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Self-consistent treatment of electrostatics in molecular DNA braiding through external forces
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In this paper we consider a physical system in which two DNA molecules braid about each other. The distance
between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling
radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding.
In a model, developed for understanding such a system, we assume that each molecule can be divided into
a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the
individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal
fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking
(catenation) number. We compare two approximations used in estimating the free energy of the braided section.
One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric
interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In
this second approximation electrostatics should play an important role in determining this quantity, as suggested
by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable
differences between the two approximations. We go on to test the self-consistent approximation—included in the
full model—against experimental data for such a system, and we find good agreement. However, there seems to
be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the
origin of this small asymmetry.
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I. INTRODUCTION

In biological systems DNA braiding occurs and has
an important role to play. Two notable examples of DNA
braiding are the formation of plectonemes and dual molecule
catenanes. The former are a natural state for plasmids in
bacteria [1], and plectonemes are also formed in the replication
process [2] and in transcription [3] by the unraveling of the
DNA strands. Catenane structures are seen between the two
daughter DNA molecules as intermediates in the replication
of a DNA plasmid [4,5].

In the past, to try to understand DNA braiding in
plectonemes, single molecule twisting experiments have
been performed [6–13]. However, only recently, has there
also been an interest in performing dual braiding experi-
ments [14–16], which may provide insights into braiding in
DNA catenanelike structures. The experiments reported in
Refs. [14,16] involve the two DNA molecules being attached
by antibodies to a substrate and a magnetic bead. The
magnetic field that is applied to the bead provides a pulling
force that stretches out the DNA molecules, suppressing the
undulations of the molecular center lines, and a moment
that produces a fixed number of turns of the bead, and so a
braid.

To describe single molecule twisting experiments and
plectoneme supercoiling a considerable amount of theoretical
work has been performed [17–29]. Most recent of these has
been a study of multiplectoneme states that form in low salt
concentrations [29]. For a dual molecular braid, a mathemat-
ical mechanical theory was constructed, in the ground state,
describing the various braid structures formed by different
combinations of mechanical forces on each molecule, with an
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additional interaction potential [30]; but, little work has been
done on the statistical mechanics of dual molecular braiding
[31,32]. However, in two recent publications [33,34], we have
developed a model that describes braiding experiments of the
form of those done in Ref. [16]. These models allow for the
two ends of the two DNA molecules to be apart a distance
much larger than the diameter of the braid that they form. This
is relevant for the experiments of Ref. [16], as the DNA are
attached to the bead with an end to end separation between the
two molecules of the order of one micron. Also, one important
improvement over the work of Ref. [32], is that we allow for
a mean-field braid structure, which is self-consistently deter-
mined, that allows us to go to larger braid linking (catenation)
numbers. We now allow for electrostatic interactions between
molecules.

In the models of Refs. [33,34], the size of undulations of
molecules, relative to each other, within the braid is deter-
mined only by steric interactions between the two molecules.
However, when other interactions—for instance, electrostatic
interactions—are present the size of these undulations should
be self-consistently determined. There is a simple argument to
suggest this. First, the size of undulations affects the average
strength of intermolecular interactions. Therefore, if these
interactions are repulsive, it is energetically unfavorable for
molecules to have large amplitude undulations relative to each
other. Thus, to reduce the free energy, the size of undulations
will be reduced when repulsive interactions are indeed present.
A self-consistent treatment of the amplitude undulations was
originally pioneered in Ref. [24] for braids in plectonemes,
and has been shown to fit the data of single molecule
twisting experiments much better [28] than supposing that
just steric interactions determine the mean-squared amplitude
of undulations. With this in mind, we wanted to introduce a
self-consistent determination of the mean-squared amplitude
of such undulations into the theory. This treatment is along
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similar lines to Ref. [24]; however, steric forces between the
two molecules are also taken into account.

The work is presented in the following way. In the
next section, we start by reviewing general features of the
model, starting with the generic form we originally used in
Refs. [33,34]. We then discuss the various contributions that
we include in the free energy of the braided section of the two
molecules. Next, a formula for the free energy of the braid is
presented for the approximation used in Refs. [33,34]. Here,
the mean-squared amplitude of undulations is determined only
by steric interactions. We call this the simple approximation.
Then, last of all, we present the form of the free energy, when
the mean-squared amplitude of undulations is determined
self-consistently from both electrostatic and steric interactions.
The results section is divided into two parts. In the first part
we compare the self-consistent approximation with the simple
approximation, for different strengths of the electrostatic
interaction between molecules. We show results for two
geometric parameters that characterize the average structure
of the braid as a function of the number of induced braid
pitches. Also, we show the applied moment required to
generate a particular number of braid turns (pitches) and the
end to end extension of the two molecules. We see, indeed,
as the strength of the electrostatic interaction is increased
the difference between the two approximations increases. In
the second part, we compare the self-consistent theory with
experimental data from Ref. [16] and find good agreement
with the model. In the last section, our discussion and outlook,
we discuss extensions to the work, as well as the possibility that
weak chiral interactions may account for the slight asymmetry
between left- and right-handed braids seen in some of the
experimental data.

II. MODEL

A. General considerations

In this paper we use a model, developed in Refs. [33,34],
that describes braiding of two DNA molecules of identical
length L, the value of which is assumed large enough for finite
size effects not to be important. The two sets of molecular
ends are held apart by distance b (see Fig. 1). One set of ends
remains fixed, while the other set of ends is free to rotate about
a common axis, which is assumed to be the axis of the braid
(for a definition see below). To this system a pulling force F ,
in the direction along the braid axis, and a moment M that
rotates the molecular ends about the same axis, are applied. In
the model, we divide the DNA molecules into unbraided end
pieces and a braided central section. This allows us to write
the following free energy for our system:

FT = 2(L − Lb)fWLC + LbfBraid, (1)

where 2(L − Lb)fWLC is the contribution from the end pieces
and LbfBraid is the contribution from the braided section.
fBraid will be taken to be a function of both M and F . As
before [33,34], the four end pieces are assumed to behave like
wormlike chains of contour length (L − Lb)/2, where Lb is the
contour length of each of the two molecules that contributes
to the braid.

