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Models that invoke nonlinear wavefront propagation in a chemically excitable medium are rife in the biological
literature. Indeed, the idea that wavefront propagation can serve as a signaling mechanism has often been invoked
to explain synchronization of developmental processes. In this paper we suggest a kind of signaling based not on
diffusion of a chemical species but on the propagation of mechanical stress. We construct a theoretical approach
to describe mechanical signaling as a nonlinear wavefront propagation problem and study its dependence on key
variables such as the effective elasticity and damping of the medium.
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I. INTRODUCTION

The physical phenomenon of nonlinear wavefront propaga-
tion in an excitable medium is widely exploited by biological
systems to transmit signals across many cells. For example,
when the slime mold Dictyostelium begins to aggregate to form
a fruiting body, wavefronts of the molecule cAMP propagate
across the amoeba colony [1–3]. Although cAMP itself spreads
diffusively, wavefronts of cAMP propagate ballistically across
the amoeba colony because the colony is chemically excitable:
when the local concentration of cAMP exceeds a threshold,
further local release of the species is triggered [2,3]. Similar
wavefronts of calcium and potassium, respectively, signal
fertilization in eggs [4] and the onset of spreading cortical
depression [5], associated with migraine auras.

Biological systems are typically overdamped, so they do not
support sound waves and stress cannot propagate ballistically.
In this paper we consider the possibility that mechanical
signaling via ballistic propagation of a nonlinear wavefront
can occur in a mechanically excitable medium, much as
chemical signaling via ballistic propagation of a nonlinear
wavefront can occur in a chemically excitable medium.
In recent years there has been a growing recognition that
mechanics plays an important role in biology, and that many
cells sense and respond not only to chemical stimuli but
also to mechanical stimuli [6–10]. This raises the possibility
that mechanosensing at the cellular level could give rise to
collective phenomena at larger length scales, such as collective
cell migration [11,12]. In this paper, we consider models
in which mechanosensing causes cells, or components of
cells, to deform, thus generating more stress. We show that
this nonlinear response to stress can lead to mechanically
induced nonlinear wavefront propagation—a particular form
of mechanical signaling—at the tissue level.

Several groups have previously studied waves in active
matter [11,13–22]. For instance, Günther and Kruse showed
how spontaneous oscillations in muscle fibers can lead to
propagating waves in an overdamped viscoelastic medium
which by itself is linearly stable [15,16]. Both Banerjee and
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Marchetti [17,18] and Radszuweit et al. [19] have studied the
dynamics of viscoelastic polymer gels that can be contracted
by molecular motors, and shown that the addition of motor
dynamics to the overdamped system can lead to ballistic
waves. Recently, Köpf and Pismen showed that combining
the properties of a polarizable, nonlinear elastic medium and
chemo-mechanical coupling can lead to nonlinear instabilities
as well, and be used to explain the properties of growing
epithelial tissue [20]. Building on this work, they also showed
that a similar model can lead to both long-wave and short-wave
instabilities and pattern formation [21]. In contrast to these
previous studies, where activity occurs continuously in space
and time, we consider models of a different class of active
matter, in which activity in the form of stress generation
is localized to discrete positions in space and occurs only
when activated by stress. We consider both overdamped elastic
systems and viscoelastic systems, neither of which allow for
the propagation of ballistic waves. Because we add activity
only to discrete points, our approach allows us to directly relate
the observable properties of the emerging waves to those of
the underlying (visco)elastic medium.

It has recently been suggested that two very different
biological systems might be mechanically excitable in this
sense: the early Drosophila embryo [23] and the developing
heart [24]. The early Drosophila embryo supports mitotic
wavefronts: nuclei at the poles of the embryo tend to
divide first, giving rise to a mitotic wavefront separating
dividing nuclei from those that have not yet divided. This
wavefront propagates across the entire embryo [25] at constant
speed [23]. Likewise, the heart tube of the avian embryo
beats via contractile wavefronts that are initiated at one end
of the tissue and propagate across the heart tube with each
beat [26]. These two examples differ completely in their
biological details but are both described at a quantitative level
by models [23,24] that assume that mechanosensing leads to
the generation of more stress. In these systems, the active
agents (the nuclei and cells) are discrete points which are
separated by a passive medium. Therefore the existing models,
which describe continuum active systems such as molecular
motors distributed throughout a (visco)elastic gel, do not
directly apply. It is therefore important to construct minimal
models of mechanically excitable media and to understand
their behavior more generally.
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II. MODELS

