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Relaxation and curvature-induced molecular flows within multicomponent membranes
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The quantitative understanding of membranes is still rooted in work performed in the 1970s by Helfrich
and others, concerning amphiphilic bilayers. However, most biological membranes contain a wide variety of
nonamphiphilic molecules too. Drawing analogy with the physics of nematic–non-nematic mixtures, we present
a dynamical (out-of-equilibrium) description of such multicomponent membranes. The approach combines
nematohydrodynamics in the linear regime and a proper use of (differential-) geometry. The main result is to
demonstrate that one can obtain equations describing a cross-diffusion effect (similar to the Soret and Dufour
effects) between curvature and the (in-membrane) flow of amphiphilic molecules relative to nonamphiphilic
ones. Surprisingly, the shape of a membrane relaxes according to a simple heat equation in the mean curvature, a
process that is accompanied by a simultaneous boost to the diffusion of amphiphiles away from regions of high
curvature. The model also predicts the inverse process, by which the forced bending of a membrane induces a
flow of amphiphilic molecules towards areas of high curvature. In principle, numerical values for the relevant
diffusion coefficients should be verifiable by experiment.
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I. INTRODUCTION

The behavior of the cell membrane is crucially important to
a wide variety of processes in biology [1]. However, since the
underlying construction of almost all biological membranes is
that of an amphiphilic bilayer, much of the physics literature
has so far focused on understanding simple bilayers and their
closed-form counterparts, vesicles [2,3]. Despite intensive
research over the last 50 years, such approaches have failed
to properly describe the role of the biological membranes in
commonly observed phenomena, such as cell locomotion,
for example. The point is that often the nonamphiphilic
component of the membrane is important (in the case of cell lo-
comotion, consider so-called membrane-to-cortex attachment
proteins embedded in the bilayer). In this paper we attempt
a consistent dynamical treatment of such multicomponent
membranes, which makes quantitative predictions about the
dynamical relationship between curvature and the diffusion of
amphiphiles relative to nonamphiphiles. The hope is that such
ideas might act as a base onto which successful predictive
models of the above phenomena can be built, and more.

The modern quantitative description of bilayers was pi-
oneered by Helfrich [4] in the 1970s (and independently by
Canham [5] and Evans [6]) and has not advanced greatly since.
Drawing parallels between the amphiphiles of a bilayer and the
rodlike molecules of nematic liquid crystals, Helfrich adapted
expressions for the Frank free energy [7] by replacing the
director with the normal to the membrane surface. The result
was a local free energy per unit area of the form

κ

2
(2H − C0)2 + κgK. (1)

In the normal way, H and K are just the mean and Gaussian
curvatures, respectively [8], and C0—the spontaneous
curvature—is a constant. The quantities κ and κg are called
the bending rigidity and elastic modulus of Gaussian curvature,
respectively, and are also constant.
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Strictly, Eq. (1) describes the free energy of a monolayer
rather than a bilayer, and therefore a number of attempts at
improvement have been made (e.g., [9,10]). However, due
to the similarity between monolayers with different head-tail
interactions and bilayers with differing leaf densities, both the
original model and its relatives have been used extensively in
the physics literature [3], most notably in the static description
of vesicles under constraint [11–17]. Only recently have
attempts been made to write nonequilibrium descriptions of
membrane dynamics, but so far the focus has been solely
on vesicles [18–22]. Taking inspiration from such studies,
this article goes back to the original model of Helfrich
and demonstrates that it can be extended by analogy with
nematohydrodynamics in the linear regime. As we show, such
an approach permits the incorporation of additional nonam-
phiphilic components and leads to a membrane description in
terms of both curvature and in-membrane molecular flows.

II. FREE ENERGY OF THE MEMBRANE

The starting point is to make two important observations.
First, biological membranes are made not only from am-
phiphiles, but from a whole host of other nonamphiphilic
molecules (cholesterol, carbohydrates, proteins, protein chan-
nels, fat-soluble molecules, etc.). Second, in most biological
systems the temperature is sufficiently high that the molecules
in the membrane effectively form a two-dimensional fluid
which, when close to equilibrium, can be described by
linear nonequilibrium thermodynamics (LNET) [23]. In this
framework, the geometry of the problem then enters through
the Gibbs free energy, so it is important to ensure a consistent
thermodynamic formulation. Recall then that LNET assumes
a local equilibrium, such that the Gibbs relation,

