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Evolution dynamics of a model for gene duplication under adaptive conflict
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We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict.
We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming
distances from two reference sequences, which are assumed to optimize two different gene functions, to describe
the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The
evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an
escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization,
and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other
copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of
subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape
phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict
through gene duplication and find that there are two time regimes: until a time t∗ single gene sequences dominate,
and after t∗ double gene sequences outgrow single gene sequences. The time t∗ is identified as the time necessary
for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is
an optimum mutation rate which minimizes this time scale.
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I. INTRODUCTION

Life inevitably depends on protein function. Proteins
constitute the phenotypes which result from the expression of
an organism’s genes as well as the influence of environmental
factors and are the level at which natural selection acts. To
understand how evolution works it is therefore essential to
know how proteins evolve, because in a constantly changing
environment proteins with new functions determine how
successfully an organism can survive and reproduce. It is
accepted in general that new proteins and new protein functions
evolve from existing ones, either through small-scale muta-
tions such as point mutations or through large-scale mutations
such as recombinations and gene duplications. Although the
mechanism of the emergence and evolution of new proteins
and new protein functions is still unresolved, gene duplication
is known to play an important role [1]. Recent researches lead
to the predominant view that a gene duplication is required
for biological innovation because it provides the opportunity
for evolution to try out alternative protein designs without
sacrificing an existing design [2–4].

Gene duplication is the process by which a chromosome
or a portion of DNA that contains a gene is duplicated. Gene
duplications can arise as products of several types of errors in
DNA replication and repair machinery. Small-scale duplica-
tions of one or a few genes can happen by unequal crossing
over or retrotransposition. Unequal crossing over can occur
when two chromosomes cross over and recombine. During
recombination, strands of two chromosomes break and rejoin
to the opposite chromosome, so that genetic information is
moved from one chromosome to another. If the recombination
is unequal, duplication can result. Retrotransposition is the
process in which a sequence of DNA is copied to RNA and then
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copied back to DNA instead of being translated into proteins.
This results in extra copy of the same sequence of DNA and
any genes found along this sequence will be duplicated in
the process. Whole-genome duplications (WGDs) are another
possible mechanism, in which the entire chromosome is
replicated twice. WGDs are the result of mitotic cell divisions
that duplicate the genome but fail to separate the copied
genome from the original.

After gene duplication, fates of duplicated genes are still
under much debate. There are several models about the
evolutionary mechanisms that are responsible for the retention
and subsequent divergence of newly created gene duplicates
[5–7]. Among them, two dominant models are the neofunc-
tionalization (NEO-F) model, when an original gene has one
dominant function [8], and the escape from adaptive conflict
(EAC) model, when an original gene has two or more distinct
subfunctions [9,10]. According to the NEO-F model, after
duplication due to the functional redundancy, degenerative
mutations are accumulated in one copy, while the other
duplicate copy continues to perform the essential tasks of
the ancestral single-copy gene. In the majority of cases, the
redundant gene duplicate will eventually be rendered func-
tionless by accumulated inactivating mutations and becomes
a pseudogene, a gene that is no longer transcribed. In a very
small minority of cases, the redundant gene may escape this
fate by fixing one or more mutations that fortuitously adapt
the encoded protein to a new function.

When an ancestral single-copy gene encodes a generalist
protein that is capable of performing two or more distinct
subfunctions, the product of this gene experiences “adaptive
conflict,” as joint optimization of the protein’s multiple
subfunctions is constrained by antagonistic pleiotropy. On a
single-copy pleiotropic gene, mutations that increase activity
of one function may be prevented from going to fixation
because they reduce activity of the other function and vice
versa. If this gene is duplicated, then each of the two duplicates
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can break free of these pleiotropic constraints and specialize on
activity of one function, respectively. In the EAC model, gene
duplication can resolve adaptive conflicts between competing
subfunctions of a pleiotropically constrained single-copy gene
by the division of labor between the duplicated genes brought
about by the fixation of advantageous mutations that refine
ancestral subfunctions of the encoded protein [11].