We consider two minimal models of mechanically excitable
media. In each case, stress can be generated at certain sites, or
activatable nodes, if the local stress exceeds some threshold
value. In the case of the early Drosophila embryo, these nodes
would represent cell nuclei, while in the case of the developing
heart tube, the nodes would represent cardiomyocytes (heart
cells that can contract). In our models, the activatable nodes are
embedded in a passive medium that supports mechanical stress
and is overdamped. The nodes communicate with each other
through this damped elastic medium: when a node is activated
and stress is generated, it is transmitted through the medium,
potentially causing further activation of other nodes. We solve
these models and identify characteristic features exhibited by
nonlinear wavefronts in such systems.

We start by considering two simple examples of the
passive medium in which the activatable nodes are embedded.
The elasticity of the medium is characterized by Lamé
coefficients λ and μ, or equivalently, by the Young’s modulus
E and dimensionless Poisson ratio ν within linear elasticity
theory [27]. These parameters relate the stress σij inside the
elastic material to its strain (deformation) εij :

σij = E

1 + ν

[
εij + ν

1 − (d − 1)ν
εkkδij

]
, (1)

where d is the number of dimensions (2 or 3), and summation
over repeated indices is implied. The strain εij is defined in
terms of the displacement vector ui of the elastic material:
εij = 1

2 (∂jui + ∂iuj ). To avoid confusion we will follow the
usual convention and label the two-dimensional versions
of the parameters with a subscript 2; they are related to
their three-dimensional counterparts by E2 = E/(1 − ν2) and
ν2 = ν/(1 − ν) [27]. The force per unit area is given by the
divergence of the stress: Pi = ∂jσij .

In the simplest model that we consider, corresponding to
a thin elastic film that slides frictionally over a surface, we
balance the elastic force with a friction term �∂tui , where �

is the friction coefficient. Such a system can be described by a
two-dimensional model with the equation of motion:

�∂tui = E2

2(1 + ν2)

[
∂j ∂jui + 1

1 − ν2
∂i∂juj

]
. (2)

Note that Eq. (2), which describes the response of elastic
medium to a displacement ui , is similar to the diffusion
equation, but is a tensor equation instead of a scalar one.
Mathematically, this model is the two-dimensional version
of the overdamped limit of the viscoelastic gel model first
introduced by Tanaka et al. [28].

The second model that we consider is a three-dimensional
realization of an overdamped elastic medium, such as a
polymer network immersed in a fluid. The elasticity of the
system is also described by Eq. (1), but the friction force is
proportional to the relative motion of the fluid and the elastic
network: �(∂tui − vi), where vi is the fluid velocity. The stress
in an incompressible fluid depends linearly on the pressure p

and the shear rate, γ̇ visc
ij = 1

2 (∂ivj + ∂jvi):

σ visc
ij = −pδij + 2ηγ̇ visc

ij , (3)

in both two and three dimensions [29]. In the overdamped limit
(zero Reynolds number), taking the divergence of (3) gives the
Stokes equation. Combining the elastic and fluid equations
gives a closed system for ui , vi , and p:

�(∂tui − vi) = E

2(1 + ν)

[
∂j ∂jui + 1

1 − (d − 1)ν
∂i∂kuk

]
,

(4)

�(∂tui − vi) = ∂ip − η∂j∂jvi, (5)

0 = ∂jvj . (6)

Equations (4)–(6) are identical to the two-fluid model studied
by Levine and Lubensky [30], but without the inertial terms.