T ds = du + pdν − {dg}T , p, (2)

is obeyed at every point in space and time. Here T is
temperature, p is pressure, and, following the literature, we
use s, the specific entropy, given by S/M , where S is the
usual entropy and M is mass. Similarly, u = U/M is specific
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internal energy, ν = V/M is the specific volume, and g = u −
T s + pν is the specific Gibbs energy. For clarity, subscripted
brackets, {· · · }T , p, are used to indicate that both temperature
and pressure are held constant. We imagine a membrane as a
two-dimensional fluid only one molecule thick. The fluid is
an incompressible mixture of rodlike amphiphiles (henceforth
referred to simply as lipids) and pointlike “other” molecules.
The other molecules are pointlike in the sense that they have
no orientation, or, more specifically, we associate with them no
energy contribution that is a function of the membrane shape.
(They are still assumed to have mass and to occupy volume
in the normal way). For simplicity, we take a highly idealized
approach and assume that all such pointlike molecules are
thermodynamically equivalent (though it should be noted that
a full multicomponent treatment is still possible, if tedious).
In this simplified case, the specific Gibbs energy is just

g =
∑

k

μkck + gnem, (3)

where, in the first term, the concentration and chemical
potential of component k are given by ck = Mk/M and μk ,
respectively, with k ∈ {l,o} (l for “lipids” and o for “other”). If
the nonamphiphilic molecules were known, then the subscript
would simply label them, in turn, k ∈ {l,1,2,3, . . . ,etc.}. The
second term in (3) is the energy associated with the nematic
nature of the lipid molecules, which can be approximated
by an elastic description [9,24] of the chemical interactions
between the head groups and between the tails groups of the
lipid molecules. The rest of this section briefly reviews such
a theory (and its assumptions) in order to highlight certain
important caveats that arise due to our description being both
dynamical and multicomponent.

A. Elastic description of amphiphilic interactions

The benefits of an elastic theory are twofold. First, the
system can be written formally in terms of a single well-defined
“neutral-torque” surface S, using a standard procedure. Sec-
ond, it provides a description for the quantities κ , κg , and C0

in terms of geometrical variables, allowing the assumptions of
this approach to be made plain. The standard route is to write
gnem as a sum of two quadratic terms,

gnem = kh(ah − ah,0)2 + kt(at − at,0)2, (4)

where subscripts are used to indicate either head or tail groups.
For example, ah = Ah/M is the area per unit mass on a surface
defined to intersect the head groups of all the molecules, while
at = At/M is defined in a similar way for the molecular tails.
Both kh and kt are constants, as are the quantities ah,0 and at,0,
defined as the area per unit mass at equilibrium for head and
tail groups, respectively. The projection onto a neutral-torque
surface is described in [24,25] and recapitulated (with some
small modifications) in Appendix A. The result is that, apart
from a term which describes the free energy associated with
a lateral tension (which for our model is assumed constant),
Eq. (1) is recovered. However, contrary to Helfrich’s approach,
the values of κ , κg , and C0 are no longer constant, and depend
on a, the local area per mass [see Eqs. (A10) to (A13)]. This
conflict has previously been resolved by the authors of [10]
by minimizing the free energy under the constraint of a fixed

number of particles in the monolayer (the result is that a is
constant up to O(δ2), where δ is the length along the long
axis of the lipid molecules). However, since our description
includes the behavior of nonamphiphilic molecules, this result
can only be applied as a lowest order approximation when
the concentration of nonamphiphiles is low. It is therefore
important to state that, physically, we assume to always
be in the regime of constant bending rigidity, when the
nonamphiphilic molecules do not materially affect κ and only
contribute to free energy through the first term of (3).

B. Gaussian curvature

It is also necessary to remark on the Gaussian curvature K .
While K is routinely ignored in equilibrium studies of vesi-
cles [3] due to the Gauss-Bonnet theorem, such an approach
cannot be applied here as it relies on the integration of the
membrane energy over a closed surface. However, progress can
be made by closely following nematohydrodynamics, where a
standard assumption is that the dominant contributions to the
free energy of a nematic fluid come from terms proportional
to the director and its first spatial derivatives [26,27]. In our
case, since we may identify the director with the normal n
of the surface S, this amounts to ignoring all terms in (1)
that contain higher spatial derivatives of n. Leaving the details
to Appendix B (geometry will also be discussed in the next
section) the important point is that, alongside the standard
formula H = ∇ · n/2, the Gaussian curvature can be shown
to be given by

K = 1
2 [(2H )2 + n · (∇2n)], (5)

which involves second spatial derivatives of n. As a result, fully
incorporating the effects of the Gaussian curvature is left for
further work, and in this treatment we retain only the first term
of (5). Taking the above into account, the lipid interactions
only contribute to the Gibbs energy via the mean curvature:

gnem = κ

2
(2H − C0)2 + κg

2
(2H )2. (6)

For the purposes of thermodynamics, it is helpful to identify
extensive and intensive contributions in Eq. (6). Therefore,
noting from (A13) that κg is linear in κ , and in order to conform
with the conventions of nematohydrodynamics, we define the
intensive variable κ ′ = κ/ρ, and the corresponding extensive
variable ψ = ρ

2 (2H − C0)2 + ρκg

2κ
(2H )2, where ρ = M/V is

the usual mass density.
From here, it follows that

gnem = κ ′ψ, and {dg}T , p, ci
= κ ′dψ, (7)

which, when returning to the local equilibrium condition, gives

T ds = du + pdν −
∑

k

μkdck − κ ′dψ. (8)

III. LNET FOR (CURVED) MEMBRANES

The usual LNET approach is to manipulate the time
derivative of (7) through careful application of conservation
laws and constitutive relations and then to compare the result
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with the equation for local entropy balance,

ρ
ds

dt
= −∇ · J s + σ. (9)

(Here J s is the convective entropy flux, and σ is the
entropy production term.) Under normal circumstances, this
tactic then identifies the source term with a bilinear sum of
the thermodynamic forces and fluxes, from which Onsager
relations can be deduced.