Through the wormlike chain (WLC) model [35], it is
possible to relate Lb to the parameters b, L, F , and ηend

2 [33,34];

the last is the angle that both average molecular centerlines, of
the end sections, make with the axis of the braid (see Fig. 1).
This relationship reads as
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where θ (y) is the theta function, which for y � 0 is 1,
otherwise zero, preventing a negative unphysical value of
Lb. Here, lp is the bending persistence length of the DNA
molecules. For DNA we take the value lp ≈ 500 Å.

Followng Refs. [33,34], the free energy density of the end
pieces is found to be
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(3)

The total end to end distance of the two molecules is
given by

zT ≈ 〈zB〉 +

√√√√(L − Lb)2

(
1 −

√
kBT cos (ηend/2)

F lp

)2

− b2,

(4)

where the average length of the braid axis 〈zB〉 (angular
brackets will always correspond to thermal averaging) is
determined from

〈zB〉 = −Lb

∂fBraid(M,F )

∂F
. (5)

It is useful to define the number of braid turns N as the
(average) number of times the two molecules wrap around
each other (number of pitches) in the braided section. This
quantity is related to n through the relation

n ≈ N + sgn(n)

2
, (6)

where N is determined from

N = Lb

2π

∂fBraid

∂M
. (7)

B. Braid geometry

For the thermally averaged structure of the braid, we assume
that the two molecular center lines precess at a constant, and
at the same, spatial frequency ωb,0 around a common axis that
lies along the center of the braid; this axis is what we define as
the braid axis. It is along and about this axis (when straight)
F and M act, respectively. Equivalent positions along the
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FIG. 1. (Color online) Schematic picture of the configuration of the two molecules. The left-hand picture shows the global configuration
of two molecules. The red (lighter) line denotes one molecule, while the blue (darker) line denotes the other one. Both sets of molecular
ends are separated distance b apart and one set of ends is rotated an angle ψ with respect to the other set about the axis of the braid.
The distance x is the distance along the average position of the center lines of the end segments and is given by the WLC formula x =
(L − Lb)[1 − √

kBT cos(ηend/2)/2lpF ] (see Refs. [33,34]), where lp is the bending persistence length of the two molecules. To generate this
configuration, two of the ends may be attached to a magnetic bead and the other two ends to a substrate, as in the experiments of Ref. [16].
In the second picture we show the tangent vectors [t̂1(s) and t̂2(s)] of the two molecular center lines, the vector d̂(s) that lies along a line
connecting the two molecular center lines [shown in green (light gray)], and the tangent vector of the braid center line that defines the local
configuration of the braid. Also shown are the vectors n̂μ(s) and d̂μ(s) (μ = 1,2), which are defined in Eqs. (8) and (9), that define the braid
frames [30] of the two molecules. When R′(s) = 0 we have d̂1(s) = d̂2(s) = d̂(s). The vectors v̂μ(s) characterize the azimuthal orientation of
the minor grooves of both molecules, the trajectories of which are shown by the two distorted helices in the right-hand side figure.

two molecular center lines may be described by an arclength
coordinate s that runs from −Lb/2 to Lb/2. At any point
along the braid, we may construct a line of length R that
connects two points on the molecular center lines with the
same arclength coordinate s. For the thermally averaged braid
structure, R(s) = R0 and is constant with respect to s. Indeed,
the braid axis bisects the midpoint of this line. Pointing along
this line is the unit vector d̂(s), from which we may define unit
vectors d̂1(s), d̂2(s), n̂1(s), and n̂2(s):

n̂1(s) = t̂1(s) × d̂(s)

|t̂1(s) × d̂(s)| , d̂1(s) = n̂1(s) × t̂1(s), (8)

n̂2(s) = t̂2(s) × d̂(s)

|t̂2(s) × d̂(s)| , d̂2(s) = n̂2(s) × t̂2(s). (9)

These vectors (shown in Fig. 1) define a “braid frame”
[30], which can be used to characterize the local az-
imuthal orientations of the cross sections of the two
molecules.

Also, to characterize the geometry of the braided section,
we define a braid tilt angle η(s). This is the angle between the
two tangent vectors of the molecular center lines, t̂1(s) and
t̂2(s), respectively, such that

t̂1(s) · t̂2(s) = cos η(s). (10)

C. Description of the statistical mechanical model
describing the braid

In the thermally averaged braid structure η(s) = η0, the
angle η0 is assumed constant with respect to s, as it is related to
the average frequency of precession ωb,0 of the two molecular
center lines and R0, which are constant. We allow for the
braid to thermally fluctuate about this average structure by
allowing for fluctuations in both η and R about the mean-field
values η0 and R0. We also allow for small thermal undulations
in the braid axis away from the configuration of a straight
line. If the straight line configuration is supposed to lie on the
z axis, fluctuations in the braid axis tangent vector may be
characterized through x ′

A(s) and y ′
A(s); the derivatives of the

displacements, away from the z axis in the x and y directions,
respectively. All fluctuations in the local geometry depend on s.
A particular configuration of the braid is assigned a Boltzmann
weight in the partition function depending on its total energy.
There are four contributing factors to the energy that we take
account of, and thus in the free energy density fBraid.

The first is the bending elastic energy of the two molecules
forming the braid, which is described by the elastic rod model
for DNA. Here, the elastic energy is computed by integrating
the sum of the squares of the curvatures, for both molecular
center lines, along the lengths of the molecules contributing to
the braided section and multiplying by kBT lp/2 (for expres-
sions for the elastic energy contribution see Refs. [33,34]). The
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second contribution is an electrostatic energy between helices
[36] of the form

Eint =
∫ Lb/2

−Lb/2
ds{Edir[R(s)] + Eimg[R(s)]}. (11)

Here, Eimg[R(s)] is the contribution (a function of R(s)) from
direct electrostatic interactions between the charges of one
molecule and the other, and is given by

Edir(R)

kBT
= 2lB(1 − θ )2

l2
e

K0(Rκ0)

[aκ0K1(aκ0)]2
. (12)

The term Eimg[R(s)] is also repulsive, having effectively half
the decay range. It is the contribution due to one molecule
interacting with its image charge reflection at the surface of
the other molecule (see Ref. [36]). It takes the form

Eimg(R)

kBT
= −2lB

l2
e

∞∑
n=−∞

∞∑
j=−∞

[δn,0θ − cos(nφs)]
2

× Kn−j (Rκn)Kn−j (Rκn)

[aκnKn(aκn)]2

I ′
j (aκn)

K ′
j (aκn)

. (13)

