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Ordering and stability in lipid droplets with applications to low-density lipoproteins
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In this article, we present a framework for investigating the order-disorder transition in lipid droplets using the
standard Ising model. While a single lipid droplet is itself a complex system whose constituent cholesteryl esters
each possesses many degrees of freedom, we present justification for using this effective approach to isolate
the underlying physics. It is argued that the behavior of the esters confined within lipid droplets is significantly
different from that of a bulk system of similar esters, which is adequately described by continuum mean-field
theory in the thermodynamic limit. When the droplet’s shell is modeled as an elastic membrane, a simple picture
emerges for a transition between two ordered phases within the core which is tuned by the strength of interactions
between the esters. Triglyceride concentration is proposed as a variable which strongly influences the strength
of interactions between cholesteryl esters within droplets. The possible relevance of this mechanism to the well
known atherogenic nature of small low-density lipoprotein particles is discussed in detail.
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I. INTRODUCTION

In the thermodynamic limit, a vast array of tools [1,2] is
available for studying phase transitions in numerous systems
with different geometries and order parameters. Through
renormalization group techniques, seemingly unrelated mi-
croscopic models can be shown to exhibit identical behavior
near the critical temperature. For sufficiently large experimen-
tal systems, the results one obtains by taking the infinite,
thermodynamic limit are often quite accurate. The power
of the thermodynamic limit becomes somewhat muted when
tackling small systems where the very notion of a true phase
transition actually breaks down [3], as the finite-size effects
and confinement can become important influences on the
overall behavior [4].

The present work focuses on a class of systems known
collectively as “lipid droplets” (LDs), which are organelles that
form within eukaryotic cells as a means of lipid storage. The
simplest picture of a lipid droplet is a mass of lipids surrounded
by a phospholipid monolayer [5] with an overall spherical
shape whose diameter can range from a few nanometers
to well over a hundred micrometers [6]. In recent years a
more complex picture of the various roles of lipid droplets
within cells has emerged [7–12], indicating these structures
may play an important role in processes as advanced as
protein sequestration [13]. A complete description of their
structure and interactions may be crucial to understanding
obesity-induced insulin resistance [14] and liver disease [15].
An individual lipid droplet often contains a specific protein in
its surface layer which is widely believed to strongly affect the
specific interactions of the lipid droplet with its surrounding
organelles [16]. This variety in specific proteins and enormous
variation in size leads to a potentially overwhelming “zoo” of
different LD particles. In this paper we present some results
that should apply quite generally to generic lipid droplets,
regardless of the particular protein embedded in the surface
layer.

Though not commonly collected under the general umbrella
of lipid droplets, low-density lipoproteins (LDLs) are particles
of great physiological importance which consist of essentially

the same ingredients; that is, masses of lipids surrounded by
phospholipid monolayers with a specific protein residing in
the surface of each particle. Apart from their rather prominent
role [17] in the development of atherosclerosis, another reason
LDL particles are often singled out from the general class of
lipid droplets is their tiny size. The diameter of a typical LDL
particle is about 22 nm [18], which makes it “invisible” to
the traditional biochemical methods, such as density-gradient
centrifugation, used to isolate larger lipid droplets [19]. Of
interest to the present work is the fact that LDL particles
are known to exhibit a type of order-disorder phase transition
within their lipid cores which occurs at a critical temperature
roughly equal to biological temperature [20,21]. It is unknown
if this transition is physiologically important, but as we
demonstrate, this transition should be a generic feature of
lipid droplets. Additionally, there is even debate regarding
the precise nature of the lipid ordering when the LDL particle
is below the critical temperature, and evidence for several
ordered core structures has been proposed [22–24]. Recent
molecular dynamics studies [25] have highlighted the complex
structure of the core lipids at biological temperature and found
evidence for strong interactions between the lipids inside the
particles and proteins embedded in the surface layer. The
approach in this work will be somewhat “coarse-grained” as
our focus will be on the nature of the order-disorder transition
within a general lipid droplet. The relevance of our findings
to understanding the specific structure and dynamics of LDL
particles will be discussed.

With such a gap in the literature regarding theoretical
investigations of the core dynamics in LD particles, the aim
of the present work is to make a first step toward modeling
the behavior inside these particles which captures some of
the physics relevant to the dynamics of LDL particles. We
demonstrate that an Ising model with static defects is able
to capture several known experimental results concerning
the nature of the phase transition when varying levels of
triglycerides are present. These preliminary results allow us
to examine the stability of two types of ordering within the
low-temperature phase, which hints at possible directions
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for future investigations into the atherogenic nature of the
smaller and denser subsets of LDL particles. Furthermore,
our approach does not rely on any specific property of LDL
particles, so our results should be relevant to the properties of
generic lipid droplets, which are currently of great interest in
several biomedical fields [10,13–15,26]

The organization of this paper is as follows: in Sec. II
we introduce the details of lipid droplets, including relevant
properties of LDLs, which will be important for our analysis.
We also discuss some important experimental results and the
conclusions drawn from them regarding the core structure in
LDL particles, as well as what is known about the order-
disorder transition that takes place within the core of lipid
droplets near biological temperature. In Sec. III we present the
Ising model as a means for studying the lipid-droplet physics
that mean-field theory in the thermodynamic limit is incapable
of describing. Section IV contains our analysis of the stability
of various ordered phases within the core and a sketch of
possible connections of our results to the known dangerous
nature of smaller LDL particles [27]. Finally, we conclude in
Sec. V.

II. LD AND LDL BACKGROUND

At the simplest level, LD particles are packages for neutral
lipid storage found in all types of eukaryotic cells, from
mammalian tissue to yeast cells [28–30]. Enormous variation
exists in size [5,19] and lipid composition [28,31], and the
presence of particular proteins is believed to be related to
the specific function of a given droplet [13,16]. Indeed, it
has only recently been appreciated that LD particles serve
important purposes in cellular function beyond the simple
storage of fat [32]. Many interesting questions concerning the
mobilization and release of fats are largely unexplored [33],
and studies are just beginning to reveal valuable information
about the internal structure of these droplets by employing
methods such as freeze-fracture electron microscopy [34]. It
appears that structure within the lipid core depends strongly
on the lipid composition of the core [19,35], as a lack
of structure appears highly correlated with the presence of
“defects” which dilute the interactions between rod-like esters
which exhibit a tendency to align at low temperatures [36].
Freeze-fracture immunocytochemistry has provided evidence
[37] for a concentric-shell structure of the lipid droplet cores,
though how such ordering forms has not been established. With
such wide variation in lipid droplet composition and structure,
our main interest will lie in results which do not depend on the
microscopic details of the particular droplet but only on the
coarse-grained picture of the lipid droplet’s composition.