Before proceeding, however, recall that these relations are
now defined on the 2D surface S, which is assumed to be
regular and parametrized by variables u and v. Any point on
the surface is then defined by the position vector r = r(u,v),
and the tangent space at each point is spanned by the two
vectors rα ≡ ∂ r/∂qα . Here α, β ∈ {1,2}—and similarly
for all Greek indices—where q1 = u and q2 = v. Using the
shorthand notation ∂α ≡ ∂/∂qα , the gradient operator becomes

∇ ≡ gαβ rβ∂α, (10)

where gαβ = rα · rβ is the metric tensor and gαβ its inverse.
For membranes with a finite thickness, one must typically
compute corrections to diffuse processes that are caused by
curvature [28]. However, since the monolayer is assumed to
be only one molecule thick, these corrections can be ignored
and most of the traditional conservation laws (e.g., mass and
internal energy) carry over without any modifications. For a
system at constant uniform temperature, the application of
these laws (Appendix C) gives

ρT
ds

dt
= −� : (∇v)T +

∑
k

μk∇ · Jk − ρκ ′ dψ

dt
, (11)

where Jk = ρk(vk − v) is the local diffusion flow, and � =
P − pI is the nonhydrostatic part of the pressure tensor. (Here
ρk ≡ Mk/V are partial mass densities, and v ≡ ∑

k vkρk/ρ

defines both the barycentric velocity v and the partial velocities
vk .) The notation uses sans-serif font for a (rank 2) tensor, a
superscript T to denote the transpose, and a colon to represent
the trace of an interior product; i.e., the term � : (∇v)T is
written in component form as �ijg

αβ(rα)i∂βvj , where a sum is
implicit for repeated indices, both Greek and Latin. Here Latin
indices are the usual Cartesian components in three dimensions
such that (rα)i is the ith component of the tangent vector rα .

As previously mentioned, the traditional liquid crystals
approach for computing the time-derivative of free energies
with nematic order—such as the final term in (11)—is to
assume a dependence on n and its first spatial derivatives
∇n and then impose straightforward constitutive relations for
these quantities [26,27]. For our case, since ψ was constructed
with these constraints in mind, the final term in (11) can be
computed directly from H = ∇ · n/2, although as we show,
care must be taken when differentiating the gradient operator.
Specifically, by recalling the definition of ψ , the time derivative
can be written as

dψ

dt
= ∂ψ

∂ρ

dρ

dt
+ ∂ψ

∂(∇ · n)

d(∇ · n)

dt
. (12)

Here if the gradient that appears in the last term was just the
usual operator (and not restricted to the surface), then

d

dt
(∇ · n) = ∇ · dn

dt
, (13)

and equations similar to those that appear in the theory of
nematic liquid crystals could be recovered [26,27]. In turn,
this leads to terms in (11) that are either convective or bilinear
in forces and fluxes, which is required by LNET and therefore
desirable. With this in mind, the part that is of interest in (12) is
the proper time derivative of ∇ · n, which in component form
becomes
d

dt
[gαβ(rα)i∂βnj ] = d

dt
[gαβ(rα)i]∂βnj + gαβ(rα)i

d

dt
[∂βnj ].

(14)

At this stage we notice that the director n is an average over
local orientations of the amphiphilic molecules only; therefore,
we may use the material derivative

d

dt
= ∂

∂t
+ vl · ∇, (15)

where the velocity is that of the lipids (amphiphiles). Ap-
plying (15), the last term in (14) can be expanded (again, in
component form) to give

gαβ(rα)i
d

dt
[∂βnj ]

= gαβ(rα)i∂β

(
∂nj

∂t

)
+ gαβ(rα)ig

μν(vl)k(rμ)k∂ν∂βnj . (16)

Manipulating derivatives, one can then show that the second
term of (16) is just equivalent to

gαβ(rα)i∂β[gμν(vl)k(rμ)k]∂νnj , (17)

which, when combined with (14) makes it clear that the
condition (13) is only satisfied if

d

dt
(gαβ rα) = ∇[gαβ(vl · rα)]. (18)

The simplest way of understanding the ramifications of
this relation is to note that it causes the distortion stress to
vanish (apart from a straightforward density-dependent term).
That is, it is implicitly assumed that there is no energy cost
(and therefore no force per unit area) arising as a result
of deformations which move the relative positions of the
molecules but keep the director field fixed. Mathematically,
this is certainly self-consistent with a free energy that is only
based on the relative orientation of the molecules, viz. Eq. (4).
Physically, since both the lateral tension and the bending
rigidity are constant and uniform, any membrane configuration
that leads to the same director field must be thermodynamically
equivalent.