We now add mechanical excitability as follows. We con-
sider a collection of nodes at positions { �Rn}, where n indexes
the nodes. A node can be activated if some measure of the
stress (for example, the absolute value of its largest eigenvalue)
exceeds a threshold value α. If this occurs at time t , the node
releases additional stress over a time interval �t . For a node
at �Rn activated at time t = tn, we therefore introduce an extra
force into Eq. (2), of the form

P active
i = ∂j [Qijδ(�x − �Rn)(t − tn)(tn + �t − t)]. (7)

Here Qij = fixj + xifj is a symmetric tensor of rank 2,
corresponding to a force per unit volume �f acting over a
distance �x. Qij is therefore the symmetric combination of a
force and a distance, with the dimensions of a stress (force per
unit area), so it represents a stress source. In two dimensions,
Qij = Q0δij + Q1(ninj − 1

2δij ) has an isotropic part of the
form Q0δij and a traceless anisotropic part of the form
Q1(ninj − 1

2δij ), where n̂ indicates the anisotropy direction.
The anisotropic contribution corresponds to a force dipole.
In three dimensions, Qij has a similar isotropic part and two
anisotropic parts that together span the plane perpendicular to
the anisotropy direction. In general, we could also consider
asymmetric contributions to Qij , which would correspond to
torques (one in two dimensions and three in three dimensions).

We solve for the response of the two-dimensional over-
damped elastic medium of Eq. (2) to the active force in Eq. (7)
by deriving the Green’s tensor Gijk(�x,t), which relates the
displacement uk(�x,t) to a source term Qij δ(�x)(t) at the origin
at time t = 0. We find that the material parameters E2, ν2, and
� combine in two quantities with the dimensions of diffusion
constants,

D1 = E2(
1 − ν2

2

)
�

= 2

1 − ν2

μ

�
, (8)

D2 = E2

2(1 + ν2)�
= μ

�
, (9)

which correspond to motion in the longitudinal and transverse
directions, respectively, and together completely determine
the solution. Here μ = E2/2(1 + ν2) = E/2(1 + ν) is the
material’s shear modulus, which is the same in two and three
dimensions. The resulting Green’s tensor is given in Eq. (A1).

We can derive a similar solution for the response of the
two-fluid model of Eqs. (4)–(6) to the active force in Eq. (7). In
this case there is an extra parameter, the viscosity η of the fluid,
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which gives rise to a natural relaxation timescale τ = μ/η of
the system. In three dimensions, the three quantities governing
the solution of Eqs. (4)–(6) are given by

D1 = E

�

1 − ν

(1 + ν)(1 − 2ν)
= 2(1 − ν)

1 − 2ν

μ

�
, (10)

D2 = E

�

1

2(1 + ν)
= μ

�
, (11)

τ = E

2η(1 + ν)
= μ

η
. (12)

The associated Green’s tensor is given by Eq. (A2).

III. RESULTS

Because the equations governing the passive medium are
linear, we can now use the principle of superposition to study
the effect of many source terms. We initialize the system
by activating a single node at the origin at t = 0. We then
measure the stress at the other nodes as a function of time, and
activate them if they are above threshold by releasing more
stress, according to Eq. (7). We consider various cases for the
arrangement of the nodes: a regular triangular lattice, a random
configuration with short-range correlations (as in a random
packing of disks), and an uncorrelated random configuration.
In addition, we look at variants in which the force term is
purely isotropic (hydrostatic expansion/contraction) or is in
the form of a volume-conserving force dipole, with either
random orientation or orientations correlated to the direction
of the traveling wavefront. In all cases, the model produces
an activation wavefront with a well-defined speed, as shown
in Fig. 1. We find that the speed of the wavefront depends on
the density of nodes but is insensitive to their arrangement.
However, the spread of the wavefront around its mean
increases with the amount of randomness [Fig. 1(b)]. Not
surprisingly, if the orientations of the force dipoles are chosen
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FIG. 1. (Color online) Calculated wavefronts. (a) Plots showing
for each node (dots) the distance from the first activated node vs time
of activation, with linear fits. This example has a traceless dipole
source term (Q0 = 0) and shows results for three different types of
grids, all with the same density: regular triangular (gold), correlated
random (blue), and uncorrelated random (red). (b) Mean wavefront
speed for six realizations, with isotropic force term (1–3, blue, Q1 =
0) and dipole force terms (4–6, red, Q0 = 0), and on three different
grids: regular triangular (circle, 1 and 4), correlated random (diamond,
2 and 5), and uncorrelated random (square, 3 and 6). Error bars
indicate standard deviations. Inset shows the two-dimensional field
of nodes, indicating the orientation in which nodes are activated, and
color coded according to the time at which they are activated, on a
hue scale (red-yellow-green-blue-violet).