As an example of a particular particle which fits under the
umbrella of lipid droplets, we briefly discuss the microscopic
details of LDL particles, which are of great interest for
their role in the development of heart disease. LDL particles
are spherical nanoparticles with an average diameter of 22
nm. The outer shell of LDL consists of an apolipoprotein
B-100 (ApoB100), phospholipids, and free cholesterol [18].
The core of LDL particles contains cholesteryl esters (CE),
triglycerides (TG) and some cholesterol (FC). The ApoB100
protein makes up approximately 20% of the particle weight,
and the rest of the weight comes from lipids. Of the total

amount of lipids, 56% are CE, while the largest minority
of the remaining mass consists of TG [20]. The calorimetric
[21,38] and x-ray scattering [22,39] experiments performed on
LDL samples reveal that a reversible transition from smectic
liquid crystal to isotropic liquid occurs within the core CE
in the temperature range from 20 ◦C to 45 ◦C. Based on
recent findings [22,35,40,41], CE in the core are able to form
layered structures. The details of the observed phase transition
naturally depend on the particular composition and structure of
a given LDL particle’s core. Extensive experimental research
[42,43] has revealed LDL particles to be composed of distinct
subspecies, each with different sizes and compositions. Most
notably, the relative number ratio of CE/TG molecules varies
from less than 2 to greater than 10 [42]. The effects of the
mass ratio of CE/TG has long been investigated with respect
to the nature of the phase transition [23] as well as with respect
to physiological implications. Indeed, in the case of monkeys,
this ratio was shown to be strongly affected by diet, and an
increased level of TG appears to broaden the phase transition
[44], as well as to lower the transition temperature [23,45].
Many other factors, for example gender [46] and exercise [47],
have also been shown to affect the specific lipid composition
within an individual’s LDL population. Interestingly, it has
also been shown [36] that an apparently identical transition
occurs within larger lipid droplets contained yeast cells, which
suggests a sort of universal nature to this phase transition. The
universality of this phase transition with respect to different
types of lipid droplets and the apparent importance of the
CE/TG ratio to its nature leads us to explore a two-component
picture of the core’s composition in which the dominant
constituent is CE, and a small amount of TG is incorporated
as “defects” which make no contribution to the interaction
energy between two nearby lipids. Thus, in what follows we
make no reference to the particular details of LDLs or any
other specific LDs, focusing instead on general results which
may be predicted from this coarse-grained approach.

In a larger sense, there is great interest in the structure and
dynamics of the smaller variety of LDL particles, which are
known to be more atherogenic than their larger counterparts
[27]. The scientific reason for this is not known, and it is quite
possible that an abundance of smaller LDL particles is itself
not a danger but a harmless byproduct of some other more
damaging risk factor. This puzzle has led to significant research
aimed at finding the root of atherogenicity in certain classes of
LDL particles as well as examining the reactivity of various
constituents found within LDL particles [48]. There appears to
be evidence for smaller, denser LDL particles being linked to
high levels of TG in the bloodstream [49], and atherogenicity
has been linked to the details of the ApoB100 protein’s binding
affinity [50]. By studying general lipid droplets we make no
claims of a complete description of an actual LDL particle,
as we are neglecting many of the realistic complexities of a
real LDL particle; most notably, the presence of the ApoB100
protein. However, to the extent that the interations with the
surface can be incorporated into our approach, we will show
agreement of our findings with the results a more detailed
microscopic description [25]. Thus, the goal of the present
work is to isolate the mechanism responsible for the observed
order-disorder transition using as few physical ingredients as
possible.
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III. ISING-LIKE APPROACH

A. Ising model

A seemingly natural starting point for a description of
the cholesteryl esters within lipid droplets is provided by
the mean-field theory presented by McMillan [51]. Applying
this methodology to the present problem is straightforward.
McMillan’s model extends the basic Maier-Saupe theory [52]
by taking into account both smectic-A and nematic ordering by
the use of two order parameters. Except in extreme cases, the
theory predicts two phase transitions separating the the smectic
and nematic phases and the nematic and isotropic phases.
Based on general estimates for the geometry of cholesteryl
esters [53], McMillan’s mean-field theory seems to predict
two phase transitions instead of a single one, when applied
to the core CE within lipid droplets. It is worth noting that
McMillan’s mean-field theory applies to a bulk mass of liquid
crystals, infinite in extent. One generally finds that, in dealing
with a finite number of particles [1] when confinement of
the system is present [4], divergences and discontinuities are
smoothed out to some extent. Thus, by taking into account
these complications, it is expected that this pair of sharp
transitions would be blurred out into a smooth “bump,” which
describes an effective phase transition between the ordered
(smectic) and disordered (isotropic) phases, as is observed in
experiments with LDL particles [22]. As we shall demonstrate,
the phase transition is nothing special to LDL and should be a
generic feature of lipid droplets.

To investigate the nature of the order-disorder transition
within lipid droplets, we will employ the classical Ising model
[1,2,54], described by the following Hamiltonian,

HIsing = −J
∑
〈i,j〉

sisj − h
∑

i

si, (1)

where the variables si are “spins” living on a lattice of any
dimensions and taking values ±1. −J is the energy associated
with a bond between aligned spins. In one dimension there
is no phase transition at nonzero temperatures, and in two
dimensions with zero magnetic field (h = 0) the model is
exactly solvable in the sense that one may derive a closed-form
expression for the free energy [55]. In the two-dimensional
model, a phase transition occurs at kBTc = 2J/ ln[1 + √

2],
where kB ≈ 8.62 × 10−5 eV/K is Boltzmann’s constant. The
approximate heat capacity neat the critical point is given by
[54]

C(T )

NkB

≈ − 2

π

(
2J

kBTc

)2

ln

∣∣∣∣1 − T

Tc

∣∣∣∣ + const. (2)

The phase transition is second order in nature, as the free
energy itself is a continuous function of temperature. In
three dimensions, a similar phase transition occurs, but
the model is no longer exactly solvable. Furthermore, the
introduction of a magnetic field renders the two-dimensional
model analytically intractable. While often used as a simplified
model for ferromagnetism, the Ising model is special in that it
is essentially the simplest classical system exhibiting a phase
transition at a nonzero critical temperature. For this reason, the
Ising model is often employed as a first step toward modeling
much more fundamentally complex systems, from chemical

kinetics to social dynamics [56]. In this work, we use the Ising
model as a means to describe the order-disorder transition that
takes place within lipid droplets.