The main corollary of (18) is that it implies

ρT
ds

dt
= −∇ · Jnem − �′ : (∇v)T+

∑
k

μk∇ · Jk − h · dn
dt

,

(19)

where

h = −κ ′∇
[
ρ

∂ψ

∂ (∇ · n)

]
= −2ρκ̄∇H (20)

is the molecular field (constant density), �′ = � −
κ ′Iρ2(∂ψ/∂ρ) is the viscous stress, and Jnem is a convective
“nematic flux” term. [We have introduced the shorthand
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κ̄ = (κ + κg)/ρ, for simplicity]. Before making the com-
parison with (9), however, a number of constraints can be
implemented to make the analysis simpler. First, it is standard
to separate out the temperature dependence by manipulating
derivatives. Second, we must recognize that the barycentric
diffusion flows are not independent; i.e., J l + Jo = 0. Finally,
since we stipulate that all molecules point normal to the
surface, contributions from the antisymmetric part of � can
be neglected (this arises from conservation of angular momen-
tum; see [23,29] and Appendix D). With these modifications,
one may identify the entropy production term as

σ = − 1

T
�s : (∇v)s − 1

T
J l · {∇(μl − μo)}T , p, κ ′

− 1

T
h · dn

dt
, (21)

where a superscript s is used to indicate the symmetric part. It
is this form that will lead to reciprocal relations of the Onsager
type.

IV. RECIPROCAL LINEAR RELATIONS
AND CROSS-DIFFUSION

Invoking the Cure principle and only writing linear relations
for forces and fluxes of the same tensorial character, we focus
on the coupled vector relations,

J l = − Ldd
{∇(μl − μo)}T , p, κ ′

T
− Ldn

h
T

,

dn
dt

= − Lnd
{∇(μl − μo)}T , p, κ ′

T
− Lnn

h
T

,

(22)

where the Onsager coefficients Ldd, Lnn, and Lnd = Ldn are
labeled by subscripts “d” for diffusion and “n” for nematic. It
is these linear relations that couple lipid diffusion to curvature
and which contain the main result of this paper. However, the
result is best cast in terms of a cross-diffusion effect such
as the Soret or Dufour effects [23]. To see this, we use the
Gibbs-Duhem relation for our system

cl{∇μl}T , p, κ ′ + co{∇μo}T , p, κ ′ = 0. (23)

From here, using the fact the co + cl = 1, it is clear that

{∇(μl − μo)}T , p, κ ′ = μc
ll

co

∇cl, (24)

where the shorthand notation of [23] has been used:
μc

ll ≡ (∂μl/∂cl)T , p, κ ′ . On physical grounds, we expect that
μc

ll|c1=0 = 0, that is, the rate of change of the lipid-chemical
potential with respect to the concentration of lipids is zero
when the system can no longer accommodate any more lipids.
We may also reasonably expect that μc

ll is a monotonically
decreasing function of cl . With these constraints in mind, we
make the simplest assumption possible: that μc

ll = Ac
ll(1 −

cl) = Ac
llco, where Ac

ll = constant. Substituting this result,
along with (20), into the linear relations (22) and then taking
the divergence on both sides of the resulting expressions gives

dcl

dt
= Ddd∇2cl − 2Ddn∇2H,

(25)
dH

dt
= −Ac

ll

2κ̄
Dnd∇2cl + Dnn∇2H,

where both (13) and the condition for conservation of
mass, ρ(dcl/dt) = −∇ · J l , have been used, and ∇2 is the
Laplace-Beltrami operator (Laplacian on the surface). The
new coefficients comprise two “direct” terms—a diffusion
coefficient,

Ddd = LddA
c
ll

ρT
, (26)

and a curvature relaxation coefficient,

Dnn = ρκ̄

Lnn
T (27)

—plus two indirect cross-terms,

Ddn = Dnd = Ldnκ̄

T
, (28)

that represent molecular diffusion induced by curvature and its
reciprocal effect of curvature induced by molecular diffusion,
respectively.