at random, the speed of the wavefront is the same in all
directions so that its shape is circular, as in the inset of Fig. 1(b).
In contrast, if the dipoles are all oriented in the same direction,
the wavefront is no longer uniform but is faster in the direction
of orientation. Also, for the same magnitude of the active force,
the speed of the wavefront is somewhat higher if the force
dipole Qij is isotropic (Q1 = 0) than if it is a traceless force
dipole [Q0 = 0, Fig. 1(b)]. All these observations indicate that
the wavefront speed is dictated primarily by the properties of
the medium and the average distance between nodes, and is
insensitive to both the form of the active force and spatial
arrangement of nodes.

Dimensional analysis of the material parameters of our
two-dimensional model [Eq. (2)] shows that there is only one
possible scaling for the wavefront speed with the material
parameters: v ∼ E2/(a�), where a is the grid spacing. The
dimensionless speed v̄ = (a�/E2)v depends on the material’s
Poisson ratio ν2 and the dimensionless threshold ᾱ = αa2/Q,
where Q is the strength of the force term. We have determined
the function v̄(ν2,ᾱ) numerically for both isotropic and dipole
force terms. We find that it obeys a fairly simple functional
form, which can be motivated by an analytical argument based
on the case of the simplest force term, the purely isotropic one
(Q1 = 0, so Qij = Q0δij ). In this case, the stress is given by

σ iso
kl = (1 − ν2)Q0

x2
e−x2/4D1t

×
[(

2 + x2

2D1t

)
xkxl

x2
+

(
ν2

1 − ν2

x2

2D1t
− 1

)
δkl

]
.

(13)

Because the stress drops off quadratically with distance, the
major contribution to the stress at any node is due to forces
exerted by neighboring nodes. Moreover, since the front
expands radially, typically only a single nearest neighbor of
any node will have been activated recently. We can therefore
get a reasonable estimate for the local stress at a node by
considering that nearest neighbor to be the only source. We
introduce the dimensionless time t̄ = E2t/(a2�); then for a
single source a distance a away, the time at which the largest
eigenvalue of the stress reaches the dimensionless threshold ᾱ

is given by

ᾱ = (1 − ν2)

[
1 + 1 + ν2

2t̄

]
e−(1−ν2

2 )/4t̄ . (14)

Unfortunately, Eq. (14) cannot be inverted analytically. How-
ever, the two factors containing t̄ are easily inverted, allowing
us to make an educated guess for the functional form of the
resulting dimensionless speed:

v̄ = −4(c1ᾱ + c2) log(ᾱ)

1 − ν2
2

, (15)

where c1 and c2 need to be determined numerically; we find
c1 = 4.0 and c2 = 1.5. As shown in Fig. 2(a), the form given
by Eq. (15) works remarkably well. Moreover, the same
functional form also describes the results for a dipole force
term wavefront, as shown in Fig. 2(b), the only difference being
the values of the two fit parameters—here we find c1 = −1.0
and c2 = 1.0.
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FIG. 2. (Color online) Dimensionless wavefront speed as a func-
tion of the Poisson ratio ν2 and dimensionless threshold ᾱ. Symbols
indicate numerical solutions of the full system, lines the functional
form of Eq. (15). (a) Isotropic force term Qij = Qδij . Fit parameters
c1 = 4.0, c2 = 1.5. Values of ᾱ: 0.1 (blue/dots), 0.2 (red/ dia-
monds), 0.3 (gold/squares) and 0.4 (green/triangles). (b) Dipole force
term with random orientation angle θ : Qij = −Q cos(2θ )(δi1δj1 −
δi2δj2) − Q sin(2θ )(δi1δj2 + δi2δj1). Fit parameters c1 = −1.0, c2 =
1.0. Values of ᾱ: 0.050 (blue/dots), 0.075 (red/diamonds), 0.100
(gold/squares), 0.125 (green/triangles up), 0.150 (purple/triangles
down), and 0.200 (pink/hexagons).