B. Ising model applied to lipid droplets

As our main focus is on applications to LDL, we will model
lipid droplets with comparable size to LDL particles. A typical
LDL particle contains roughly 1000–1500 individual esters
[18,42], and we can imagine a crude mapping between the core
CE within a lipid droplet and a two-level system. Specifically,
we wish to model a single layer within a smectic-ordered core
as a two-state system in which each ester is in one of two
states (ξi = 0,1), so that the effective Hamiltonian describing
the system is

H = −ε
∑

i

ξi − J̃
∑
〈i,j〉

ξiξj, (3)

where ε is the energy difference between the two states and
an interaction energy −J̃ is associated with two neighboring
esters in which each is in the ξ = 1 state. The mapping si =
2(ξi − 1

2 ) transforms Eq. (3) into the Ising Hamiltonian in
Eq. (1) up to an irrelevant constant with

J̃ = 4J, (4)

ε = 2(h − 4J ), (5)

for the two-dimensional model with four nearest-neighbors for
each spin. In what follows, we will employ the “spin language”
for simplicity and work with h = 0 to reduce the number of
free parameters. Strictly speaking, this choice sets the energy
of the ξ = 1 state above that of the ξ = 0 (i.e., ε < 0). The
h = 0 limit was also employed in Ref. [57] to investigate the
properties of the melting transition in saturated triglycerides.
In a similar spirit, our approach will be to use this limit to
make the model as simple as possible so that the effects of
introducing defects discussed in Sec. III C may be seen as
clearly as possible. Within a single layer, the tail configuration
of a single cholesteryl ester is labeled by a pseudospin si = ±1.
The configuration corresponding to frozen smectic order is
assigned si = +1, and a two-level approximation is employed
to map any other configuration to pseudospin si = −1, as
shown in Fig. 1. Mapping the esters to pseudospins is simply
a standard reduction to a two-level system [57,58], and the
terminology should not be taken literally. Clearly, this model
is too simple to capture many of the detailed predictions from a
more sophisticated theory. The merit of using the Ising model
lies in the simplicity of the model, and we take this approach
as a way to make general statements about systems exhibiting
effective order-disorder transitions, such as the core CE within
lipid droplets. A lattice version of Maier-Saupe mean-field
theory known as the Lebwohl-Lasher model [59] is another
pseudospin approach to modeling liquid-crystal systems in
which the pseudospin variables directly correspond to the
director order parameter field of the liquid crystal. For purposes
of this work we find the crude two-level Ising model quite
adequate.

For comparison to experiments, we may consider a total
Hamiltonian consisting of an Ising-like piece describing
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FIG. 1. Two-state approximation for the configurations of indi-
vidual cholesteryl esters within a lipid droplet. The coarse-grained
states of the esters are labeled in the spin language by si and in the
lattice gas language by ξi. We consider a single two-dimensional sheet
in the xy plane.

interactions and a phenomenological, bulk piece which only
depends on temperature,

Htotal = HIsing + Hbackground (6)

= −J
∑
〈i,j〉

sisj + γNkBT + η

2
NkBT 2. (7)

The temperature-dependent terms merely serve to provide a
constant shift and background linear trend to the specific heat
curve,

C(T ) = ∂

∂T
〈Htotal〉 (8)

= γNkB + ηNkBT + ∂

∂T
〈HIsing〉, (9)

which provides a framework consistent with experimental
results [20–23]. There is no predictive power in this addition.
Rather, this provides a way to fit the “background” piece
of the experimental specific heat curve so that it may be
subtracted from the total signal, yielding the so-called “excess”
specific heat [4], which we model using the Ising model with
temperature-independent exchange interaction energy J .

In the thermodynamic limit, the choice of boundary
conditions does not affect observables. Loosely speaking,
one would expect the effects of the boundary conditions to
vanish as the system size is increased, but it is not clear
if a single LDL-sized lipid droplet is “large enough” to not
require a careful treatment of the boundary. To fix the system,
let us specialize to two spatial dimensions with periodic
boundary conditions in what follows. While the physics will
clearly depend strongly on dimensionality, our motivation
for choosing two spatial dimensions is as follows: recent
experiments [22,35,40] provide strong evidence that layered
structures of CE form within the ordered phase inside LDL
particles. These layers are essentially two-dimensional sheets
in which the esters would only feel weak interactions with
esters from other layers. Neglecting for a moment the spherical

confinement favored by the protein shell, we are left with
essentially independent layers which act effectively as two-
dimensional, uncoupled subsystems. The choice of periodic
boundary conditions is merely for convenience and this choice
has no effect on the results of this work. Furthermore, this
choice of periodic boundary conditions is not meant to imply
these results are applicable to the infinite system periodic
boundary conditions are often used to mimic. A discussion
of how the effects of the lipid-surface interactions can be
incorporated into this model via a different choice in boundary
conditions is discussed in Sec. III D.

C. Triglycerides as defects

With this apparatus in hand, we will use it in this subsection
to model an observed feature of LDL particles. Until this point,
we have proposed the Ising model to describe the degrees of
freedom related to ordering of cholesteryl esters within lipid
droplet cores with no mention of the other agents present.
The most notable agent also found in lipid droplet cores, as
well as within LDL particles, is a significant concentration
of triglycerides (TG) [42,43], whose direct interaction with
cholesteryl esters is assumed weak compared to the ester-ester
interactions. Thus, to a first approximation, one may consider
the triglycerides within the Ising language as “defects,” in
which the spin is set to zero instead of ±1, representing a cell
with no contribution to the interaction energy.

In has been observed [23] that a critical mass ratio of
esters to triglycerides of roughly CE:TG = 7:1 separates two
qualitatively different classes of LDL particles. For larger con-
centrations of triglycerides, the critical temperature decreases
with increasing TG concentration, whereas for smaller TG
concentrations the critical temperature is somewhat insensitive
to TG concentration. The original experiment showed that
the critical temperature still does decrease with increasing
TG concentration, but at a significantly reduced rate, so
that a single line cannot be used to fit all the data. The
original interpretation [18,23] of this result was in terms of
a microphase separation between the CE and TG constituents
for sufficiently high CE:TG ratios: for high CE:TG, the TG
would be concentrated in the inner core, sufficiently separated
from the CE so that a change in concentration has little direct
effect on the CE in the outer core. Above this critical ratio,
the CE are not sufficient in number to completely surround the
TG, and the excess TG coexist with CE, so that adding even
more TG to the core dilutes the CE, significantly altering their
tendency to order and suppressing the critical temperature.
In light of recent evidence for a lamellar structure within the
core [22,35,40], there has been no revised explanation for the
existence of this critical concentration within LDL particles.

As a first step toward exploring the effect of nonzero
triglyceride concentration within the framework of the Ising
model, we randomly fix a set number of lattice sites to zero
and simulate the system’s behavior, computing the specific
heat as a function of temperature at various concentrations
of these defect cells. We then repeat this computation by
taking the same fractional area of the system as defect cells,
but within a localized region. A graphical depiction of these
arrangements is shown in Fig. 2. For computations, we chose
a system of 20 × 20 spins, and the details of our simulations
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localized randomly distributed

FIG. 2. Example of random defect distribution (right) and local-
ized defect distribution (left). Defect cells representing TG molecules
(value 0) are shown in black, while working cells representing CE
molecules are shown in white. Here nd/n = 0.25, where nd is the
number of defects and n is the size of the lattice leaving n2 − nd CE
molecules.

are discussed in Appendix A. The results are shown in
Figures 3–4 and demonstrate that the critical temperature
only depends on defect concentration when these defects
are distributed throughout the entire system volume and not
localized to the inner core of the lipid droplet in a manner
that mimics the predicted microphase separation. Shown in
these figures are results for nd/N = 0,0.1,0.25 where nd is
the number of defect cells and n is the size of the square lattice
so the number of sites is N = n2. This means that the actual
number of cholesteryl esters which is needed for normalizing
the specific heat is N − nd , and not simply n2.