In Eqs. (12) and (13) we have

κn =
√

1

λ2
D

+
(

2πn

H

)2

, (14)

Where the Debye screening length is λD , the Bjerrum length is
lB (taken to be lB ≈ 7 Å), and the length is le ≈ 1.7 Å, which
is the inverse of the average DNA linear charge density (from
only phosphate charges) multiplied by the unit charge e. The
parameters a, φs , and H are the effective DNA radius (for
electrostatics), the angular half width of the minor groove, and
the average value of the DNA pitch. We choose the values a ≈
11.2 Å, φs ≈ 0.4π , and H ≈ 33.8 Å. Equations (11)–(13) are
a simplification of those used in Refs. [37,38,33], derived
using the mean-field electrostatic model of Ref. [36] (for the
most general calculation of the braid electrostatic energy, using
the model of Ref. [36] see Ref. [39]). We have supposed, in
Eqs. (11) and (12), that any forces depending on helix structure,
in Edir(R), are completely washed out by thermal fluctuations
(this corresponds to taking the limit λ → ∞ in Eq. (9) of
Ref. [33]). In this case, valid when helix specific forces are
sufficiently weak, localizing ions near the DNA grooves has a
small effect on the results. Furthermore, for monovalent salt
ions (with the notable exception of some transition metals), we
do not expect a large degree of localization [40]. Therefore, for
simplicity, we suppose that the layer of condensed counterions
is uniformly distributed near the DNA surface, compensating
the bare DNA charge by a fraction θ . We will see that
Eqs. (11)–(13) seem to adequately describe the electrostatic
interaction in the monovalent salt experiments of Ref. [16].
Though, as a correction to Eq. (11), there may well be a weak
residual chiral interaction from correlations between the helix
structures of the two molecules that leads to a very slight
n → −n asymmetry seen in some of the results of Ref. [16].
We will discuss this possibility later in the discussion section.

The third thing that we consider is steric interactions.
Here, we assume that DNA molecules can be modeled as
hard-core cylinders with steric radius a (see Refs. [38,41]).
In treating the steric interaction, in the statistical mechanics,
we use an approach originally developed in Ref. [42]. This is
to replace the hard-core interaction with that of a harmonic
potential with an effective spring constant keff . This parameter
depends on R0 − 2a, which is a measure of the available
space the molecules can fluctuate in, without colliding with
each other. In the simple model, which we consider first,
we assume the mean-squared amplitude of undulations is
primarily determined by steric interactions such that

〈(R − R0)2〉 ≈ (R0 − 2a)2. (15)

The requirement, Eq. (15), allows us to determine an
approximate relationship between keff and R0 − 2a (see
Refs. [38,34,41] for details) [43].

The last contribution is a work term that contains both the
moment M and pulling force F which is of the form

EW = −2π (T wb + Wrb)M − zBF, (16)

where applying the external moment M changes the linking
(catenation) number of the braid, Lkb = T wb + Wrb; the sum
of braid twist and braid writhe, T wb and Wrb, respectively.
In Eq. (16) we do not constrain the linking numbers of the
individual molecules as in Ref. [32], therefore considering the
DNA molecules as nicked. The braid twist may be defined as

T wb = 1

2π

∫ LA/2

−LA/2
dτ ωb(τ ), (17)

where ωb(τ ) is the spatial frequency of precession of the center
lines about the braid axis [note that 〈ωb(τ )〉 = ωb,0, and for an
explicit expression of ωb(τ ) in terms of the braid geometric
parameters, see Ref. [41]]. The coordinate τ is of unit arclength
along the braid axis, running from −LA/2 to LA/2 for the
length of the braided section. The relationship between LA and
Lb depends on the configuration of the braid. In a configuration
where the braid axis is straight LA = zB . The braid writhe is
calculated through [44]

Wrb = 1

4π

∫ LA/2

−LA/2
dτ

∫ LA/2

−LA/2
dτ ′

× [rA(τ ) − rA(τ ′)] · t̂A(τ ) × t̂A(τ ′)
|rA(τ ) − rA(τ ′)|3 . (18)

In Eq. (18), rA(τ ) is the position vector that describes the
trajectory of the braid axis and t̂A(τ ) = drA(τ )

dτ
, the tangent

vector. This decomposition of the braid linking number into
braid twist and writhe for a molecular braid under tension was
originally proposed in Ref. [32].

Strictly speaking, T wb + Wrb should be constrained to take
exactly the value −n + sgn(n)/2 (when b → ∞). However,
instead of working in an ensemble where T wb + Wrb is
exactly fixed, we work in a fixed M ensemble, since it is
much easier to do calculations. In the thermodynamic limit (the
limit that we do our calculations in), where L → ∞, these two
ensembles are equivalent to each other. The fluctuations in the
linking number in the fixed M ensemble become negligible
in this limit [45]. Thus, through Eqs. (7) and (16), we have
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in the thermodynamic limit −N = 〈T wb + Wrb〉. In Refs.
[34,41] explicit expressions for both zB and T wb are given,
but for brevity we do not give them here. In calculating the free
energy, the term 2πMWrb [in Eq. (16)] is considered to be
small and is handled as a perturbation. This is done in a similar
way to the theoretical calculations of Ref. [22], describing
single molecule twisting experiments. In the calculations of
Ref. [22], the writhe and twist are to do with the molecular
center line and the trajectory of the minor groove (or some

other point of reference that traces out the DNA double helix)
about it.

D. The free energy in the simple approximation

Taking these contributions into account, following a varia-
tional approximation (the precise details of the calculation are
given in Secs. 1–8 of Ref. [41]), we obtain the following form
for the free energy:

fBraid

kBT
=
(

F

2lpkBT cos
(

η0
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)1/2

+ α
1/2
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21/2l
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p
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− 1
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sin2

(
η0

2

)

+ 4lp

R2
0
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(
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2

)
+ Edir(R0) + Eimg(R0) − F

kBT
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(
η0

2

)
+ 2M

kBT R0
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(
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4kBT R0

1
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η0
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− M2

16lp(kBT )2

1

cos
(

η0
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)7/2

(
kBT

2F lp
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, (19)

where

αη = 4lp

R2
0

[
3 cos2

(
η0

2

)
sin2

(
η0

2

)
− sin4

(
η0

2

)]
+ F

4kBT
cos

(
η0

2

)
− M

2R0kBT
sin

(
η0

2

)
. (20)