In this paper, we present a statistical physics method to
analyze the EAC model for gene duplication. We use the Crow-
Kimura quasispecies model [also known as a parallel mutation-
selection (ParaMuSe) model] of evolution to describe the
dynamics of a mixed population of individuals with single
and double copies of a pleiotropic gene with two functions.
The asymptotic mean fitness of the population in this model
was analyzed in an earlier paper [12]. Here we solve the
population dynamics toward the asymptotic state. By mapping
the evolutionary dynamics onto the dynamics of a quantum
spin chain, we derive the spin coherent state path integral
representation and solve the evolutionary dynamics under a
saddle-point semiclassical approximation. The model shows a
phase transition between an EAC phase in which each copy of
a duplicated gene evolves toward subfunctionalization and a
duplication loss of function (DLoF) phase in which one copy
maintains its pleiotropic function and the other copy undergoes
neutral mutation to lose its original function. We analyze the
population dynamics toward the EAC phase and calculate the
mean time taken for the duplicated gene to become fixed in
the population.

The paper is organized as follows. In Sec. II, we introduce
the Crow-Kimura quasispecies model of evolution and map
the Crow-Kimura model onto a quantum spin model with
a Hamiltonian composed of Pauli spin operators. By using
the spin coherent state path integral representation, we show
how to solve the dynamics of the Crow-Kimura model
semiclassically for the general fitness landscape in Sec. III.
In Sec. IV, we extend the mapping and the path integral
representation to the EAC model of gene duplication and
derive the phase diagrams and evolutionary dynamics toward
the EAC phase. In Sec. V, we conclude with a brief discussion
and outline possible future works.

II. MAPPING OF QUASISPECIES MODELS TO QUANTUM
SYSTEMS

We first introduce the ParaMuSe model [13], which
describes the evolution of an infinite population of se-
quences subject to mutation and selection. In this quasispecies
model, the sequences can be written as a chain of L spins,
Si = (si

1, . . . ,s
i
L), i = 1,2, . . . ,2L, where si

j ∈ {↑,↓}, j =
1,2, . . . ,L. Each sequence represents a different genotype, and
each spin in a sequence represents a base pair in the genome.
For sequences of length L, this gives a total of 2L possible
genotypes. The population is defined as a distribution on the
set of sequences, p(Si).

The (linearized) ParaMuSe model describes the evolution
of the population {p(Si)} by the equation

dp(Si)

dt
= f (Si)p(Si) + μ

∑
d(i,j )=1

[p(Sj ) − p(Si)], (1)

where the sum runs over sequences Sj a single spin flip
away from sequence Si [d(i,j ) = 1]. [The Hamming distance
between Si and Sj , d(i,j ), is defined as the number of spin
sites at which the two sequences differ.] The function f (Si) is
known as the fitness and represents the reproduction rate of the
sequence Si . The second term on the right describes mutation
of the sequence Sj into sequence Si (and vice versa), where μ

is the mutation rate.
For a given fitness function, the ParaMuSe model has

unique asymptotic population distributions defined by

pasp(Si) := lim
t→∞

p(Si)∑
j p(Sj )

. (2)

The asymptotic population distribution has a population
growth rate

f =
∑

j

pasp(Sj )f (Sj ) (3)

known as the asymptotic mean fitness of the population.
We now map this model onto a quantum spin model with a

Hamiltonian composed of Pauli spin operators. Let V1/2 denote
the spin- 1

2 Hilbert space

V1/2 = {a|↑〉 + b|↓〉}; (4)

then, the population distribution p(Si) can be considered as a
state, |�p〉, in the space ⊗LV1/2:

|�p〉 =
∑

i

p(Si)||Si〉〉. (5)

The ParaMuSe model dynamics can be expressed by an
imaginary-time Hamiltonian operator on this Hilbert space
[14–16]. We have

d

dt
|�(t)〉 = −H |�(t)〉, (6)

with

H = −f
(
σ z

1 , . . . ,σ z
L

) − μ

L∑
i=1

(
σx

i − 1
)
, (7)

where the σi are the Pauli spin operators acting on the ith
spin in the sequence. The ground states of the Hamiltonian H

correspond to the asymptotic population distributions of the
ParaMuSe model.