These results provide rigorous justification for the fol-
lowing simple picture: for randomly distributed defects, the
effective interaction energy should decrease monotonically
with increasing defect concentration as depicted in Fig. 4.
Since Tc ∼ J by dimensional analysis, one sees that the
critical temperature should also decrease monotonically with
no critical concentration occurring. However, for localized
concentrations of defects, we are effectively considering
smaller systems with a new boundary at the interface between
the fluctuating spins and the defect cells. As the defect
concentration is increased, this boundary simply grows in size
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FIG. 3. (Color online) The nature of the phase transition is
essentially unchanged as the number of localized defects is increased.
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FIG. 4. (Color online) With random defects, the amplitude of
the specific heat decreases as more defects are added. The critical
temperature is also reduced as more defects are added.

as fewer spins are allowed to fluctuate. In the thermodynamic
limit, this has no effect on the critical temperature, and so
Fig. 3 demonstrates that in our finite system we find only
a very weak dependence of Tc on defect concentration as
should be expected from general reasoning. Figure 3 is really
a demonstration that, despite the finite size of the system
in question, we are in some sense “close enough” to the
thermodynamic limit for such reasoning to apply.

Regularly spaced defects within the Ising model have been
investigated extensively [60], and several analytic results in
particular situations are available. Interestingly, the phase tran-
sition remains second-order in nature, though with renormal-
ized critical exponents, for regularly spaced defects. However,
any small amount of randomness in defect distribution is
sufficient to change the transition to weakly first-order in
nature [61]. Additionally, it is known in Ising systems that
the transition temperature should decrease monotonically with
increasing dilution and ultimately approach zero at some sort
of percolation threshold [62,63]. It should be noted that many
of the results in these references arise from the use of “frozen
spin” defects instead of our “dead cells,” in which the value of
zero is assigned to a defect. A frozen spin is a site whose value
is fixed at ±1. Admittedly, this approach provides no possible
mechanism for a crossover between these two regimes as the
defects are fixed in space.

An interesting question would be whether allowing defects
a dynamical degree of freedom—-that is, allowing these de-
fects to move during the Metropolis sampling—would create
such a crossover. It is quite clear from energy considerations
that the localized configuration of defects results in a lower
energy of the system at low temperatures than a random
distribution of defects, since the localized configuration mini-
mizes the number of broken bonds in the system. Preliminary
simulations, involving an additional step in the Metropolis
sampling in which a defect cell may be swapped with a “live”
spin with some acceptance probability, appear to confirm that
the localized configuration of defects does represent the true
equilibrium state of the system at low temperatures. However,
investigating this mechanism for defect arrangement in any
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detail is beyond the scope of the present work. The main
result of this section is justification of the proposition [23] for
microphase separation when the transition temperature does
not depend strongly on the triglyceride concentration.

D. Interactions at the surface

In this subsection, we demonstrate that the results presented
above are not dependent on choice of boundary conditions.
It is well known [54] that the effects of a particular choice
in boundary conditions should vanish in the thermodynamic
limit, but, with a system as small as those considered above, the
particular choice of boundary conditions could have consider-
able effects on the dynamics of the system. By considering a
circular domain with the spins on the boundary fixed si = 1,
we demonstrate that (1) the results of this explicitly finite-
sized system are insensitive to particular choice of boundary
conditions and that (2) within the framework of this model
the expected effects [25] of interactions of the bulk lipids with
the ApoB100 protein and phospholipids at the surface do not
qualitatively change the nature of the phase transition. That is,
the phase transition survives this perturbation, and the critical
temperature decreases as the defect concentration is increased
in a manner similar to the system with periodic boundary
conditions.

To demonstrate points (1) and (2), let us now consider a
square lattice of n × n points, where the spins are allowed to
fluctuate within the subdomain D, where

D ≡
{

i = (ix,iy)

∣∣∣∣
(

ix − n+
2

)2

+
(

iy − n+
2

)2

<

(
n−
2

)2}
,

(10)

where n± = n ± 1. For spins outside of this circular domain,
we fix si = +1. In what follows we set n = 25, so that the
number of “live” spins is 437. Because the interactions are
only between nearest neighbors, the only frozen spins which
affect the system are those along the nearly circular boundary
which encloses the dynamical part of the system. Molecular
dynamics calculations have shown [25] that one prominent
effect attributable to the boundary is a tendency to order
among cholesterol esters close to either the ApoB100 protein
or the phospholipid monolayer. Specifically, the phospholipid
monolayer promotes alignment of nearby cholesterol esters in
a direction normal to the surface, whereas cholesterol esters
sitting under ApoB100 tend to align in a direction parallel to
the surface. In our two-level system, the average pseudospin,

〈s〉 = 1

N

∑
i

si, (11)

is the coarse-grained analog of the smectic order parameter and
we would expect this choice of frozen boundary conditions
to induce a similar ordering tendency among spins close to
the frozen boundary spins. The calculations described in the
previous section may be repeated with this system, and the
results for randomly distributed triglyceride defects, shown in
Fig. 5, are quite similar to those shown in Fig. 4 which were
obtained for periodic boundary conditions.

The nematic order parameter discussed in Ref. [25] carries
significantly more information than the pseudomagnetization
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FIG. 5. (Color online) When the domain is taken to be circular
with a “frozen” boundary where si = 1, the results for randomly
distributed defects are quite similar to those shown in Fig. 4.

which characterizes order in the Ising model, and the present
approach is incapable of distinguishing between the different
directions of alignment possible among rod-like cholesterol
esters. A potential role that these different types of alignment
could play in the overall structure of the core is discussed
in Sec. IV C. The main message of this subsection is that
choosing boundary conditions in such a way to promote
ordering among the spins near the boundary has no significant
effect on the nature of the phase transition aside from a very
slight broadening of the specific heat curve as can be seen
from an examination of Figs. 4 and 5. In other words, at the
level of the temperature dependence of the specific heat, the
system under consideration is “large enough” to be insensitive
to particular details of interactions at the boundary.

Figure 6 demonstrates the system’s awareness of the
boundary, showing a plot of average magnetization as a
function of radial distance from the circular domain’s center
(ix,iy) = (13,13) for a particular temperature kBT /J = 2.6 in
the disordered phase for several defect concentrations. The
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FIG. 6. (Color online) Average magnetization (pseudospin order
parameter) as function of distance from the center of the system at
a temperature slightly above transition temperature, kBT /J = 2.6.
Here R = 12 (lattice constants) represents the radial distance of the
frozen boundary spins from the center of the system.

