1∑
i=k

i cos ϕi =
k+n−1∑

i=k

i cos ϕ0(i − 1)

∼=
∫ k+n

k

x cos

{
2π

n
(x − 1)

}
dx

= n2

2π
sin

{
2π

n
(k − 1)

}
, (31)

k+n−1∑
i=k

i cos ϕi−1 =
k+n−1∑

i=k

i cos ϕ0(i − 2)

∼=
∫ k+n

k

x cos

{
2π

n
(x − 2)

}
dx

= n2

2π
sin

{
2π

n
(k − 2)

}
. (32)
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FIG. 11. (Color online) (a) Initial and intermediate (at the
11 000th step) lengths of the respective bonds in the P and Q chains of
the double-stranded helical chain, l

(P )
i and l

(Q)
i (i = 1, . . . ,21), in the

relaxation process shown in Fig. 7. The squares and triangles linked
with the solid lines represent the initial lengths of the respective
bonds in the P chain and Q chain. The squares and triangles linked
with the broken lines in the same figure represent the lengths of
the bonds in the P chain and Q chain at the 11 000th step, which
corresponds to Fig. 7(b). (b) Initial and intermediate (at the 11 000th

step) values of the respective bending angles of the two chains, θ
(P )
i

and θ
(Q)
i (i = 2, . . . ,21), in the relaxation process shown in Fig. 7.

The squares and triangles linked with the solid lines represent the
initial values of the respective bending angles of the P chain and Q
chain. The squares and triangles linked with the broken lines represent
the values of the respective bending angles in the P chain and Q chain
at the 11 000th step.

After applying Eq. (29)–(32) to Eq. (28), we obtain

∂

∂�

k+n−1∑
i=k

|Qi − Qi−1|2
∣∣∣∣∣
�=0

∼= 2σ 2n sin ϕ0 + 8πσd�

ϕ2
0

sin

(
ϕ0

2

)
cos

{
ϕ0

2
(2k − 3)

}
.

(33)

The first term on the right-hand side of Eq. (33) is a constant
and is ≈11.76 nm2 for the parameter values of the present
model, σ = 1 nm, ϕ0 = 36◦, and n = 10. The second term
on the right-hand side of Eq. (33) is a periodic function of
k, which varies within the range ≈ ±1.17 nm2 for the above
parameter values of σ , ϕ0, n, and d = 0.34 nm and � = 10◦.

Thus, Eq. (33) is positive, indicating that the sum of Eq. (25)
over a single helical turn, or, equivalently, the chain length, is
an increasing function of the writhing angle � around � = 0◦
as in the initial condition of Sec. III B. This explains why
the double-stranded helical chain writhes in the left direction
(� < 0◦) to shrink the total length of the P and Q chains upon
bending.

Finally, it is interesting to consider the situation in which
the chirality of the double-stranded helical chain is inverted: If
the double strand of the chain is left handed, i.e., ϕ0 = −36◦,
Eq. (33) becomes negative. This indicates that if the double-
stranded helical chain is left handed, the chain possesses the
propensity to writhe in the right direction (� > 0◦) to shrink
the total length of the two constituent chains upon bending.
This argument clearly indicates that the direction of writhing
of the double-stranded helical chain is determined directly by
the chirality of the double-stranded helix of the chain.

IV. CHIRAL SELECTION OF SUPERHELICAL AND
WRAPPED STRUCTURES

In this section, we extend our analysis in the previous
section to a longer segment of the double-stranded helical
chain and gain insights into the mechanisms for the uniform
left-handed wrapping of DNA in nucleosomes.

A. Chirality of a superhelix of the double-stranded helical chain

We take up here the same model of the double-stranded
helical chain as in the previous sections with N = 78 base pairs
and investigate its superhelical chirality. The double-stranded
helical chain of this length is estimated to be slightly shorter
than the DNA segment that can form a complete loop around
a nucleosome core particle. We carry out structural relaxation
simulations for this double-stranded helical chain in the same
manner as in the previous section.