In general, the fitness landscape f (Si) is an arbitrary
function of the configuration of the sequence. For simplicity,
we consider the case in which the fitness f (Si) depends only
on the sum of spins in the sequence Si ; i.e., the fitness is a
function of one parameter, the Hamming distance from the
reference sequence S1 = (↑↑· · ·↑):

f
(
σ z

1 , . . . ,σ z
L

) = f
(
σ z

1 + · · · + σ z
L

)
. (8)

We refer to such a fitness landscape as a symmetric fitness
landscape because it has a permutation symmetry (later on we
will generalize to the case where fitness is a function of the
Hamming distance from several reference sequences [17]). In
this case, we can rewrite the ParaMuSe Hamiltonian in terms
of the total spin operators, σα = σα

1 + · · · + σα
L (α = x,y,z).
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The ParaMuSe Hamiltonian becomes

H = −f (σ z) − μ(σx − L). (9)

Since the Hamiltonian involves only total spin operators,
we can decompose the Hilbert space ⊗LV1/2 into a sum of
irreducible subspaces (representations) under the action of the
total spin operators {Jx,Jy,Jz}, Jα = 1

2σα and consider the ac-
tion of the Hamiltonian on each subspace separately. The
decomposition is as follows:

⊗LV1/2 = VL/2 ⊕ (⊕[L/2]
k=1 ckVL/2−k

)
, (10)

where Vj is the spin-j representation and [x] denotes the
integer part of x. The coefficients ck are not important
because we will focus on the highest-spin subspace VL/2.
The highest-spin subspace VL/2 in the decomposition above
can be identified as the subspace of all populations which are
invariant under permutations in the order of spins [12]. From
the Perron-Frobenius theorem, it is known that the ParaMuSe
Hamiltonian has a unique ground state, which corresponds to
the asymptotic population distribution of Eq. (1). The ground
state for a symmetric fitness landscape must be invariant under
permutations (if it were not, then we could permute the spins
to create another ground state, violating uniqueness), and so it
belongs to the spin-L/2 subspace, VL/2. For large L, we apply
the techniques of the spin coherent state path integral to the
VL/2 space to extract expressions for the ground state and the
ground state energy.

III. SPIN COHERENT STATE PATH INTEGRAL

The dynamics of the ParaMuSe model in the case of
symmetric populations and fitness functions corresponds to
the imaginary-time dynamics of a quantum spin-L/2 state
under the action of a Hamiltonian composed of Pauli spin
operators [12]. A path integral for the quantum system can be
constructed using spin coherent states [18,19].

In the spin-j space with j = L/2, there are (2j + 1)
number of normalized orthogonal basis vectors |j,m〉, m =
−j,−j + 1, . . . ,j , defined as common eigenvectors of J 2 and
Jz:

J 2 |j,m〉 = j (j + 1) |j,m〉 , (11)

Jz |j,m〉 = m |j,m〉 . (12)

We define un-normalized orthogonal vectors |j,m) as

|j,m) = (j − m)!

(2j )!
J

j+m
+ |j,−j 〉

=
√

(j + m)!(j − m)!

(2j )!
|j,m〉 , (13)

with (j,m|j,m) = d!(L − d)!/L! so that

J+ |j,m) = (j − m) |j,m + 1) , (14)

J− |j,m) = (j + m) |j,m − 1) , (15)

where J± = Jx ± iJy , and identify these vectors as the
population states |d) = |j,m) with d = j + m, j = L/2, and
d = 0,1,2, . . . ,L where d is a Hamming distance of a state

from the state |d = 0) = |↓,↓, · · · ,↓〉. With a definition of
the projection state

(·| = (0| eJ− , (16)

we find

(·|d) = 1, (17)

and we write a normalized state |�(t))

|�(t)) =
L∑

d=0

p(d; t) |d) , (18)

so that (·|�(t)) = 1 for all t � 0 and p(d; t) = CL
d (d|�(t))

with CL
d = L!/(L − d)!d!.

Now we define a family of spin coherent states |z〉 by

|z〉 = exp[zJ+] |0) =
L∑

d=0

L!