In writing Eq. (19), we have further assumed that the
thermally averaged bending energy terms and electrostatic
energy can be replaced with their unaveraged values at R0.
The first term in Eq. (19) is the free energy contribution due to
undulations of the braid axis. The entropic contribution due to
fluctuations in η is given by the second term of Eq. (19). The
third term is the contribution due to steric interactions between
the molecules, in the braid, and the entropy loss of confining
the molecules in a braided configuration of radius R0. The next
two terms are contributions from the bending elastic energy of
the molecules in the braid. Next in Eq. (19), we have the contri-
bution to the free energy from the electrostatic terms, which is
simply given by Edir(R0) + Eimg(R0). The next three terms are
the contributions from −zBF − 2πT wbM in the work term
described by Eq. (16). The last term is the leading order nonva-
nishing contribution in the perturbation series in −2πWrbM

(see Ref. [41]). The cos (η0/2) terms, in this last term, arise
from the fact that unit arclength of the braid axis, τ , should
be used in computing the braid writhe, not the arclengths of
the molecular center lines [see Eq. (18)]. Exactly the same
M2 term [in the limit cos (η0/2) → 1] was also computed in
Ref. [32] in the case where the average linking number of each
molecule is left unconstrained (note that in Ref. [32] one should
set F = 2f ). However, the whole approach goes beyond that
of Ref. [32] in two regards. We include the confinement
through steric interactions of δR(s), fluctuations in the relative
distance between the two center lines, as well as considering
fluctuations around a braided mean-field configuration.

Equations that determine both R0 and η0 are then found
through the minimization conditions

dfBraid

dR0
= 0 and

dfBraid

dη0
= 0. (21)

Also, both 〈zB〉 and N are related to F and M through
Eqs. (5) and (7). By minimizing the total free energy, given by

Eq. (1), with respect to ηend we find that for sufficiently large
pulling force

cos
(ηend

2

)
≈ − F

fBraid
−
(

2kBT

F lp

)1/2 (
− F

fBraid

)3/2

. (22)

E. Self-consistent determination of the mean-squared
amplitude of undulations of the braid

In the case where there are just steric interactions, to
maximize the entropy due to undulations, we simply have
〈(R − R0)2〉 ≈ (R0 − 2a)2. However, when we have repulsive
electrostatic interactions, undulations enhance the strength of
their thermal average, making large undulations energetically
unfavorable. Therefore, the electrostatic interaction should
also limit the size of 〈(R − R0)2〉. Therefore, it seems that
a better approach is to set 〈(R − R0)2〉 ≈ d2

R , where dR

is self-consistently determined, primarily by electrostatic
interactions, as well as steric forces. We also determine
θ2
R = 〈( dR

ds
)2〉 self-consistently.

In our expression for the free energy function we now
use thermal averages of the bending energy and electrostatic
energy terms; these averages help to determine dR and θR .
We do this according to a procedure used in Refs. [34] (for
details, see Ref. [41]) and [38]. The idea is to introduce cutoffs
on the amplitude of fluctuations in R, which we call dmin and
dmax. These cutoffs are the minimum and maximum values that
δR = R − R0 can take due to steric interactions. If δR < dmin

or δR > dmax, the values of both the bending and electrostatic
energies are unphysical, as the molecules in the braid would
have interpenetrated. Therefore, to prevent these unphysical
values entering into the averaging, when δR < dmin we replace
δR with dmin, and when δR > dmax we replace δR with dmax.
We assume the values dmax = −dmin = R0 − 2a, which should
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be adequate for the braids that we will study here, although a different choice might possibly be used for much more tightly
wrapped braids (see Refs. [38,41]).

The parameters dR and θR are treated as variational parameters that minimize the following free energy (which can be derived
following the steps presented in Secs. 10–12 in Ref. [41]):
fBraid

kBT

=
(

F

2lpkBT cos (η0/2)

)1/2

+ α
1/2
η

21/2l
1/2
p

+ d2
R

28/3(R0 − 2a)8/3l
1/3
p

+ 1

4lpθ2
R

+ lpθ4
R

4d2
R

− M2

16lp(kBT )2

(
kBT

2lpFR

)1/2 1

cos
(

η0

2

)7/2

− θ2
Rlp

R2
0

f̃1 [R0,dR,R0 − 2a, − (R0 − 2a)] sin2
(η0

2

)
+ 2lB(1 − θ )2

l2
e (aκD)2K1(aκD)2

g0 [κDR0,κDdR,(R0 − 2a)/dR, − (R0 − 2a)/dR]

− 2lB

l2
e

∞∑
n=−∞

[cos(nφs) − θδn,0]2

[κnaK ′
n(κna)]2

gimg [n,κnR0,κndR,(R0 − 2a)/dR, − (R0 − 2a)/dR; a]

+ 4lpf̃1 [R0,dR,R0 − 2a, − (R0 − 2a)]

R2
0

sin4
(η0

2

)
− F

kBT
cos

(η0

2

)
+ 2M

kBT R0
sin

(η0

2

)
f̃2 [R0,dR,R0 − 2a, − (R0 − 2a)]

− Mθ2
R

4kBT

f̃2 [R0,dR,R0 − 2a, − (R0 − 2a)]

R0
sin

(η0

2

)−1
, (23)

where now

αη = 4lpf̃1 [R0,dR,R0 − 2a, − (R0 − 2a)]

R2
0

[
3 cos2

(
η0

2

)
sin2

(
η0

2

)
− sin4

(
η0

2

)]
+ F

4kBT
cos

(
η0

2

)

− Mf̃2 [R0,dR,R0 − 2a, − (R0 − 2a)]

2R0kBT
sin

(
η0

2

)
. (24)

The functions f̃1[R0,dR,R0 − 2a, − (R0 − 2a)] and f̃2[R0,dR,R0 − 2a, − (R0 − 2a)] come about from
now averaging the bending energy, and the functions gj [κDR0,κDdR,(R0 − 2a)/dR − (R0 − 2a)/dR] and
gimg[n,κnR0,κndR,(R0 − 2a)/dR, − (R0 − 2a)/dR; a] from averaging the electrostatic energy, over the fluctuations in
R(s). The forms of these functions are given in the Appendix, for the interested reader. As well as replacing the bending and
electrostatic terms with their averages, there are also a couple of other important differences between Eqs. (19) and (23). One
is that the third term in Eq. (23), the contribution from steric interactions, now depends on dR as well as R0 − 2a. Another is
the appearance of two entropic terms, the fourth and fifth terms, that depend on θR and dR , which want to maximize the latter
quantity, while steric, bending and electrostatic terms want to restrict its value.