In line with intuition, our model predicts that there is a
maximum threshold value ᾱmax above which a wavefront will
not propagate. This can happen for one of two reasons: either
the force is not large enough to create a stress at the next node
that exceeds the threshold value, or the nodes are so far apart
that, due to the diffusive nature of the stress spreading, the
threshold value is not reached. Both possibilities are contained
in the form of the dimensionless version of ᾱmax, given by
the maximum of the right-hand side of Eq. (14), which gives
ᾱmax = 2e−(1+ν2)/2 at t̄max = 1

2 (1 − ν2) and corresponding to
a minimum speed v̄min = 2/(1 − ν2). We note that as ν2

approaches its maximum value of 1, the minimum speed
diverges, as can be seen in Fig. 2(a).

For the three-dimensional two-fluid model of Eqs. (4)–(6),
there are two independent quantities with the dimensions of
speed, E/a� and a/τ , where τ = η/μ is the material’s relax-
ation time [Eq. (12)]. We note that both of these scale linearly
with the material’s Young’s modulus E (or equivalently, with
the material’s shear modulus μ), which implies that also in this
case the resulting wavefront velocity in a similar setup with
excitable nodes will scale linearly with that modulus. It will
also scale with �−nη1−n, where n is some number between 0
and 1, indicating that both the internal viscosity of the moving
fluid and the friction between the elastic and viscous material
contribute to the damping of the ballistic motion.

In both of our minimal models, the speed of the wavefront
scales linearly with the elastic moduli. This distinguishes these
wavefronts from ordinary elastic waves, where the speed of
the wave scales as the square root of the elastic moduli, as
in ordinary sound waves. We emphasize that this distinction
stems from the fact that the wavefronts in our models are
nonlinear phenomena, distinct from elastic waves.

IV. SUMMARY AND DISCUSSION

In this paper, we have introduced two theoretical realiza-
tions of a mechanical signaling mechanism. We have shown
that nonlinear wavefront propagation is a robust feature of both
models. In both cases, the wavefront velocity is insensitive to

the spatial distribution of excitable nodes. It is also insensitive
to whether the stress is released in an isotropic or traceless
anisotropic fashion. Furthermore, a fundamental feature of
both models is that the wavefront velocity is proportional to
the Young’s modulus of the medium, and the magnitude of the
velocity can be understood simply and quantitatively in terms
of characteristic dimensionless variables, such as the stress
threshold made dimensionless with the magnitude of the force
dipole released when a node is excited. We note that the linear
scaling of the wavefront propagation speed with the medium’s
Young’s modulus is a direct consequence of the fact that in
our model the wave propagates through a passive, mechanical
medium, in contrast to propagation through an active gel.

The overdamped elastic models considered here are the
simplest models that could be used to describe a tissue. It would
be worthwhile to explore mechanical signaling in other models
that have been proposed for tissues, including the active gel
model [11,13–21] and cellular models [31,32]. The active gel
model first proposed by Kruse et al. [13,14] is an extension
of the two-fluid model of Levine and Lubensky [30] with
a continually active (energy-consuming) term to model the
dynamics of the cytoskeleton due to motor activity. As we
have shown here, such a continuous activity is not necessary to
describe wavefront propagation, as local and discrete activity
is sufficient. However, given the presence of active motors
in the cytoskeleton, it would be interesting to see how the
wavefront is affected by an active term in the model. It would
also be interesting to compare the results of such an interaction
with those of Bois et al., who study pattern formation in active
fluids due to chemical signaling [11]. These active models,
and the one we used here, are continuous models. However,
tissues are, of course, composed of discrete units, the cells. As
shown by Manning et al., several mechanical properties of the
tissue, such as its surface tension, are determined by cell-cell
adhesion and cortical tension [31]. Recent work by Chiou et al.
provides a method to measure the relative magnitude of forces
acting within and between cells [32]. These results now make
it possible to construct a quantitative cell-based tissue model
in which wavefront propagation due to mechanical signaling
can be studied as well.