V. DISCUSSION

In summary, Eqs. (25) describe the relaxation of a two-
component (amphiphilic and nonamphiphilic) fluid membrane
towards equilibrium at constant temperature and constant
lateral tension. The result was obtained by combining
nematohydrodynamics and geometry under the important
assumption (18), which is equivalent to the statement that

∂

∂t
(gαβ rα) = gαβ rα · (∇vl). (29)

That is, the explicit time dependence of the tangent vectors
(and their weights) is fixed to be a function of the velocity
gradients. Or, more heuristically, since the lipids (amphiphiles)
are constrained to point normal to the surface, there is no
way of deforming the membrane without moving the relative
positions of the amphiphiles and nonamphiphiles. The result
predicts that a membrane with a curvature that has nonzero
Laplacian—e.g., a parabolic profile—will relax towards a
constant-curvature surface accompanied by a simultaneous
flow of lipids away from regions where the Laplacian of the
curvature is largest (see Fig. 1). Indeed, the equations also
predict the inverse effect: If a concentration gradient (with
nonzero divergence) can be established in a free membrane,
then it would induce a corresponding curvature. An intuitive
understanding of this effect can be gained by thinking in terms
of molecular splay: the degree to which the head groups of the
lipids are separated with respect to their tails. In regions of high
curvature, the splay—and hence the energy associated with
the configuration—is very high. However, since the molecules
are fluid, they can address this situation by displacing
nonamphiphilic molecules to increase their concentration—
and reduce their splay—at points where the gradient of the
curvature has nonzero divergence. Similarly, an enforced (zero
divergence) concentration gradient of lipids is not optimal on
a constant-curvature surface due to the repulsive effect of too
little splay [recall the quadratic profile (4)] and hence the
surface—free to move—adjusts its conformation accordingly.

We remark that the form of diffusion coefficients (26)
to (28) acts reinforce this picture. For example, if the effective
bending modulus κ̄ is increased—i.e., by using different
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FIG. 1. Exaggerated cartoon indicating the behavior described
by Eqs. (25). At constant curvature, the concentrations of both
amphiphilic and nonamphiphilic components are spatially uniform.
Bending the membrane so that the curvature has a gradient with
non-zero divergence (e.g., parabolic, as shown) induces a flow of
amphiphilic molecules towards the region where ∇2H is largest
(i.e., the tip), displacing any nonamphiphilic molecules. The reverse
process is also allowed: Starting with a parabolic membrane and
nonuniform concentrations, the system relaxes to a state of both
spatially uniform curvature and molecular concentrations.

lipids—then the rate of the cross diffusion is also increased.
That is, if the membrane is stiffer, and more energy has to be
added to the system to induce, say, a parabola (as in Fig. 1),
then the rate at which lipids flow to reduce the energy of the
system is increased by the same factor.

Such effects should, in principle, be observable by ex-
periments that monitor single particle diffusion [30] on a
pseudo-free membrane (very large vesicle or sheet with zero
hydrostatic pressure difference), where numerical estimates
for the diffusion constants, and hence Onsager coefficients
would be welcome. Indeed, the broader theory predicts other
cross effects, notably in the presence of a temperature gradient,
although this is considered out of the scope of this study.

Finally, while there are undoubtedly drawbacks and lim-
itations inherent with such an approach, it is hoped that the
work presented here can be adopted and extended in order to
overcome any difficulties. In particular, a better understanding
of the types (and behavior) of nonamphiphilic molecule most
prevalent in biological membranes would be helpful. Armed
with such information, it is plausible that this kind of model
could shed light on the role of biological membranes in inter-
esting but unexplained phenomena, such as cell locomotion.
We therefore welcome further work in the area.
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APPENDIX A: ELASTIC DESCRIPTION
OF A MONOLAYER

In order to better understand the nematic contributions from
the specific Gibbs energy, one may adopt an elastic theory
of monolayers attributed to Ref. [9] but also described in
Ref. [24]. Retaining the spirit of the original work, we present
a variant of this approach and demonstrate how it should
be interpreted within the context of LNET. Central to the
approach is the asymmetric nature of amphiphilic molecules.
The principal idea is that, when close to equilibrium, the
free energy of a monolayer can be modeled as two elastic
sheets with different elastic moduli. The two elastic sheets
approximate the different chemical interactions between the
head groups and between the tail groups, of amphiphilic
molecules. As described in the main text, it is assumed that
gnem is a sum of two quadratic terms, repeated here for
convenience:

gnem = kh(ah − ah,0)2 + kt(at − at,0)2. (A1)

Here subscripts are used to indicate either head or tail groups.
For example, ah = Ah/M is the area per unit mass on a surface
defined to intersect the head groups of all the molecules, while
at = At/M is defined in a similar way for the molecular tails.
Both kh and kt are constants, as are the quantities ah,0 and at,0,
defined as the area per unit mass at equilibrium for head and
tail groups, respectively. The problem with incorporating the
above into a two-dimensional thermodynamic description is
that Eq. (A1) is technically defined on two separate surfaces.
The rest of the Appendix therefore follows the approach
described by Evans and Skalak [25] in order to write the
Gibbs energy in terms of variables defined on a single common
surface.