(L − d)!d!
zd |d) , (19)

where z is a complex number, |0) denotes the lowest eigen-
value state with respect to Jz normalized so that (0|0) = 1,
and |z = 1〉 = |·) with (·|z〉 = (0| eJ−ezJ+ |0) = (1 + z)L. By
making use of the resolution of the identity

I = L + 1

2π

∫∫
dz̄dz

(1 + z̄z)N+2
|z〉〈z|, (20)

the population state |d) can be expressed in terms of spin
coherent states

|d) = L + 1

2π

∫∫
dz̄dz

(1 + z̄z)L+2
z̄d |z〉, (21)

with overlaps (d|z〉 = zd and 〈z|d) = z̄d . In the quasispecies
framework |0) denotes the population where the sequence (↓↓
· · · ↓) has frequency 1 and all other sequences are unpopulated
and |·) = |z = 1〉 corresponds to a uniformly distributed
population in which each sequence hasxbrk frequency 1.

In Ref. [12] we gave a different definition of spin coherent
states, where |θ,φ〉 denoted the unique state such that

(sin θ cos φ σx + sin θ sin φ σy + cos θ σ z)|θ,φ〉 = L|θ,φ〉
(22)

normalized so that 〈θ,φ|θ,φ〉 = 1. These two definitions are
equivalent: if z = cot θ

2 eiφ then

|θ,φ〉 = (1 + zz̄)−L|z〉. (23)

The relationship between z and (θ,φ) has a simple interpreta-
tion of projection of the unit sphere onto the complex plane
from the north -pole.

The path integral for the matrix element 〈zf |e−Ht |zi〉 is
constructed by making use of the resolution of the identity,
Eq. (20). Dividing up the time interval [0,t] into n equal
segments, inserting the resolution of the identity between
each segment and taking the limit n → ∞ leads to the path
integral [18]

〈zf |e−Ht |zi〉 =
∫ zf

zi

D[z̄(t),z(t)] exp{S[z̄(t),z(t)]}, (24)

where the integral runs over all paths z(t), z̄(t) such that z(0) =
zi and z̄(t) = z̄f [note that z(t) and z̄(t) are not required to be
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complex conjugates]. The action is given by

S[z̄,z] = L

2
{ln[1 + z̄f z(t)] + ln[1 + z̄(0)zi]}

+
∫ t

0

(
L

2

˙̄z(s)z(s) − z̄(s)ż(s)

1 + z̄(s)z(s)
− H[z̄(s),z(s)]

)
ds,

(25)

and the Hamiltonian function H(z̄,z) is given by

H(z̄,z) = 〈z|H |z〉
〈z|z〉 . (26)

In the large L limit one can make a semiclassical approxi-
mation to the path integral

〈zf |e−Ht |zi〉 ≈ K exp{S[z̄cl,zcl]}, (27)

where the classical trajectories zcl and z̄cl satisfy Hamilton’s
equations

˙̄zcl = (1 + z̄clzcl)2

L

∂H
∂zcl

,

(28)

żcl = − (1 + z̄clzcl)2

L

∂H
∂z̄cl

.

In order to calculate the form of the classical Hamiltonian Eq.
(26) the following results are useful:

〈z|z〉 = (1 + zz̄)L, (29)

〈z|σ z|z〉 = −L(1 − zz̄)(1 + zz̄)L−1, (30)

〈z|σx |z〉 = L(z + z̄)(1 + zz̄)L−1, (31)

〈z|σy |z〉 = iL(z − z̄)(1 + zz̄)L−1. (32)

We next apply these results to solve the dynamics of the EAC
model for gene duplication.

IV. MODEL OF ESCAPE FROM ADAPTIVE CONFLICT

We consider a mixed population of sequences of length
L (original gene) and 2L (duplicated gene), corresponding
individuals with single or double copies of the gene undergoing
adaptive conflict. For the sequences of length L we take
the fitness to be a function of distance from two reference
sequences, S1 and S2, which are assumed to optimize two
different gene functions, namely,

fL(Si) = f1[d(Si,S1)] + f2[d(Si,S2)], (33)

where f1 and f2 describe the fitness benefit to the individual
from the first and second gene functions, respectively. As
the fitness is a function of distance from two reference
sequences we require two copies of the σ operators such
that the first copy, denoted σs , only acts on those sites
where two sequences S1 and S2 have the same spins,
and the second copy, denoted σo, only acts on those sites
where S1 and S2 have the opposite spins. If we denote
the number of sites at which S1 and S2 have the same
spins and the opposite spins by Ls and Lo, respectively, and
assume that S1 = (↑↑ · · · ↑) then we can write the Hamming
distances of Si to S1 and S2 in terms of the σ operators as