Equations on θR , dR , R0, and η0 are now obtained through the conditions
∂fBraid

∂θR

= 0,
∂fBraid

∂dR

= 0,
∂fBraid

∂η0
= 0, and

∂fBraid

∂R0
= 0. (25)

We will look at the first condition in Eq. (25) in detail; the other equations can be generated by combining Eqs. (23) and (25),
and general forms for them can be found in Ref. [41]. From this first condition we obtain the equation

0 = − 1

2lpθ3
R

+ lpθ3
R

d2
R

− 2θRlp

R2
0

f̃1[R0,dR,R0 − 2a, − (R0 − 2a)] sin2
(η0

2

)

− MθR

2kBT

f̃2[R0,dR,R0 − 2a, − (R0 − 2a)]

R0
sin

(η0

2

)−1
. (26)

If we neglect the last two terms in Eq. (26), the contributions from the bending elastic energy and the work term, we simply
recover an old result (see Ref. [38]):

θ2
R = 1

21/3

(
dR

lp

)2/3

. (27)

An important point to realize is that if we were to substitute Eq. (27) into Eq. (23) and replace the averages of the bending energy
terms and electrostatic energy terms with their unaveraged values calculated at R0, on minimization with respect to dR , we would
recover Eq. (19) for the free energy prior to minimization over R0 and η0. However, it is far more physically appropriate to
consider the thermal averages of the bending energy and electrostatic interaction energy in the free energy.

In general we find that solution to Eq. (26) is well approximated by the formula

θR ≈
(

dR

lp

)1/3 1(
4�2 + 32

9 � + 24/3
)1/8 , (28)
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FIG. 2. (Color online) Graphs comparing the tilt angles calculated from the self-consistent treatment with those from the simple model.
In all plots, the green (light gray) curves are generated using the simple model, while the blue (dark gray) curves are generated using the
self-consistent treatment. In (a) and (b) we use a Debye screening length of λD = 30.99 Å, while in (c) and (d) λD = 9.8 Å is used. A pulling
force of F = 2 pN is used in (a) and (c), and in (b) and (d) a pulling force of F = 8 pN is used. The solid, long-dashed, medium-dashed,
short-dashed, and dotted-dashed lines correspond to values of θ = 0, 0.2, 0.4, 0.6, and 0.8, respectively.

where

� =
(

dR

lp

)4/3
{

Mlp

2R0kBT
f̃2[R0,dR,R0 − 2a, − (R0 − 2a)] sin

(η0

2

)−1
− 2l2

p

R2
0

f̃1[R0,dR,R0 − 2a, − (R0 − 2a)] sin2
(η0

2

)}
.

(29)

III. RESULTS

A. Comparing self-consistent treatment against simple model

Now, we compare the results obtained from Eqs. (19) and
(21) with those obtained from Eqs. (23), (25), and (28). We
examine the differences in η0, R0, M , and zT as functions of N

(the number of braid pitches) between the two approximations,
for two pulling force values of F = 2 and 8 pN and Debye
screening lengths λD = 30.99 and 9.8 Å, which roughly
correspond to 1:1 monovalent salt concentrations of 10 and
100 mM, respectively.

In Fig. 2 we present plots for the average tilt angle. We
see, generally, that the self-consistent approximation [using
Eq. (23)] has a lower value of η0 than the results determined
from Eq. (19). This difference between the two approximations

is most pronounced when λD = 30.99 Å. Also, the difference
between the two approximations increases with the increase in
the magnitude of the repulsive electrostatic interaction with
decreasing θ . The difference can be accounted for in the
following way. Averaging the bending energy terms, in the
self-consistent treatment, as opposed to simply calculating
them at R0, enhances these terms, favoring a smaller value
of η0. The size of this enhancement is affected by dR , which is
in turn affected by R0, as both electrostatic terms and bending
terms help to determine dR , as well as the steric interaction.
As one reduces the value of θ and increases λD , one increases
the value R0, since one increases the electrostatic repulsion
(see Fig. 3 below). This increase in R0 has the tendency to
increase dR . Therefore, the difference is most pronounced for
small θ and large λD . Also, we see that in all cases considered,
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FIG. 3. (Color online) Graphs comparing the braid radius calculated from the self-consistent treatment with the simple model. In all plots,
the green (light gray) curves are generated using the simple model, while the blue (dark gray) curves are generated using the self-consistent
treatment. In (a) and (b) a Debye screening length of λD = 30.99 Å is used, while in (c) and (d) λD = 9.8 Å is used. A pulling force of
F = 2 pN is used in (a) and (c), and in (b) and (d) a pulling force of F = 8 pN is used. The solid, long-dashed, medium-dashed, short-dashed,
and dotted-dashed lines correspond to values of θ = 0, 0.2, 0.4, 0.6, and 0.8, respectively. Note that in (a) and (b) some of the curves have
been terminated, as ηend has become too large for the model to be valid.

reducing the value of θ and increasing λD both increase η0.
This is again attributable to the increase in R0; here it weakens
the bending energy terms in favor of the moment terms, which
causes such an increase in η0.

In Fig. 3 we present plots of R0, as a function of the
number of turns, for the two approximations. As we decrease
θ and increase λD , we increase the amount of electrostatic
repulsion in our system, which pushes up R0. By increasing
the pulling force F we reduce R0 in the braid. This is because
one requires a larger value of M to stabilize a braid; this larger
value forces the two molecules closer together. We find that
R0 is always larger for the self-consistent approximation than
for the simpler approximation. One reason for this increase,
when we include undulations about R0 into the electrostatic
energy, is that this increases the amount of repulsion by
enhancement of these terms. A second reason is an increase
in the amount of repulsion due to entropy loss when confining
the molecules to the braid, due to a reduction in 〈δR(s)2〉 when
it is self-consistently calculated. The difference in R0 between
the two approximations is most pronounced at λD = 9.81.
The explanation for this is that undulations enhance the
electrostatics much more at λD = 9.81 than at λD = 30.99.
This is due to the fractional increase in electrostatic energy,

from reducing R, being much larger for the former case,
so that the undulations about R0 that reduce R strengthen
the electrostatic interactions more here. Also, this difference
between the two approximations is most pronounced at F =
2 pN and for small values of N ; this is because at these values
dR is largest.