Consider a sample of monolayer under planar stress, that
is, ah = at = a. The equilibrium separation of the molecules
when confined to a plane is then given by the value of a for
which g is a maximum. More formally,

∂gnem

∂a
= 2kh(a − ah,0) + 2kt(a − at,0) = 0, (A2)

which implies

a = khah,0 + ktat,0

kh + kt
≡ a0. (A3)

In order to achieve a planar strain on the monolayer it is
necessary to apply an asymmetric stress. For example, if kt

is bigger than kh then the tension applied in the same plane as
the tails will have to be larger than that applied to the heads.
Mathematically, the lateral tension applied to the head groups
while maintaining planar equilibrium is defined as

�h = ∂gnem

∂ah

∣∣∣∣
ah=a0

, (A4)

and similarly for �t. It is then possible to define the so-called
neutral surface, which exists between the head and tail groups
and is uniquely defined as the surface of points for which the
moments acting on the molecules in planar equilibrium are
zero. Here, the word planar is important, as true equilibrium
would obviously lead to a curved monolayer (for kh �= kt). The
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surface is defined by the equation


�hδh + 
�tδt = 0, (A5)

where δh and δt define the distance from the neutral surface to
the head and tail groups, respectively. The quantity 
�h is the
small change in lateral tension acting at the head groups which
arises from a small change in the planar separation. From the
definitions above, it is clear that 
�h = 2kh
a and similarly
for 
�t. Substituting into Eq. (A5) it follows that

δh

δt
= kt

kh
. (A6)

From here, it is then possible to find expressions for ah and
at in terms of a, the area per molecule on the neutral surface,
and distances δh and δt. Geometrical relations of this type are
discussed in detail in [8]; therefore, here it suffices to simply
state the results

ah = a
[
1 + δh2H + δ2

hK + O
(
δ3

h

)]
, (A7)

and

at = a
[
1 − δt2H + δ2

t K + O
(
δ3

t

)]
, (A8)

where two assumptions have been made: first, that δh and δt are
of the same order of magnitude, and, second, that the thickness
of the membrane is small on the scale of any reasonable
curvature. As such, terms of order greater than δ2

h and δ2
t

have been neglected. Substituting Eqs. (A7) and (A8) into
Eq. (A1) leads to an expression for the free energy in terms
a, H , and K . Using Eq. (A6) and the fact that δ = δh + δt,
the resultant expression can be manipulated so that terms of
the same order in δ may be grouped together. This gives the
expressions referenced in the main text,

gnem = k(a − a0)2 + κ

2
(2H − C0)2 + κgK, (A9)

where

k = kh + kt, (A10)

κ = 2khkta
2δ2

k
, (A11)

C0 = ah,0 − at,0

aδ
, (A12)

and

κg = 2κ

[
1 − ah,0 + at,0 − a0

ka

]
. (A13)

APPENDIX B: GEOMETRY

The two-dimensional surface (embedded in three dimen-
sions) which represents the membrane is defined by a vector
field r = r(u,v), where u and v parametrize the surface.
The tangent (vector) space associated with each point on
the surface is then spanned by vectors rα ≡ ∂ r/∂qα , where
α ∈ {1,2}, q1 = u, and q2 = v. From here, the first funda-
mental form, or metric, is defined as

gαβ ≡ rα · rβ, (B1)

where the inverse metric gαβ is defined such that gαβgβγ = δα
γ ,

with δα
γ the Kronecker δ symbol. Here, g is the determinant of

gαβ , given by

g ≡ 1
2εαγ εβνgαβgγ ν, (B2)

where εαβ is an antisymmetric two-dimensional Levi-Civita
symbol. The determinant is used to define the surface area
element,

dA ≡ √
gdudv, (B3)

and the unit normal

n̂ ≡ r1 × r2√
g

, (B4)

where, for notational simplicity, the traditional “hat” notation
is omitted going forwards. In order to quantify the curvature
of a surface it is further necessary to define second derivatives
rαβ ≡ ∂2r/∂qα∂qβ , where the coefficients of the second
fundamental form,

Lαβ ≡ rαβ · n, (B5)

and their determinant,

l ≡ 1
2εαγ εβνLαβLγν, (B6)

allow us to make contact with (1) by writing

H ≡ − 1
2gαβLαβ (B7)

and

K ≡ l

g
, (B8)

where a sum is implicit over repeated indices. For consistency
with (1) and the majority of membrane related literature, (B7)
is defined here contrary to the usual conventions of differential
geometry, so that the mean curvature of a sphere is positive,
Hsphere = 1/R.