As the initial condition, all the bending angles of the central
backbone of the model are set to �i = 4.5◦ (i = 2, . . . ,77),
and all the dihedral angles of the central backbone are set to
zero, �i = 0◦ (i = 2, . . . ,76). With this setting of the angles,
the double-stranded helical chain forms a planar arc as shown
in Fig. 12(a). The initial twisting angles of the double strand
ϕi (i = 1, . . . ,78) are set in accordance with Eq. (12). Such
initial conformation of the double-stranded helical chain may

(a) (b) (c)0th step 8,000th step 60,000th step

FIG. 12. (Color online) Relaxation of a long segment of the
double-stranded helical chain with N = 78 base pairs. (a) The
double-stranded helical chain segment initially forms a planar loop.
(b) Then it quickly relaxes to a left-handed superhelical conformation
after 8000 steps. (c) Finally, the superhelix slowly opens up and
approaches the straight equilibrium conformation.
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be realized when the chain is adsorbed on a core particle
abruptly due to a strong attractive force.

Starting from this initial conformation, we let all the degrees
of freedom of the double-stranded helical chain relax freely.
That is, the bending angles {�i}, dihedral angles {�i}, and
twisting angles {ϕi} are changed little by little in the same
manner as in the previous section so the total elastic energy of
the system decreases monotonically. Once the relaxation starts,
the planar loop of the double-stranded helical chain shown
in Fig. 12(a) quickly deforms into a left-handed superhelical
conformation as shown in Fig. 12(b) after 8000 steps. This
transition from the planar loop to the left-handed superhelix
is fast, indicating that the double-stranded helical chain has a
propensity to form a left-handed superhelix. After this rapid
conformational change, the superhelix slowly opens up and
approaches the straight equilibrium conformation as shown in
Fig. 12(c).

The result of Fig. 12 can be naturally understood by
extending the result of Fig. 7. That is, the local propensity
of a short segment of the double-stranded helical chain to
writhe in the left direction upon bending observed in Fig. 7(b)
gives rise to the global propensity of a longer segment of the
double-stranded helical chain to form a left-handed superhelix.

In order to quantify the above preference of a bent segment
of the double-stranded helical chain to form a left-handed
superhelix, we computed the total energy of the chain as a
function of the superhelical chirality of the model as shown
in Fig. 13. In Figs. 13(a)–13(c), all the bending angles of the
central backbone of the model are always fixed to �i = 4.5◦
(i = 2, . . . ,77). Figures 13(a) and 13(b) show examples of the
conformations of the system, where all the dihedral angles of
the central backbone, {�i}, are set to +0.5◦ in Fig. 13(a) and
to −0.5◦ in Fig. 13(b). As is clearly seen, the system assumes
a right-handed superhelix when all the dihedral angles are
positive, while the system assumes a left-handed superhelix
when all the dihedral angles are negative. Figure 13(c) shows
the total energy of the system as a function of the common
value of the dihedral angles of the central backbone, where
all the dihedral angles of the central backbone are set to the
common value ranging from −2◦ to +2◦. It is evident from
Fig. 13(c) that the energy profile is asymmetric with respect to
the superhelical chirality of the system and has a minimum at
the negative value of the dihedral angles around �i = −0.4◦.
This clearly confirms the tendency of a bent segment of the
double-stranded helical chain to form left-handed superhelices
rather than right-handed ones.

B. Implications for the chirality of wrapping
of DNA in a nucleosome

The result of Sec. IV A implies a possible origin of the
uniform left-handed wrapping of DNA around nucleosome
core particles in nature. In order to demonstrate the implica-
tions, we introduce here a simple model of a nucleosome core
particle and let our model of the double-stranded helical chain
with N = 78 base pairs wrap around the core and relax. To
model the attractive interaction between DNA and the core
particle, we introduce a Morse potential between the core
particle and each of the nodal points of the central backbone of
the double-stranded helical chain. Thus, the total interaction
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FIG. 13. (Color online) The double-stranded helical chain with
N = 78 base pairs, where all the dihedral angles of the central
backbone are set to �i = +0.5◦ (i = 2, . . . ,76) in (a) and to
�i = −0.5◦ (i = 2, . . . ,76) in (b). (c) Total elastic energy of the
double-stranded helical chain with N = 78 base pairs plotted as
a function of the value of dihedral angles that is common to all
the dihedral angles of the central backbone. In (a)–(c), the bending
angles of the central backbone of the model are all set to �i = 4.5◦

(i = 2, . . . ,77).