In Fig. 4 we examine the moment M as a function of
the number of braid turns. The tendency, here, is for the
self-consistent approximation to give a value of a slightly larger
magnitude for the moment than for the simple approximation.
At the low force value of F = 2 pN this difference is most
apparent, especially for λD = 9.8 Å. This difference is due
to the increase in electrostatic repulsion from the effect of
averaging the electrostatic energy over the braid undulations,
thereby increasing the amount of moment needed to do work
against repulsive forces. These forces need to be overcome
to bring the molecules close together, producing a braid
of N turns.

Last of all, we compare the extensions in Fig. 5, or
end to end distance zT . In most plots, the self-consistent
approximation gives a slightly larger value of zT for fixed
N . We might have expected the opposite (Ref. [33]), as for
the self-consistent approximation we obtain a larger value of
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FIG. 4. (Color online) Graphs are shown comparing the relationship between the applied moment M and the number of braid turns,
calculated from the self-consistent treatment with that from the simple model. In the calculations, the values L = 36 000 Å and b = 12 000 Å
are used. The same color coding is used as in the previous figure. In (a) and (b) a Debye screening length of λD = 30.99 Å is used, while in
(c) and (d) λD = 9.8 Å is used. A pulling force of F = 2 pN is used in (a) and (c), and in (b) and (d) a pulling force of F = 8 pN is used. The
solid, long-dashed, medium-dashed, short-dashed, and dotted-dashed lines correspond to values of θ = 0, 0.2, 0.4, 0.6, and 0.8, respectively.
Note that all the moment curves have the symmetry property M(N ) = −M(−N ).

R at fixed moment M , which would certainly be the case
if η0 and Lb remained fixed. However, the tilt angles η0

are smaller for the self-consistent approximation than the
simple approximation (see Fig. 2) as well as Lb. Also,
we see that the differences between two approximations at
λD = 9.8 Å seem to be very slight. Again, these differences,
in most cases, are reduced with increasing θ , as we would
expect.

B. Comparing self-consistent treatment
against experimental data

We now match the self-consistent approximation with
the experimental extension curves of Ref. [16]. We have
essentially two fitting parameters b and θ ; the former is a fitting
parameter as it can only be determined from the extension
data; it cannot be measured independently. Also, we should
point out that the value of b cannot be controlled precisely
in the experimental setup of Ref. [16], and may vary from
one experiment to the next. One can fit b using only the
extension data between n = −1/2 and 1/2 where there is no
braid. However, note, as was stated in Ref. [16], that there is a

10% error in the values of the measured applied pulling force
F . Therefore, because of this and the fact that we do not have in
all cases the available data, we fit b globally to the extension
curves. Also due to this uncertainty in F we have used the
generic value of lp ≈ 500 Å as opposed to a fine tuned value.
It is also worth pointing out that lp does vary slightly with salt
concentrations between 10 and 100 mM [46].

To roughly quantify the goodness of the fit, we may compute
a normalized variance for Ns experimental data points that lie
in the region where the theoretical data curves are valid (i.e.,
ηend � 1.8 and |n| > 1/2). This is defined as

σ 2 =
Ns∑

j=1

[
[zT (nj ) − zj ]

zT (nj )

]2

, (30)

where for each experimental data point, we have the coordi-
nates zj and nj for the extension and the number of bead turns.
In Eq. (30), the theoretical curve is given by an interpolation
function zT (nj ) generated from the numerical data. To obtain
the best fit for b, we changed b in steps of 100 Å and computed
σ 2 for each of the theoretical curves. For each value of θ , the
value of b that generates zT (n) with the smallest value of σ 2

was judged to be the best fit.

062711-9



DOMINIC J. LEE PHYSICAL REVIEW E 89, 062711 (2014)

FIG. 5. (Color online) Graphs are shown comparing the extension zT as a function of the number of braid turns calculated from the
self-consistent treatment with the simple model. In the calculations, the values L = 36 000 Å and b = 12 000 Å are used. The same color
coding is used as in the previous figure. In (a) and (b) a Debye screening length of λ = 30.99 Å is used, while in (c) and (d) λ = 9.8 Å is used. In
(a) and (c) a pulling force of F = 2 pN is used, and in (b) and (d) a pulling force of F = 8 pN is used. The solid, long-dashed, medium-dashed,
short-dashed, and dotted-dashed lines correspond to values of θ = 0, 0.2, 0.4, 0.6, and 0.8, respectively. Note that the extension curves have
the symmetry property zT (N ) = zT (−N ).

We see that we can obtain good fits to the experimental
data of Ref. [16] in Fig. 6. As we saw in Fig. 5 there may
only be a slight difference in the extension curves between the
two approximations. The improvement over the preliminary
fits of Ref. [33], may in fact be mostly attributable to a slight
difference in the expression for αη and the additional term
∝M2 in the free energy due to taking account of −2πMWrb

in Eq. (16), the work term. However, there are significant
differences in η0, R0, and M between the two approximations,
and the self-consistent approximation reflects better physics.

Unfortunately, quite a large range of values of θ fit the
extension curves for 100 and 10 mM, though with quite
different fitted values of b (see Tables I and II). If the value
of b was fixed, we would see the difference that is seen in
Fig. 5, when changing θ , but some of this difference is offset
by adjusting b. We find that for 10 mM the values θ = 0.5 and
θ = 0.6 fit the data well (see Fig. 6), with the values of b given
in Table I. The fits for θ = 0.4 and θ = 0.7 are significantly
worse. For 100mM, we find that θ = 0.2, 0.3 and 0.4 fit the
data well; the best fit being θ = 0.2. Again, all of these give
different values of b (see Table II) and different curves for M

as a function of n (see Fig. 6). We have refrained from going to

θ = 0.1, as we think this represents a rather unrealistic value of
the charge compensation. All theoretical curves are terminated
when roughly ηend ≈ 1.8, as at this point buckling of the braid
may have already occurred and the theory is not really strictly
valid when ηend > π/2, although one can probably extrapolate
slightly to our chosen value. The variances for the best fits to
the 10 and 100 mM monovalent salt concentration data are
given in Tables I and II, respectively.