062708-6



ORDERING AND STABILITY IN LIPID DROPLETS WITH . . . PHYSICAL REVIEW E 89, 062708 (2014)

magnetization from multiple sites at the same distance from
the center was averaged to produce a single value for each
radial position (see Appendix A for details). For the case
of no defects, the frozen boundary actually induces weak
“long-range order” in the finite system which can be seen in
Fig. 6 from the decay of the magnetization toward a small but
nonzero value in the center of the system. Introducing defects
destroys this order in the interior of the system, though the
effects of the frozen boundary do remain to some extent close
to the edge of the system. It should be noted that the actual
critical temperature is different for each defect concentration,
and the system with no defects is “closest” to the phase
transition of the three systems considered.

Choosing frozen spins or periodic boundary conditions rep-
resent only two possibilities for potential boundary conditions.
While hardly exhaustive, these two choices represent two
somewhat extreme cases, which serve as strong evidence for
the robustness of this phase transition with respect to variations
in the details at the system boundary. While much has been
made of this phase transition in LDL cholesterol, the relatively
simple set of ingredients used here suggests this transition
should be a generic feature of lipid droplets. Interestingly, a
remarkably similar transition has been observed [36] in the
lipid droplets within yeast cells. These lipid droplets, with
characteristic size d ≈ 400 nm, are significantly larger than
LDL particles and are made of different material. In spite of
these vast differences, essentially the same phase transition
occurs in both systems, suggesting a simple underlying
mechanism such as what we have presented, which makes
no reference to the microscopic details of the systems.

IV. ENERGY CONSIDERATIONS: ELASTICITY AND
DISTORTIONS

A. Boundary elasticity

In this section, we will attempt to model the effects of
a confining lipid-monolayer boundary by treating it as an
elastic membrane that surrounds the core lipids within a
lipid droplet. As we are employing a liquid-crystal mean-field
theory with the aim of qualitative results, we will make several
simplifying assumptions along the way to reduce mathematical
complications in such a way that has no effect on the general
results. The validity of a continuum description is admittedly
questionable if quantitative results for small particles such
as LDL are to be obtained, and this description is naturally
expected to be more reliable with larger particles. However,
as the only function of this elastic medium is to provide a
mechanism for spherical symmetry to become favorable when
interactions between rod-like esters are sufficiently weak, we
expect the qualitative picture to remain accurate for smaller
particles such as LDL.

A robust model for the distortion energy of a purely elastic
membrane is given by the Willmore energy functional from
differential geometry [64],

W = Kc

∫
�

(H 2 − K)dA, (12)

where the membrane covers a surface �, H = 1
2 (κ1 + κ2)

is the local mean curvature, K = κ1κ2 is the local Gaussian

curvature, κ1,2 are the principal curvatures at a point, and Kc

is an elastic modulus giving the integral dimensions of energy.
A first variation of the functional yields the nonlinear equation
for the extremal surfaces,

∇2H + H (H 2 − K) = 0, (13)

whose solutions are known as Willmore surfaces. Often, other
terms are introduced to constrain constant volume or surface
area or include spontaneous curvature [64]. Such equations
can then be used to solve for minimal energy configurations
subject to various constraints [65], and at least some analytic
solutions are attainable [66]. It should be noted that, in the
case of a sphere, the energy W given by Eq. (12) vanishes
by virtue of the fact that, for a sphere of radius R, κ1 = κ2 =
R−1, so that K = H 2 = R−2. Thus, any deformation of the
shapes of LDL particles from perfect spheres results in an
energy penalty given by Eq. (12). Indeed, it should come as no
surprise that distortions of the spherical shape of a lipid droplet
are highly suppressed, as can be shown by straightforward
geometric arguments based on the relevant length scales of the
problem [67]. However, as we shall demonstrate in the next
two subsections, instabilities can arise when the ordering of
structures in the lipid core is also taken into account.

B. Distortions and the smectic phase

The Frank free energy [1] is commonly used as a measure of
energy penalties due to distortions in a purely nematic phase,

F = 1

2

∫
{K1(∇ · n̂)2 + K2[n̂ · (∇ × n̂)]2

+K3[n̂ × (∇ × n̂)]2}dV, (14)

where |n̂| = 1, representing the nematic ordering director.
The Ki are elastic constants, and the first, second, and third
terms (left to right) correspond to “splay,” “twist,” and “bend”
distortions, respectively. Within the smectic phase and under
the assumption of an incompressible liquid crystal, the second
two distortions are highly suppressed [1]. Thus, the dominant
contribution to the distortion energy within the smectic phase
is given by the splay term

F0 = K1

2

∫
(∇ · n̂)2dV. (15)

An example of a splay distortion is pictured in Fig. 7. A
perfectly ordered smectic phase would correspond to a uniform
director field resulting in zero distortion energy. A system with
concentric shells, however, would necessarily involve nonzero
divergence in the director field, giving rise to a nonzero energy
of distortion.

C. Core-ordering instability

In this subsection, we will sketch how competition between
the two energy penalties discussed above leads to an instability
with respect to purely smectic ordering as the effective
interaction between esters is decreased. One can think of
increasing triglycerides as a means of “diluting” the esters,
resulting in a decreased effective interaction, as discussed in
Sec. III.
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FIG. 7. Schematic of splay distortion in a liquid crystal. The
director n̂ points parallel to the semimajor axis of the ellipsoidal
structures so that physically n̂ is equivalent to −n̂.

The splay elastic constant must be proportional to an
interaction energy J and has units of energy× distance−1,
so we may write K1 = λJ/L, where L is the characteristic
size of the LDL particle and λ is a dimensionless constant of
order unity. For lamellar structure in the core, we have n̂ ≈ ẑ,
so that

Flam. ≈ 0, (16)

whereas for concentric shells of esters in which n̂ = r̂ , where
r̂ is the unit vector in spherical coordinates, one has ∇ · n̂ =
2
r
, so

Fshell ≈ 8πK1L ∼ J > 0. (17)

For a lattice with N spins and zero defects, a fully aligned
configuration will have an interaction energy (assuming,
without loss in generality, four nearest neighbors)

E
(0)
ordered = −J

∑
〈i,j〉

sisj = −2NJ. (18)

If we allow nd of these lattice sites to contain randomly
distributed defects, then there are Ns = N − nd spins. On
average, each spin will have 4 nd

N
defects as nearest neighbors.