energy between the double-stranded helical chain and the core
particle is written as

Vcore

kBT
=

N∑
i=1

εc exp{−2αc(|r i − rc| − σc)}

− 2εc exp{−αc(|r i − rc| − σc)}, (34)

where N = 78, rc is the center of the core particle and r i is
the position of i-th nodal point of the central backbone. The
parameter εc determines the strength of the interaction between
the core and the double-stranded helical chain, which is set to
εc = 0.1. The parameter αc determines the width of the well of
the Morse potential and is set to αc = 2.0 nm−1. The parameter
σc is the equilibrium distance between the center of the core
and a nodal point of the backbone of the double-stranded
helical chain. We determine the value of σc in accordance with
the initial configuration of the system as follows.

The initial configuration of the model system is shown
in Fig. 14(a), where double-stranded helical chain assumes
exactly the same conformation as the initial conformation
shown in Fig. 12(a). That is, the double-stranded helical chain
is uniformly bent with all the bending angles �i = 4.5◦ (i =
2, . . . ,77) and all the dihedral angles �i = 0◦ (i = 2, . . . ,76)
forming a planar loop. The initial twisting angles of the double
strand ϕi (i = 1, . . . ,78) are set in accordance with Eq. (12).
The center of the core particle rc is initially placed at the center

062713-13



TOMOHIRO YANAO AND KENICHI YOSHIKAWA PHYSICAL REVIEW E 89, 062713 (2014)

(a) (b) (c)

FIG. 14. (Color online) Structural relaxation of the system that
consists of a spherical core particle and the double-stranded helical
chain with N = 78 base pairs wrapped around the core. (a) Initial
configuration of the system, where the double-stranded helical chain
forms a planar loop around the core particle. (b) Final configuration of
the system after full structural relaxation, where the double-stranded
helical chain assumes a left-handed superhelical conformation around
the core particle. (c) Final configuration of the system after full
structural relaxation, where the force constant for bonding of the
double-stranded helical chain is reduced to kbond = 30 nm−2.

of the loop of the double-stranded helical chain. That is, the
center of the core particle initially lie on the plane spanned
by the central backbone of the model DNA and is equally
distant from all the nodal points of the central backbone of the
double-stranded helical chain. The equilibrium distance σc in
Eq. (34) is set equal to the distance between each nodal point
of the central backbone of the double-stranded helical chain
and the center of the core at this initial configuration of the
system. Thus σc is determined to be

σc = d/2

sin(4.5◦/2)
= 4.33 nm. (35)

With this value of σc, the total interaction energy between the
double-stranded helical chain and the core, Vcore, takes the
minimum value at the initial configuration.

Starting from the initial configuration of the system as
above, we carry out structural relaxation simulations. In this
relaxation process, the bending angles �i (i = 2, . . . ,77), the
dihedral angles �i (i = 2, . . . ,76), the twist angles ϕi (i =
1, . . . ,78) of the model DNA, and the position of the center of
the core particle are changed little by little and randomly so
the total energy of the system decreases monotonically. Even
though the interaction energy between the double-stranded
helical chain and the core, Vcore in Eq. (34), is minimum
at the initial configuration, the system changes its overall
configuration because the system relaxes the elastic stress
inside the double-stranded helical chain at the expense of the
interaction energy.

Figure 14(b) shows a final conformation of the system after
the full relaxation, where the double-stranded helical chain
has deformed into a left-handed superhelical conformation
wrapped around the core particle. This result clearly indicates
that the double-stranded helical chain can spontaneously
select the left-handed wrapping around the core particle. The
left-handed chirality of the wrapped structure in Fig. 14(b)
may not be prominent enough in order for a longer segment
to form the second turn around the core particle. Thus,
in order to make the left-handed chirality of the wrapped
segment clearer, we reduced the force constant for bonding
kbond from kbond = 100 nm−2 to kbond = 30 nm−2 to make
the double-stranded helical chain more flexible. Figure 14(c)
shows the final relaxed conformation of the system for this
value of kbond = 30 nm−2. As expected, Fig. 14(c) shows

clearer left-handed chirality of wrapping than Fig. 14(b). In
this way, the double-stranded helical chain can spontaneously
select the left-handed wrapping around a nucleosome core
particle.