IV. DISCUSSION AND OUTLOOK

In the results section, we started by comparing the self-
consistent determination of the mean-squared amplitude of
fluctuations with a cruder, but simpler, approach that was
used in Refs. [33,34], and also implied in the calculations
of Refs. [21,25,26,27,31,32]. This self-consistent calculation
is akin to the approach used by Ref. [24] to describe the
statistical mechanics of braiding, which was used successfully
to match single molecule twisting data [28]. We found that
there is a significant difference between the self-consistent
approximation and the simpler approximation for η0, R0, and
M , as functions of the number of braid turns, that grows
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FIG. 6. (Color online) This figure shows the fits to the experimental extension curves along with the predicted applied moment for those
fits. In (a) theoretical extension curves are fitted to experimental data from Ref. [16] at a monovalent salt concentration of 10 mM. The circles
are experimental data for which a pulling force of F = 4 pN was used, whereas the squares correspond to a pulling force of F = 2 pN. The
red (top) curves are theoretical curves calculated from the self-consistent approach at a pulling force of F = 4 pN, and the green (bottom)
curves are theoretical curves calculated using F = 2 pN. For the solid lines a value of θ = 0.5 was used and for the dashed curve a value of
θ = 0.6 was used. (b) shows the predicted applied moment for the fits to the 10 mM extension curve data, as a function of the number of turns
of the bead, for the values θ = 0.5 (shown by a solid line) and θ = 0.6 (shown by a dashed line) at the force values F = 2 pN (higher curves,
green) and F = 4 pN (lower curves, red). Note that the moment curves have the symmetry property M(n) = −M(−n). In (c) we show fits
of the experimental data of Ref. [16] at monovalent salt concentration 100 mM with pulling force F = 2 pN. The experimental data is given
by circles, while the theoretical curves are given by the solid, long-dashed, and medium-dashed lines, corresponding to θ = 0.2, 0.3, and 0.4,
respectively. In (d) we show the predicted applied moment curves for the fits to the 100 mM extension data. Again, the solid, long-dashed, and
medium-dashed lines correspond to θ = 0.2, 0.3, and 0.4, respectively.

with the increasing strength of the electrostatic interaction.
Though surprisingly, the difference between the two sets
of extension curves is slight. Nevertheless, we would still
advocate, unless the electrostatic interaction is particularly

weak, that the self-consistent approximation is the better one
to use, and it contains better physics.

To test this improved theory in describing the braiding of
two molecules, we have fitted it against the experimental data

TABLE I. This table shows the fitted values of the distance b between the two sets of DNA ends (varied in steps of 100 Å) and normalized
variance for the 10 mM monovalent salt data. The latter is calculated with Eq. (30), as a measure of how well each choice of θ fits the
experimental data. Shown in the table are fits for the two pulling force values of F = 2 pN and F = 4 pN.

Fitted value of b (Å) Normalized variance squared of best fit
Charge
compensation θ F = 2 pN F = 4 pN F = 2 pN F = 4 pN

0.4 8400 7300 0.00 102 0.00 438
0.5 9100 8600 0.00 070 0.00 308
0.6 9900 9100 0.00 223 0.00 264
0.7 10 900 10 800 0.00 769 0.01 399
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TABLE II. This table shows the fitted values of the distance b

between the two sets of DNA ends (varied in steps of 100 Å) and
normalized variance for the 100 mM monovalent salt data. The latter
is calculated with Eq. (30), as a measure of how well each choice of
θ fits the experimental data. Shown in the table are fits for the pulling
force value of F = 2 pN.

Normalized
Charge Fitted value of b (Å) variance Squared
compensation θ F = 2 pN F = 2 pN

0.2 13 600 0.00 109
0.3 13 800 0.00 162
0.4 13 900 0.00 270
0.5 14 100 0.00 407

of Ref. [16], and have obtained good fits. However, we have not
attempted to fit the force values F = 0.5 and 1 pN, as some of
the approximations presented here are not quite valid for such
low forces. Indeed, the expressions that are used to determine
ηend [notably Eq. (22)] and Eqs. (2) and (3) are only valid at
sufficiently large pulling force. Though, it is quite possible
to extend the theory to these force values by numerically
determining ηend(F ), Lb(F ), and fWLC(b,F ) through the WLC
model, but this has yet to be attempted. What is encouraging,
in the current fits, is that the values of θ that fit the 10 mM
data are larger than those that fit the 100 mM data. This is
entirely consistent with the trend suggested by conventional
counterion condensation theories, involving the solution of
the nonlinear Poisson-Boltzmann equation, where the charge
compensation should decrease from its Manning value [40], at
infinite dilution, with increasing salt concentration. The values
of θ ≈ 0.2–0.4 used to fit the 100 mM data are in line with
the value of θ ≈ 0.3 used in Ref. [27] for 100 mM in single
molecule twisting (corresponding to γ = 1.44 in Ref. [27]),
based on the solution to the nonlinear Poisson-Boltzmann
equation for a cylinder [47]. However, we should point out
that the analysis of Ref. [48], suggests that the effective DNA
charge should be reduced by an additional factor of 0.42 to
fit experimental results for single molecule twisting better.
This is presumably due to the role of DNA-DNA interactions
in drawing more counterions close to the molecules. If this
is the case, how much θ is increased should depend on the
interaxial separation between molecules. Perhaps, in dual
molecule braiding, the reason why the value of θ lies close
to what Ref. [47] would predict is that R is quite large when
the braid is formed at 2 pN (see Fig. 3). This suggests that
over quite a large range of N the DNA-DNA interactions may
not renormalize θ by that much. This might explain why we
get a good fit to the experimental data, at a low value of θ .
One possible way of refining the model would be to make
the compensation parameter θ a function of both R and η, if
such a function could be known from microscopic theory or
simulation.