In order to perform the derivatives present in the definition
of the molecular field, it is necessary to write the mean and
Gaussian curvatures as functions of the unit normal and its
spatial derivatives. We start with the mean curvature. Since
rα · n = 0 then Lαβ = −rα · nβ . Substituting into (B7) and
rewriting in terms of the gradient operator,

∇ ≡ gαβ rα∂β, (B9)

gives the standard result

H = 1
2∇ · n. (B10)

Rewriting the Gaussian curvature is slightly more involved. We
use two relations without proof [31]: the Weingarten relation,

nα = −Lαβgβγ rγ , (B11)

and the lesser known result,

gαβLβγ gγ νLνα = 4H 2 − 2K. (B12)

Our starting point comes from combining these two equations,
where it is straightforward to see that

(nα · nβ)gαβ = 4H 2 − 2K. (B13)

Here the left-hand side can be rewritten by using the fact
that ∂α(|n|2) = 0 and therefore n · nα = 0, which implies that
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(nα · nβ)gαβ = −n · ∂α(gαβ∂βn). Introducing the Laplace-
Beltrami operator,

∇2 ≡ ∇ · ∇ = 1√
g

∂α(
√

ggαβ∂β), (B14)

it is relatively simple to show that

n · ∇2n = n · ∂α

(
gαβ∂βn

)
, (B15)

and hence Eq. (B13) can be inverted to show that

K = 1
2 [(∇ · n)2 + n · (∇2n)]. (B16)

APPENDIX C: APPLICATION OF THERMODYNAMIC
CONSERVATION LAWS

As described in the main text, the local Gibbs relation
can be transformed by applying thermodynamic conservation
laws. Conservation laws of this type are commonplace in
fluid dynamics and therefore simply stated here, with the full
physical justification provided elsewhere (see, e.g., [23]). We
start with local conservation of mass which is unchanged by
the inclusion of nematic media, giving

dck

dt
= − 1

ρ
∇ · Jk, (C1)

where

Jk = ρk (vk − v) , (C2)

is the local diffusion flow. Here ρk ≡ Mk/V are the partial
mass densities, while the relation v = ∑

k vkρk/ρ defines both
the barycentric (or center-of-mass) velocity v, and the partial
velocities vk . In a similar way, the conservation of local heat q

is also unchanged by nematic effects, with the standard relation
given by

dq

dt
= − 1

ρ
∇ · Jq, (C3)

where Jq is the local heat flow. Before writing down the
conservation of internal energy, however, note that a general
analysis of the anisotropic term {dg}T , p, ck

leads to a consid-
eration of friction that would not otherwise be present for a
simple fluid. As a result, it is necessary to briefly review the
general equation of motion for a fluid, given by

ρ
dv

dt
= −∇ · P, (C4)

where P is the stress tensor. Assuming that the constituents of
the fluid are inelastic it is natural to decompose the pressure
tensor into a hydrostatic part p, and a tensor �, such that

P = pI + �, (C5)

where I is the identity matrix. In general, if the constituent
particles are anisotropic, � and therefore P are not symmetric.
Taking this into account, local conservation of internal energy
becomes

du

dt
= dq

dt
− 1

ρ
� : (∇v)T − dν

dt
, (C6)

where the notation is described in the main text. Using this
result alongside conservation of heat and conservation of

mass—Eqs. (C3) and (C1), respectively—it follows that

ρT
ds

dt
= −∇ · Jq − � : (∇v)T

+
∑

k

μk∇ · Jk − ρ

{
dg

dt

}
T , p, ck

, (C7)

which is exactly the Eq. (10) from the main text if the
identifications (6), also in the main text, are made.

APPENDIX D: CONSERVATION OF
ANGULAR MOMENTUM

The main idea of this Appendix is to temporarily imagine
that the lipid molecules were not fixed to point normal to
the membrane and then implement conservation of angular
momentum by following [29]. Once conservation angular
momentum has been imposed, it is then easier to ascertain the
impact of enforcing the “Helfrich condition”: that the director
is always normal to a surface. (Since the material contained
in Ref. [29] is presented there in a disparate way across a
number of chapters, this Appendix provides a systematic, if
terse, formulation which has the benefit of being notationally
consistent with the main text.)

First, it is necessary to recognize that the free energy of
a nematic is unchanged if the both the molecular positions
and the director are rotated by small amount. More formally,
consider the following deformations to position vector r and
director n, respectively:

δr = ω × r and δn = ω × n. (D1)

In component form, these relations become

∇i (δr)j = εijlωl and (δn)i = εijlωjnl, (D2)

where indices i, j , and l label Cartesian components (k is
reserved for labeling the components of the mixture) and
εijl is the totally antisymmetric Levi-Civita symbol. It can
be seen that the total variation in the Gibbs energy due to
small deformations is given by

ρδg = −�d
ij∇i(δr)j + hi(δn)i + ∇i

[
ρ

∂g

∂(∇inj )
(δn)j

]
.