Finally, it is interesting to discuss the roles of the size of
the core particle in chiral selection in DNA wrapping. As
demonstrated in Ref. [40], it is generally expected that chiral
selectivity tends to decrease for wrapping around a larger core
and tends to increase for wrapping around a smaller core. This
is because wrapping around a smaller core generally induces
larger bending of DNA, which can in turn drive asymmetric
writhing of the backbone of DNA via a similar mechanism
to the one presented in Sec. III C. Therefore, a smaller core
would enhance chiral selectivity in the wrapping of DNA.
However, wrapping around a smaller core generally requires
larger bending energy in DNA, which tends to prevent full
wrapping. Thus, it is expected that there exists an appropriate
size of the core, which can balance both the chiral selectivity
and the penalty on bending energy.

V. CONCLUDING REMARKS

We have reported asymmetric elasticity inherent in a
right-handed double-stranded helical chain, which serves as
a minimal model of biopolymers. It has been shown that
a short segment of the double-stranded helical chain has a
propensity to unwind when it is bent. It has also been shown
that a short segment of the double-stranded helical chain has
a propensity to writhe in the left direction upon bending. This
propensity to writhe in the left direction gives rise to the
propensity of a longer segment of the double-stranded helical
chain to form a left-handed superhelix. Finally, we have
demonstrated that such propensity of the double-stranded
helical chain to form a left-handed superhelix can be a main
factor for the uniform left-handed wrapping of DNA around
nucleosome core particles in nature.

The propensity of the double-stranded helical chain to form
a left-handed superhelix appears to be of great advantage
for the systematic folding of DNA, in view of the fact that
chromatin consists of various helical motifs of DNA with
different scales. It is possible that if it were not for the
propensity of DNA to select the proper chirality of coiling,
DNA could easily get entangled in the course of folding. In
nucleosomes, the core particles might play the essential role in
provoking the propensity of DNA to writhe in the left direction
by bending the backbone of DNA via the attractive interaction.
Once DNA is attracted and bent by the core particle, DNA
would spontaneously writhe in the left direction and selects
the left-handed wrapping around the core particle as we have
seen Sec. IV B. The uniformity of the left-handed wrapping of
DNA in nucleosomes is also expected to be advantageous for
organizing further higher-order structures in chromatin.

The results of the present study have implications on the
existing theories and analysis of conformational dynamics of
DNA: The propensity of the double-stranded helical chain
to take the out-of-plane conformations rather than planar
conformations (see Fig. 12) may have a non-negligible effect in
cyclization of DNA [44,45]. Moreover, this propensity of DNA
may play important roles in the packaging and ejection of viral
DNA [46,47]. It is also possible that the asymmetric elasticity
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of the present model of the double-stranded helical chain
may be observed in more fine-scaled molecular dynamics
simulations of DNA at the atomic level. In particular, the
asymmetric properties of roll and slide and their coupling
in DNA observed in the fine-scale studies in Refs. [28,48]
may correspond to the asymmetric (chiral) coupling between
bending and writhing in the present coarse-grained model of
the double-stranded helical chain.

It is also interesting to extend the implications of the
present study to other biopolymers than DNA. For example,
it is known that an actin filament, which is a right-handed
double-stranded helical chain, shows a propensity to form
a left-handed superhelix when it slides on a track of heavy
meromyosin [49]. This propensity of an actin filament seems
to be consistent with the expectation deduced from the present
model of the double-stranded helical chain. Since biopolymers
are generally composed of chiral elements, such as amino acids
and sugars, the bend-writhe coupling found in the present
study may also play a significant role in the formation of
suitable higher-order structures in biopolymers, including the
morphology of bundles [50,51].