The interaction energy of a fully aligned state then becomes

Eordered ≈ −1

2
J (N − nd )︸ ︷︷ ︸

Ns spins

× 4
(

1 − nd

N

)
︸ ︷︷ ︸
n.n. spins

(19)

= −2JNs

(
1

nd

Ns
+ 1

)
. (20)

Thus, a small nonzero fraction of defects modifies the effective
interaction J as

Jeff ∼ J

(
1 − nd

Ns

)
, (21)

FIG. 8. The role of triglycerides in ordered structures; TG
concentration serves as a knob to adjust the effective interactions
between the CE molecules.

where nd is the number of defects, representing triglycerides,
and Nspins is the number of spins, representing cholesteryl
esters. The simple form shown in Eq. (21) can be expected
to hold at least for small values of nd

Ns
. Figure 8 provides a

summary of the distortion energies of the two organizational
structures considered. In short, the triglyceride concentration,
which modifies the interaction, determines whether elastic
deformations of the boundary or splay distortions of the core
esters are more energetically costly. A similar situation arises
in the Freedericksz transition in nematic liquid crystals [1],
in which the liquid crystal director field lowers its energy
by aligning with a magnetic field but must exhibit a splay
distortion in order to match boundary conditions at hard
walls. Below a certain threshold field the distortion penalty
outweighs the energetic gain from aligning with the field, and
the director field remains uniform. For larger field strengths,
the overall energy is lowered in spite of this distortion penalty.
The analogy here is that a concentric-shell arrangement of
cholesteryl esters can gain energy by rearranging into the
lamellar structure described above, but at the cost of warping
the surrounding membrane into a nonspherical shape. To fix
ideas, let us consider the extreme case by comparing the change
in distortion energy of the membrane between the shape of a
perfect sphere where W = 0 and that of a rounded cylinder,
where the flat, circular “caps” are connected to the main “can”
of the body by rounded edges of constant curvature radius
r0 
 R, where R is the radius of the cylinder. This smooth
boundary represents one half of the outer half of a torus. The
geometry is discussed in more detail in Appendix B, and in this
limiting case the dominant contribution to the Willmore energy
comes from the two smoothed edges, with a contribution

W ≈ π2KcR

2r0
, (22)

which diverges in the limit of a kink when r0 → 0. We note that
this divergence is of no practical concern, as it is an artifact of
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the continuum description. The smallest radius of curvature r0

is cut off by the length of a typical phospholipid in the surface
layer, which is of comparable size to a typical cholesteryl ester
within the lipid droplet. For LDL, this length is of the order
r0 ∼ 3 nm [40]. The finite sizes of the CE and TG which we
have modeled smooth out this divergence which would appear
in a strictly continuum description. A rigorous calculation of
the surface elastic energy using continuum methods would
be dubious for an object as small as an LDL particle, and
we simply wish to demonstrate the existence of this surface
energy and its role in the competition with the interaction
energy which gives rise to core ordering. The evidence for a
similar transition taking place in large lipid droplets within
yeast cells [36], and the similarities of the core ordering in
LDLs to other, larger lipid droplets [37] suggest the basic
physics of LDL particles does resemble the physics of larger
lipid droplets at the level of detail our analysis is capable of
probing. For small particles such as LDL, the limit r0 
 R is
not necessary valid so that terms of higher order in r0/R should
be included—several of these terms are easily calculated, as
shown in Appendix B—or a discrete version of the distortion
energy described by Eq. (12) should be employed. The aim
here is not a careful calculation of the precise value of this
distortion energy but a demonstration that such a nonnegative
distortion penalty exists for nonspherical surfaces.

Thus, we see that each of the established inner-core
structures leads to a particular value for the distortion energy
with the spherical shape promoted by concentric shells of the
CE resulting in the minimal distortion penalty. Depending on
the relative sizes of these energy penalties, one ordered phase
will be more stable than the other. In other words, at the current
level of detail, a simple picture emerges in which the distortion
energy of the system is given by

Udistortion ≈ min

(
J,

KcR

r0

)
, (23)

with the resulting structure given the configuration shown in
Fig. 8 that corresponds to the smallest energy penalty. The main
result of this section is that straightforward considerations
of distortion energy involved in the two proposed struc-
tures for the esters within LD particles suggest triglyceride
concentration as an important factor in determining which
organization should be present. Both spherical and cylindrical
LDL particles have been observed in a large range of
particle sizes [40], and high triglyceride content appears to be
correlated with spherically shaped particles [68,69], though
to date no explanation for this correlation has been proposed.
Furthermore, one recent study [35] noted a correlation between
low triglyceride levels and lamellar ordering. Our analysis
suggests that the triglyceride within lipid droplets content
acts as a knob that adjusts the energy penalty associated with
spherical ordering, and, in the presence of a large number
of triglycerides, the existence of a confining boundary makes
the spherical shape energetically favorable compared to the
cylindrical shape which allows undistorted smectic ordering
of the core lipids.

It is worth noting that a conveniently explicit phenomenol-
ogy for this structural transition is suggested by the behavior
of the nematic order parameter in molecular dynamics com-
putations with LDL. Specifically, cholesterol esters near the

phospholipid monolayer tend to align their long axes normal to
the surface, which promotes concentric shells of ordered lipids
at the cost of a global splay distortion. Should interactions
become sufficiently strong by removal of triglycerides this
energy penalty can become larger than that required to deform
the boundary so that smectic order to be attained by the
core lipids. The fact that cholesterol esters tend to align
parallel to the surface under the ApoB100 protein suggests
a mechanism for the symmetry breaking which must occur for
the spherically symmetric splay field to break into an axially
symmetric arrangement of smectic layers. In this picture, the
ApoB100 protein wraps itself around the nematic aligment
axis (like a belt), maximizing its contact area with the surface
where the ester alignment is parallel to the surface. This picture
is consistent with recent high-resolution cryogenic electron
microscopy (cryo-EM) reconstructions of the structure of LDL
[70], showing a high concentration of rigid protein structures
on parts of the surface where the nematic order parameter of
the core lipids would indicate parallel aligment with respect
the surface.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a simplified framework
for describing the phase transition that takes place within
the cores of lipid droplets which is based upon the classic
Ising model. While the mean-field theory of McMillan [51]
often provides an adequate description of the physics of large
quantities of cholesteryl esters, a different approach is required
for dealing with confined systems. Rather than building a
microscopic theory from the ground up, we have employed a
coarse-grained approach that, while potentially missing some
of the microscopic physics, allows us to study the behavior of a
broad class of order-disorder transitions in systems where N is
too small for the thermodynamic limit to apply. In this regime,
the sharp, double-peaked structure of the specific heat curve in
McMillan’s theory is blurred into a single rounded peak which
washes out the existence of an intermediate nematic phase.

By employing the standard Ising model, which reproduces
an effective order-disorder transition in the correct temperature
range for the estimated order of magnitude of the interaction
energy, we have shown that defects can be used to mimic the
effects of triglycerides residing in the core. The defects are
assumed to be static, and by changing their distribution from
localized to random, we may tune the response of the critical
temperature to defect concentration from weak to strong.
Unless the defects are given a dynamical degree of freedom and
allowed to move through the system, no natural mechanism
exists within the current model to provide a crossover between
localized TG in the core and randomly distributed TG which
serve to dilute the interactions between CE molecules inside
the core.

While the crossover behavior occurring at a critical CE/TG
ratio of 7:1 lends itself to a simple picture of the core structure
in terms of concentric shells of lipids [23], recent compelling
evidence has been presented to suggest lamellar ordering of
the lipids below the phase transition temperature [22,35,40],
at least in some species of LDL. By modeling the effects of
a confining lipid monolayer as a simple, elastic membrane,
we demonstrate a possible competition in distortion energies
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which could be used to tune between the stability of one type
of ordering over the other, at least within simple lipid droplets.
Recent experiments [68,69], suggest triglyceride content is
closely related to the shape of LDL particles, and here we
present a possible line of explanation for this correlation in
terms of a competition between different distortion energies.
Specifically, very high TG content in the core could allow the
distortion energy of the membrane to dominate, forcing the
particle into a spherical shape instead of the flattened ellipsoid
associated with lamellar ordering in the core. It should be noted
that, even in experiments where strong evidence was found for
this lamellar core ordering, nearly perfectly spherical particles
were also observed as a significant fraction of the LDL sample
[35,40].