(D3)

Substituting Eqs. (D2) into the above and setting δg = 0 gives

0 = −�d
ij εij lωl + hiεij lωjnl + ∇i

[
ρ

∂g

∂(∇inj )
εjlmωlnm

]
,

(D4)

where, by relabeling the indices of the second term, a common
factor of (constant vector) ωl may be removed. Integrating
this result over the entire volume, and using the divergence
theorem [32], leads to the relation

0 = −
∫

�d
ij εij ldV +

∫
εijlnihjdV

+
∫

dAi

[
ρ

∂g

∂(∇inj )

]
εmjlnm, (D5)

where dAi is the ith component of the surface area element
d A. With this relation in mind, it is necessary to temporarily
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turn attention to the nematic nature of the molecules. Due to
their rodlike form, a sample of nematic material must obey
conservation of angular momentum. The rate of change of
total angular momentum is given by

dL

dt
= d

dt

∫
ρ (r × v) dV. (D6)

The time derivative may be taken inside this integral by using
Liebniz’s rule,

dL

dt
=

∫
∂

∂t
[ρ(r × v)]dV +

∫
ρ(r × v)v · d A. (D7)

Manipulating derivatives and using conservation of mass it
follows that

dL

dt
=

∫
ρ

d

dt
(r × v)dV = −

∫
r × (∇ · P)dV. (D8)

Here the final step comes from the equation of motion (C4).
The resultant expression may then be integrated by parts. In
component form this gives

dL

dt
= −

∫
εijlrjPmldAm +

∫
εijlPjldV, (D9)

where the second term on the right-hand side can be simplified
further by splitting the pressure tensor into hydrostatic and
tensor parts, Pij = �ij + pδij ; cf. Eq. (C5). The result is that

dL

dt
= −

∫
εijlrjPmldAm +

∫
εijl�jldV . (D10)

However, following de Gennes [29], the rate of change of
angular momentum is also equal to the total torque due to
external stresses acting at the boundary, given by

−
∫

r × (P · d A), (D11)

plus the total torque on the director at the boundary
∫

n ×
[
ρ

∂g

∂ (∇n)
· d A

]
. (D12)

In component form, this can be written as

dL

dt
=

∫
dAmεijl

{
nj

[
ρ

∂g

∂ (∇mnl)

]
− rjPml

}
. (D13)

Comparison with Eq. (D10) leads to the result
∫

dV εijl�jl =
∫

dAmεijlnj

[
ρ

∂g

∂ (∇mnl)

]
. (D14)

Finally, this may be combined with Eq. (D5) to eliminate the
surface integral on the right-hand side. The result is that

εijl�
′
j l = −εijlnjhl. (D15)

In order to understand this, it is useful to consider decomposing
the viscous stress tensor into symmetric and antisymmetric
parts. Introducing superscripts s and a to denote symmetric
and antisymmetric, respectively, gives

�′
ij = �a

ij + �s
ij , (D16)

where the elements of the antisymmetric part are defined in
the following way:

�a
12 = −�a

21 = 1
2ε3j l�

′
j l,

�a
23 = −�a

32 = 1
2ε1j l�

′
j l,

�a
31 = −�a

13 = 1
2ε2j l�

′
j l .

(D17)

The viscous stress tensor arises in the expression for entropy
production in an inner product with the transpose of the
velocity gradient tensor, (∇v)T. Indeed, it is also possible
to split the velocity gradient tensor into symmetric and
antisymmetric parts. In this way, the dyadic product splits into
two separate dyadics between symmetric and antisymmetric
parts,

� : (∇v)T = �s : (∇v)s + �a : (∇v)T, a, (D18)

where the notation (· · · )T, a indicates the antisymmetric part
of the transpose (which is equal to the transpose of the
antisymmetric part). This can be expressed more easily in
component form

�ij∇ivj = �s
ij (∇ivj )s + �a

ij (∇ivj )a, (D19)

where repeated indices imply a sum. Here, as with Eqs. (D17),
the three independent parts of the antisymmetric velocity
gradient tensor may be linked to the components of the vector,

ωi = 1
2εijk∇j vk. (D20)

Combining this with Eqs. (D17), the dyadic between antisym-
metric parts which arises in Eq. (D19) may be rewritten as

�a
ij (∇ivj )a = − 1

4εijlεimn�
′
j l∇mvn. (D21)

Here it is possible to invoke Eq. (D15), the result of both sym-
metry considerations and angular momentum conservation. It
follows that

�a : (∇v)T, a = 1
2ω · (n × h) , (D22)

where ω = (∇ × v)/2 is recognized as the vorticity. Using the
properties of the scalar triple product, it it clear that

�′ : ∇v + h · ṅ = �s : (∇v)s + h · N, (D23)

where N = ṅ − (ω × n)/2 is the rate of change of the director
relative to the background fluid.

At this stage we simply apply the Helfrich condition
by assuming that the director corresponds to the normal
of a regular two-dimensional surface, embedded in three
dimensions. Immediately, one can see that �a : (∇v)T, a = 0
and therefore N = ṅ. The result is that

�′ : ∇v + h · ṅ = �s : (∇v)s + h · ṅ, (D24)

which is used in the result (15) of the main text.
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