The numerical method for structural relaxation employed
in the present study has been quite simple, in the sense that
the method lowers the total elastic energy of the system
monotonically. On the other hand, in reality, DNA and other
biomolecules generally achieve their functions under thermal
and noisy environments. Therefore, it would be an important
next step to investigate conformational properties of the
present model in the thermal and noisy environments by using
Monte Carlo simulations or Langevin dynamics at appropriate
temperatures. We expect that the propensity of the present
model chain to form a left-handed superhelix still remains even
under such thermal environment when the strength of the noise
corresponds to the fluctuations at ambient temperatures. In
addition, our initial results of Monte Carlo simulations at finite
temperature indicate that thermal fluctuations even promotes
the chiral selectivity of the present model chain provided that
the strength of the thermal fluctuations is appropriate. This may
also be explained in terms of the asymmetric coupling between
bending and writhing of the model chain as has been described
in the present paper: Thermal fluctuations can generally induce
natural bending of the model chain. Although this bending
is generally random and has no directionality, the coupling
between bending and writhing leads to the tendency to the
left-handed writhing of the backbone of the model chain. Based
on these initial thoughts and results, we plan to scrutinize the
significance of thermal fluctuations in the dynamics of helical
chains in the near future.

It would also be an important next issue to obtain good
estimates for the elastic force constants for bonding and
bending, kbond and kbend, of the present model introduced in
Eq. (13) and Eq. (14). In particular, in order for the present
model to be a more realistic model of DNA, it would be
important to incorporate and quantify stacking interactions
among bases. To this end, detailed experimental data would
be necessary. However, we wish to emphasize that the major
results of the present study such as the propensities of the
double-stranded helical chain to writhe in the left direction, to
form left-handed superhelices, and to wrap in the left-handed
manner are qualitatively independent of the values of the

elastic force constants as we have seen in Fig. 5 and Fig. 10.
This has been because the asymmetric (chiral) elasticities of
the double-stranded helical chain reported in this paper are not
due to the specific setting of the values of the elastic force
constants but directly due to the right-handed helical chirality
of the double-stranded chain. Moreover, the present study has
indicated that if the double strand of the model chain were
left handed, the chain would show the propensity to form a
right-handed superhelix upon bending and to wrap around a
core particle in a right-handed manner.

The present study has explored direct link between the
lower-order chirality of the double-stranded helical chain and
the higher-order chirality of the superhelix of the double-
stranded chain. Since chromatin can be regarded as a nest
of helical structures of DNA with different scales, it would be
interesting to extend our present analysis to further higher-
order helical structures in the hierarchy of chromatin. For
example, it should be possible that the left-handed chirality
of nucleosomes rules the chirality of the aggregates of
nucleosomes such as the 30-nm fibers. Moreover, chirality
of the 30-nm fibers could regulate the chirality of further
higher-order helical structures in chromatin. In this way, the
interaction between lower-order chirality and higher-order
chirality could be a key factor for the true understanding
of the designing principles of the hierarchical structure of
chromatin.
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APPENDIX: ESTIMATION OF THE PERSISTENCE
LENGTH OF THE MODEL

We present here an estimation of the bending persistence
length of our model of the double-stranded helical chain based
on the numerical results presented in this paper. In general,
the bending persistence length of a polymer, lp, is defined
as the typical length scale along the contour of the polymer
at which the tangent vectors of the polymer lose orientational
correlation [42,43]. For a homopolymer consisting of segments
of length b with bending rigidity (per a couple of neighboring
segments) g, the persistence length lp is related to the bending
rigidity g as

lp = gb

kBT
, (A1)

at temperature T .
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As we see from the solid curve in Fig. 4(a), the double-
stranded helical chain with N = 22 base pairs possesses
the total energy of about E = 10kBT –14kBT depending
on the stages of structural relaxation. It should be noted
that the bending angles of the central backbone of the
double-stranded helical chain, �i , are all fixed to �i =
10◦ = 0.174 (rad) in the relaxation process of Fig. 4(a). By
assuming the harmonic elasticity between the total energy E

and the bending angle of the central backbone �i , one can

express E as

E = 1
2g(N − 1)�2

i . (A2)

Therefore, the bending rigidity is estimated to be g =
2E/(N − 1)�2

i = 34.35kBT , where we adopted the values of
E = 11kBT , N = 22, and �i = 0.174 (rad). After applying
this value of g to Eq. (A1) and noting that b = 0.34 nm for our
model, we obtain the persistence length as lp = 11.7 nm.
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[13] J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli,

and C. Bustamante, Nature 442, 836 (2006).
[14] T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, and

V. Croquette, Phys. Rev. Lett. 96, 178102 (2006).
[15] J. F. Marko, Phys. Rev. E 76, 021926 (2007).
[16] J. F. Marko and E. D. Siggia, Macromolecules 27, 981 (1994).
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