The importance of understanding the order-disorder tran-
sition within lipid droplets is twofold: from a physiological
standpoint, it would be interesting to determine the biological
importance of this transition, if such an importance exists. That
the transition occurs so close to biological temperature sug-
gests that individual particles in both phases could potentially
exist simultaneously within a single person’s LDL population,
and understanding whether the core phase dynamically adapts
as small temperature changes occur throughout the blood
stream could lead to insights regarding the role of LDL in the
development of atherosclerosis. Secondly, it is known that an
abundance of smaller, denser LDL particles is an atherogenic
risk factor [27]. Whether having many smaller LDL particles is
an inconsequential effect of another risk factor or itself a cause
of atherosclerosis is unknown. Settling this issue through the
use of simple, physical models would have drastic implications
for the medical community, as LDL particle size is currently
used as an assessment of risk without rigorous justification
based on the physics of LDL particles. The major conclusion
of our present work is that higher triglyceride concentrations
might be associated with the more spherically shaped LDL
particles, which have a lesser degree of ordering within the
core.

Furthermore, if there is something intrinsically damaging
or unstable about these smaller particles, there is no physical
argument for why this should be so. Our main result is
a potential link between lipid droplet core structure and
triglyceride concentration. While this in itself admits no simple
“cause-and-effect” picture for why smaller LDL particles
might be more dangerous than their larger counterparts,
our result suggests a physical cause for an instability in
triglyceride-rich LDL particles since these cores have a weaker
effective interaction energy. Our results are robust in the sense
that, by considering a circular domain in which the spins at the
edges are all fixed si = 1, we find a qualitatively similar picture
emerge for the behavior of Tc as the defect concentration is
varied. This boundary configuration is a crude way of adding
a strong tendency of edge particles to order themselves close
to the boundary so as to mimic the tendency of cholesteryl
esters to align normal to the surface (or parallel to the surface
near the ApoB100 protein). That our results survive such
perturbations suggest this phase transition is universal in the
sense that its presence does not depend on any of the specific
details of LDL. This claim is supported by the discovery of a
strikingly similar transition within the lipid droplets of yeast
cells.

The results of the present work represent a first step
toward understanding the physics within the cores of lipid
droplets. Significant simplifications of the actual system have
been made, and these results need to be taken for what
they are; an important step which gives general physical
insights and points toward possible directions for future work.
Indeed, a common approach in comparably complex systems
is the use of molecular dynamics to numerically investigate
observables using more microscopically accurate structure and
interactions. With such an under-studied system, this type
of simulation represents a mammoth task. We are currently
pursuing the preliminary stages of such an investigation,
and the present work is a preliminary theoretical analysis
which provides useful predictions to which future results may
be compared. Additionally, with current experiments able
to probe the inner core using cryo-EM [22,40] with nearly
nanometer resolution, it would be interesting to investigate
the details of the core structure as TG concentration in
LDLs is varied. Previous studies investigating the dependence
of critical temperature on phase transition relied only on
small-angle x-ray scattering (SAXS) for inferring any details
regarding the structure of the core [23], and later studies of
larger yeast cells made identical inferrences based on similar
SAXS results [36]. A high-resolution cryo-EM study of these
larger yeast cells could shed more light on the possible core
structures present in larger lipid droplets. Additionally, such
studies could confirm whether the present theoretical picture
of the structural crossover being largely dependent on only
TG content is sufficient for small particles such as LDL or
whether the small size sufficiently impacts the form of the
surface distortion energy so that a more complex description is
required for understanding the core structure in such droplets.
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APPENDIX A: NUMERICAL METHODS

Our results for the specific heat were obtained from Monte
Carlo simulations of the Ising model which employ the
Metropolis algorithm [54,71] for the approach to thermal equi-
librium and generation of states for sampling. In this section,
we sketch the details of these computations and our criteria for
convergence of the algorithm in the present situation.

The basic problem of statistical mechanics is to calculate
observables in a given ensemble. For example, the specific
heat of a system can be written

C(T ) = ∂

∂T
〈H 〉 = 1

kBT 2
(〈H 2〉 − 〈H 〉2), (A1)

where H is the Ising Hamiltonian in Eq. (1), and the averages
are taken with respect to the canonical ensemble so that
the spins may exchange energy with a thermal reservoir. In
principle, these averages can be computed by calculating
the configuration energy of each microstate. The number
of microstates for a square lattice of n × n spins is 2N

where N = n2, making this entirely unfeasible for all but the
smallest systems. The Metropolis algorithm is based on the
idea of importance sampling. Most of these microstates have
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vanishingly small contributions to observables, and in practice
one only needs a sufficiently large subset of microstates
relevant to equilibrium states in order to obtain reliable
estimates. The first part of the Metropolis prescription is to
begin from an arbitrary spin configuration and allow the system
to reach thermal equilibrium with its surroundings by flipping
single spins,

si → −si, (A2)

for some spin i = (ix,iy) in the square lattice. If this change
results in a decrease of the system’s energy, it is accepted.
If the change raises the system’s energy, it is accepted with
probability p = e−�E/(kBT ), where �E is the change in energy
caused by the single spin flip. Thus process is repeated many
times, allowing the system to thermalize [71]. The sites are
chosen randomly, and each spin is allowed to change its
orientation about once every N steps on average for a system
of N spins. A sequence of N steps constitutes one “sweep” of
the system and provides a metric for relaxation time which is
independent of system size [71].

After reaching thermal equilibrium, the system is sampled,
generating states which fluctuate in energy around the equi-
librium average E = 〈H 〉. These microstates generated after
equilibration provide a large sample of states with significant
Boltzmann weights which can be used to estimate observables.

In first set of calculations (see Figs. 3–4), we take the
system to be a 20 × 20 square lattice of 400 spins. Generally
speaking, error can arise either from not allowing the system to
approach thermal equilibrium and from not allowing enough
sampling steps for the sum to converge to the true average. We
first address the issue of approaching thermal equilibrium.
Essentially, we must make sure that the average energy
saturates to some constant when averaged over a moving
window during the sampling. To avoid mistaking a metastable
state for equilibrium, we observe the average energy for
two extreme cases of the initial configuration. Namely, we
repeat the calculation for a fully ordered initial configuration
(all spins equal to, say, 1) and a completely random initial
configuration. These configurations correspond to a zero-
temperature equilibrium state and an infinite-temperature
equilibrium state, respectively. Thus, to ensure the system has
relaxed sufficiently, we continue sweeping until both states
relax to states of equal average energy.