Now that we have introduced a minimal model for me-
chanical signaling via nonlinear wavefront propagation, we
can ask how one might identify biological contexts in which
mechanical signaling is likely to occur. We can also ask how
to determine whether a given wavefront is an example of
mechanical signaling. Wavefronts of processes that generate
stresses are obvious likely candidates. In order for a medium
to be mechanically excitable, however, it is not enough to
have a collection of nodes capable of generating stress.
There must also be a mechanism to sense when a stress
threshold is reached. Several such mechanisms have been
identified [33], including stress-dependent ion channels that
can release ions above a threshold stress [34–37], cell-cell
adhesion complexes such as cadherin complexes [38], focal
adhesions [39], and integrins [40]. Contractile wavefronts in
heart tissue represent a good candidate for mechanical signal-
ing [24]; cardiomyocytes generate stress as they contract via
the excitation-contraction mechanism [41,42], and they sense
stress as well—the contraction amplitude of a cardiomyocyte
on a gel depends sensitively on the stiffness of the gel [24,43].
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In addition, it is known that mechanical palpitation can disrupt
contractile wavefronts [44]. Another possible realization is
spreading cortical depression, which involves a potassium
wavefront [5] that can be triggered mechanically [45]. These
examples suggest that it may be worthwhile to reexamine
nonlinear wavefronts in biological contexts to see if they are
more properly interpreted as mechanical signaling.
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APPENDIX: EXPRESSIONS FOR THE GREEN’S TENSORS

1. Two-dimensional elastic model

In the simplest model that we consider, corresponding to a thin elastic film that slides frictionally over a surface, we balance
the elastic force ∂jσij with a friction term �∂tui , where � is the friction coefficient. Such a system can be described by a
two-dimensional model with an equation of motion given by Eq. (2). The two-dimensional Green’s tensor Gijk(�x,t) associated
with Eq. (2), relating the tensor Qij in a source term ∂jQij δ(�x)(t) to an output uk , is given by

Gijk(�x,t) = − 1

μx

{[(
1 − ν2

2
+ 8D2t

x2

)
e−x2/4D1t −

(
1 + 8D2t

x2

)
e−x2/4D2t

]
xixjxk

x3

−2D2t

x2
[e−x2/4D1t − e−x2/4D2t ]φijk + e−x2/4D2t δik

xj

x

}
, (A1)

where μ = E2/2(1 + ν2), D1 = (2/(1 − ν2))(μ/�), D2 = μ/�, x = √�x · �x, and φijk = δij
xk

x
+ δik

xj

x
+ δjk

xi

x
.

2. Three-dimensional two-fluid model

In the two-fluid model, we couple an elastic mesh, described by a displacement field ui , to an incompressible viscous fluid,
described by a velocity field vi . The resulting equations are Eqs. (4)–(6), and the associated Green’s tensor is given by

Gijk(�x,t) = Ghom
ijk (�x,t) + Gstat

ijk (�x,t), (A2)

Ghom
ijk (�x,t) = − 1

(2πx)2D1�

[
A

(
D1t

x2

)
xixjxk

x3
− B

(
D1t

x2

)
φijk

]
+ e−t/τ

(2πx)2D2�

[
A

(
D2t

x2

)
xixjxk

x3
− B

(
D2t

x2

)
φijk

]

− e−t/τ

(2πx)2D2�
C

(
D2t

x2

)
xj

x
δik, (A3)

Gstat
ijk (�x,t) = −2π (1 + ν)

(2πx)2E
δik

xj

x
− 3(1 + ν)

8πx2E(1 − ν)

xixjxk

x3
+ (1 + ν)

8πx2E(1 − ν)
φijk (A4)

where μ = E/2(1 + ν), D1 = ((2 − 2ν)/(1 − 2ν))(μ/�), D2 = μ/�, τ = μ/η, and

A(y) =
(

15
√

πy +
√

π

y

)
e−1/4y +

(
3

2
− 15y

)
πerf

(
1

2
√

y

)
, (A5)

B(y) = 3
√

πye−1/4y +
(

1

2
− 3y

)
πerf

(
1

2
√

y

)
, (A6)

C(y) =
√

π

y
e−1/4y − πerf

(
1

2
√

y

)
. (A7)

For an input term that runs only over a time interval �t as in Eq. (7) of the main text, continuity demands that for t < �t we
have Gijk(�x,t) = Ghom

ijk (�x,t) + Gstat
ijk (�x,t), and for t > �t we have Gijk(�x,t) = Ghom

ijk (�x,t) − Ghom
ijk (�x,t − �t).
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