What is quite interesting is that there is a slight asymmetry
in the experimental data, particularly seen for a 10 mM
monovalent salt concentration, at a pulling force of F = 4 pN
(cf. Fig. 6). As the molecules are nicked, and the molecules
torsionally relaxed, this asymmetry cannot be explained by a
difference in the twisting elastic response. Perhaps this slight

asymmetry might be explained by weak correlations between
the two helix structures of the braided part of the molecules.
At any position along the braid, for a particular configuration
of the molecules, we may write the following form for the
interaction energy [39]:

Eint =
∫ Lb/2

−Lb/2
ds{Edir[R(s)] + Eimg[R(s)]}

+
∫ Lb/2

−Lb/2
ds{A1,dir[R(s)] + B1,dir[R(s)] sin η(s)}

× cos[ξ1(s) − ξ2(s)]

+
∫ Lb/2

−Lb/2
ds{A2,dir[R(s)] + B2,dir[R(s)] sin η(s)}

× cos{2[ξ1(s) − ξ2(s)]}, (31)

where ξ1(s) = d̂1(s) · v̂1(s) and ξ2(s) = d̂2(s) · v̂2(s) are the
azimuthal orientations of the minor grooves. The vectors v̂1(s)
and v̂2(s) are perpendicular to t̂1(s) and t̂2(s), lying along
lines connecting the molecular center lines with the minor
grooves (shown in Fig. 1). The terms Aj,dir (R) and Bj,dir(R)
are contributions to the direct electrostatic interaction, due
to the helical structure of the molecules; the latter being
terms that generate an internal chiral torque [33]. If the helix
dependent second and third terms in Eq. (31) are sufficiently
large, a preferred average azimuthal alignment 〈ξ1(s) − ξ2(s)〉
is maintained along the braid, and then the strong chiral
regime discussed in Ref. [33] holds. However, if the terms
are not quite large enough, 〈ξ1(s) − ξ2(s)〉 does not exist in
the limit Lb → ∞; there is no preferred average azimuthal
orientation between the two grooves. Nevertheless, a term
proportional in the free energy to sin η(s) (a chiral torque) is
not completely washed out by thermal fluctuations in this state,
as was originally suggested in Ref. [33]. While writing this
paper, we realized that there is a possibility for weak transient
correlations between ξ1(s) and ξ2(s) to occur in patches along
the molecules, changing as the molecules thermally fluctuate,
thereby causing a weak chiral torque. To calculate this weak
chiral torque requires a different approach from the strong
chiral interaction regime. In this new approach, the second
and third terms in Eq. (31) should be treated as perturbations,
when calculating the free energy. Such a perturbation approach
was considered previously for DNA assemblies [49,50]. The
leading order term of the perturbation expansion will still
provide Eq. (23) [or Eq. (19)], but there should be a small
correction to it from the perturbation expansion that breaks the
n → −n symmetry. Indeed, we hope to look at this correction
to the free energy, perhaps, in a later work to see whether it
can account for the observed asymmetry. On the experimental
side, if this is indeed the explanation for what is seen, we would
expect the asymmetry becomes larger on increasing the force,
as this brings the molecules closer, as well as by increasing the
valance of the counterions, which should increase the relative
strength of helix specific forces.

We still have yet to include buckling of the braid into
the theory; when |n| is sufficiently large, we would indeed
expect it. In Fig. 6, we see a slight dip at both n ≈ 20 and
n ≈ −20 in the 100 mM extension curve data. If this was
experimental error, we would not expect that this dip would
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occur on both sides of the extension curve of roughly the
same value of n, perhaps suggesting a different explanation
for this feature. Indeed, it is well known in single molecule
twisting experiments [11–13] that on forming the end loop
of a plectoneme the extension of the molecule drops in a
discontinuous fashion. Interestingly, no such dip is seen in the
10 mM data of Ref. [16] (see Fig. 6). This actually is in line
with theoretical [26,29] and experimental [11–13] trends for
single molecule twisting; the size of the extension drop reduces
and goes away with decreasing salt concentration. Therefore,
perhaps this feature is indeed the hallmark of the formation
of an end loop of a superplectoneme structure, in which the
braid axis traces out a plectoneme. It may also be possible,
in low salt concentrations, for multiple superplectonemes to
form, rather like multiple plectoneme states form in single
molecule twisting [29]. Though, it is also quite conceivable
that it might be some other type of buckling, if it is not an
experimental artifact. It would be interesting to see what a
theory incorporating different buckled states would predict as
the buckling transition and the type of buckling.

Recently, state of the art braiding experiments have been
developed [51] using four optically trapped beads, which
potentially offer much greater control over the geometry of
the two molecules than those of Ref. [16], most notably b.
Such experiments, perhaps, offer an opportunity to investigate
DNA friction, the recent topic of a preliminary theoretical
investigation [52]. In Ref. [52], the effect of the braid geometry
was not taken into account; nevertheless it could be built upon
using a similar framework to that suggested in Refs. [33,34],
and this current work. However, a notable technical problem
with these experiments is that, at present, only a few braid turns
can be accommodated [53]. Therefore, the current model will
need to be modified to the regime of a short braid to describe
such experiments.

DNA micromanipulation experiments may also offer a
unique tool to study the effects of DNA denaturing through
agents such as viruses. In Ref. [54] it was shown what could
be the response of the DNA with the introduction of particular
virus capsids. It would be interesting to understand whether
molecular braiding changes the double helix stability, through
interactions between the molecules, affecting DNA denatu-
ralization. By perhaps constructing suitable dual molecule
braiding experiments, in the presence of denaturing agents,

possible effects could be investigated. This might have some
importance for DNA braiding in vivo.

At present, we are working on the possibility of the collapse
of the braid into a tighter braided structure. Such a collapse
may occur when there is a significant attractive component
to the interaction between the two molecules. This might
be caused by nonchiral attractive forces or forces dependent
on helix structure. We hope to investigate both possibilities.
For the latter, collapse into the tightly braided state happens
predominantly in left-handed braids. Such a possibility has
already been investigated and discussed in Ref. [33] in the
strong chiral regime, but the extension curves, here, were
calculated in the absence of molecular undulations in the
braided section. However, we can now incorporate braid
undulations [41]. We will also include an estimate of sin2 η(s)
terms in the interaction energy, based on geometric arguments.
From these arguments, the helical geometry of the DNA should
actually limit the optimum value of the tilt angle η(s), even in
the absence of a bending rigidity term. In incorporating these
two effects, we will see how the collapse of the braid for such
forces is qualitatively changed from that of Ref. [33].
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APPENDIX: FUNCTIONS APPEARING IN
EQS. (23) AND (24)

Here, we give expressions of all the functions in the
expression for the braid free energy [Eq. (23)] for the
self-consistent calculation of the mean-squared amplitude of
fluctuations in R(s). These are

f̃1(R0,dR,dmax,dmin) = R2
0

dR

√
2π

∫ dmax

dmin
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gj (κR0,κdR,dmax/dR,dmin/dR) = 1√
2π
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