As an example of the metastable states which arise when
considering systems with zero-spin defects, consider a random
distribution of defects. Figure 9 shows configuration energy
as a function of sweep number for a defect density of
x = nd/N = 0.2, where N is the total number of lattice sites
and nd is the number of defect cells. In this regime, the
high-temperature initial state takes much longer to fully relax
than the zero-temperature initial state. The reason for this long
thermalization time is shown in Fig. 10. With a sufficient
number of defects, domain walls are much less energetically
offensive when they follow the defect distribution. Because
of this enhanced stability of domain walls, the thermalization
time is significantly enhanced. This enhancement is not present
in the basic Ising model or in the case with localized defects.
After a sufficiently large number of sweeps, the disordered
state eventually thermalizes, attaining the same average energy
as the initially ordered system does, in the sense of a moving-
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FIG. 9. Individual configuration energy plotted versus number
of sweeps of the Metropolis algorithm for the infinite (solid black
line) and zero (dashed grey line) temperature initial states. The
high-temperature initial conditions lead to a long-lived metastable
state, which is reached after about 100 sweeps. This metastable state
eventually decays after about 350 sweeps.

window average. One could make the valid point that waiting
for a system initially held at infinite temperature to cool to
very low temperatures is a rather inefficient route, and in
this situation the low-temperature initial conditions should be
used. Our point of view is that by allowing both extreme cases
sufficient time to converge to the same state, we remove any
reasonable doubt of being in the genuine equilibrium state for
further sampling. With the modest system sizes investigated in
this paper, such brute-force calculations are hardly intractable.
We found 15 000 system sweeps to be adequate for complete
relaxation of the inifinite-temperature initial configuration
except for several isolated cases where twice this number of
sweeps was necessary.

The second source of error is statistical in nature. After the
system reaches equilibrium, we must sample enough states so
that the Monte Carlo average,

A ≡ 1

n

∑
j

Aj , (A3)

converges to the true system average

〈A〉 = 1

Z

∑
states s

A(s)e−βE(s). (A4)

T
0
 = ∞ T

0
 = 0

FIG. 10. (Color online) Spin configurations after 250 Metropolis
sweeps of the different initial conditions for kBT below the critical
temperature. Black (white) cells correspond to a spin value of −1
(+1), and the defect cells are grey. The ratio of defects to total lattice
sites is 0.2.
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When measuring local observables such as the magnetization,
a good estimate for the uncertainity δA is the standard
deviation [71]

δA ≈ σA ≈
√

2τ

Nsweeps
(〈A2〉 − 〈A〉2), (A5)

which is valid when the time between measurements is
significantly shorter than the system’s correlation time �t 

τ , where τ is conveniently defined by the autocorrelation
function for the observable A,

χA(t) =
∫

dt ′[〈A(t ′)A(t ′ + t)〉 − 〈A〉2] ∼ e−t/τ (A6)

The error bars in Fig. 6 were thus computed according to
Eq. (A5) using τ obtained from a fitting of the magnetization
autocorrelation function to an exponential function. For the
temperature considered ( T −Tc

Tc
 0.15) we find τ  25 sweeps,

so τ = 50 sweeps was used as a conservative estimate.
Sampling was performed at a rate of about one sample per
system sweep so �t = 1 sweep, satisfying �t 
 τ . For the
purpose of studying how the critical temperature varies, we
are not interested in high-precision estimates for individual
values of C(T ), and we have chosen Nsweeps large enough to
obtain qualitatively accurate trends for C(T ), as shown by the
relatively small error estimates depicted in Figs. 3 and 4. As a
measurement of C(T ) itself is a measure of fluctuations of the
energy, a bootstrap resampling [71] was necessary to obtain
the error estimates depicted in Figs. 3–5.

The simulations thus consist of the following steps: for a
fixed value of the temperature, the Metropolis algorithm is
employed with the change in energy for a single spin flip �si
given by

�E = −J�si

∑
j=n.n.

sj, (A7)

where “n.n.” stands for “nearest neighbors” of the site i. This
is repeated until the initially random and initially ordered
configurations yield the same average energy, signaling that
the system has truly equilibrated. The specific heat depends
upon 〈H 2〉 and 〈H 〉, which are computed by recording the
values of H and H 2 after each sweep following equilibration.
Sufficient convergence of the statistical averages is obtained
by performing an additional 4 × 104 sweeps for sampling, as
indicated by the error bars in Figs. 3 and 4.

When the circular boundary is employed (see Figs. 5–6)
the procedure just outlined is only slightly altered. Namely,
only sites living within the domain D defined in Eq. (10) are
sampled or used as possible sites for defects, so these are
the only sites which contribute to the interaction energy of
the system. The behavior of the specific heat curve is rather
insensitive to this change in boundary conditions (cf. Figs. 4
and 5), and we demonstrate the nonvanishing effects of the
boundary by showing the averaged spin for the clean system
(no defects) as a function of distance from the domain’s center.
The average is taken with respect to Monte Carlo samplings
at individual sites. Figure 6 shows these spin averages as a
function of a single distance r , where

r =
√(

ix − n

2

)2
+

(
iy − n

2

)2
. (A8)

In general, there are multiple sites i = (ix,iy) which correspond
to the same value of r , so the values 〈S(r)〉 depicted in Fig. 6
represent an average over these multiple sites yielding a single
averaged spin value for each radial distance r .

APPENDIX B: CURVATURE OF A ROUNDED CYLINDER

In Sec. IV, we made use of the curvature of a torus and
integrated this across a quarter of the toroidal surface. Here
we justify the expression used there. A torus may be written
as a surface in three-dimensional space parameterized by the
angles θ and φ as

x = (Rt + r0 cos θ ) cos φ, (B1)

y = (Rt + r0 cos θ ) sin φ, (B2)

z = r0 sin θ. (B3)

We use Rt to distinguish this length from the effective radius of
the actual cylinder, R = Rt + 2r0. One can immediately read
off the principal radii of curvature, the reciprocals of which
give the principal curvatures,

κ1 = 1

r0
, (B4)

κ2 = 1

Rt + r0 cos θ
. (B5)

The Willmore energy is then given by

Wtorus = Kc

4

∫
�

(κ1 − κ2)2dA (B6)

= π2Kc

4

(
Rt

r0

)
+ πKc

2
(1 − π )

+ πr0Kc

Rt

tan−1
[√

1− r0
Rt

1+ r0
Rt

]
√

1 − (
r0
Rt

)2
(B7)

r0
Rt−−−→ π2KcRt

4r0
. (B8)

Each “cap” of the cylinder gives rise to a contribution to the
Willmore energy given by Eq. (B8). Additionally, there is a
contribution from the rounded body of the cylinder,

Wcylinder = Kc

∫
(H 2)dA (B9)

= πKch

2R
, (B10)

where h is the height of the cylinder. For lipid droplets h ∼ R,
and this is negligible compared to Eq. (B8) when r0 
 R ≈
Rt . Thus, the leading term in the Willmore energy comes from
the rounded edges and is given by

Wtotal = π2KcR

2r0
. (B11)
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