follows:

d(Si,S1) ||Si〉〉 = (
Ls + Lo − σ z

s − σ z
o

)/
2 ||Si〉〉, (34)

d(Si,S2) ||Si〉〉 = (
Ls + Lo − σ z

s + σ z
o

)/
2 ||Si〉〉, (35)

where ||Si〉〉 denotes the vector corresponding to the state Si .
For given S1 and S2, Ls and Lo are fixed and σs (σo) acts in
the spin-Ls/2 (spin-Lo/2) subspace, VLs/2 (VLo/2). The state
vector of a single gene, ||Si〉〉, can be expressed as an outer
product of a state |Si

s〉s in the VLs/2 subspace and a state |Si
o〉o in

the VLo/2 subspace. In each subspace, we can use spin coherent
states |zs〉s and |zo〉o as described in the previous section.

For the sequences of length 2L, we consider each sequence
to be composed of two subsequences of length L, (Si,Sj ), and
assume that each subsequence determines the effectiveness of
one of the two gene functions, i.e.,

f2L(Si,Sj ) = f1[d(Si,S1)] + f2[d(Sj ,S2)]. (36)

For this fitness function we require four copies of the σ

operators, denoted σs1, σo1, σs2, and σo2, which act as follows:

σs1||Si,Sj 〉〉 = ||σsS
i,Sj 〉〉, (37)

σo1||Si,Sj 〉〉 = ||σoS
i,Sj 〉〉, (38)

σs2||Si,Sj 〉〉 = ||Si,σsS
j 〉〉, (39)

σo2||Si,Sj 〉〉 = ||Si,σoS
j 〉〉, (40)

where ||Si,Sj 〉〉 denotes the vector corresponding to the state
(Si,Sj ). Again for given S1 and S2, Ls1 = Ls2 and Lo1 = Lo2

are fixed and σs1 (σo1) and σs2 (σo2) act in the spin-Ls1/2
(spin-Lo1/2), VLs1/2 (VLo1/2), and in the spin-Ls2/2 (spin-
Lo2/2) subspace, VLs2/2 (VLo2/2), respectively. The state vector
of a duplicated gene, ||Si,Sj 〉〉, can be expressed as an outer
product of four states: a state |Si

s1〉s1 in the VLs1/2 subspace,
a state |Si

o1〉o1 in the VLo1/2 subspace, a state |Si
s2〉s2 in the

VLs2/2 subspace, and a state |Si
o2〉o2 in the VLo2/2 subspace. In

each subspace, we can use spin coherent states |zs1〉s1, |zo1〉o1,
|zs2〉s2, and |zo2〉o2 as described in the previous section.

We assume that gene duplication, Si → (Si,Si), occurs
with a rate ν, and also allow an additive fitness cost c for
sequences of length 2L to model the cost to the individual of
sustaining two rather than one gene copies. Figure 1 shows
gene duplication and the final states of duplicated genes after
the evolution process. To describe these processes in the
Hamiltonian, we need to define a duplication operator, D,

FIG. 1. Process of gene duplication and the final states of
duplicated genes.
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and two projection operators, IL and I2L, such that

DSi = (Si,Si), D(Si,Sj ) = 0,

ILSi = Si, IL(Si,Sj ) = 0, (41)

I2LSi = 0, I2L(Si,Sj ) = (Si,Sj ).

The Hamiltonian then becomes

H = HL + H2L − νD, (42)

where

HL=−fL

(
σ z

s ,σ z
o

) + μ
(
LIL − σx

s − σx
o

) + νIL, (43)

H2L = −f2L

(
σ z

s1,σ
z
o1,σ

z
s2,σ

z
o2

)
+μ

(
2LI2L − σx

s1 − σx
o1 − σx

s2 − σx
o2

) + cI2L. (44)

For simplicity we will study the case where f1 and f2 are
linear functions of distance:

f1[d(Si,S1)] = A1[L − 2d(Si,S1)], (45)

f2[d(Si,S2)] = A2[L − 2d(Si,S2)]. (46)

In this case fL(σ z
s ,σ z

o ) takes the form

fL

(
σ z

s ,σ z
o

) = A1
(
σ z

s + σ z
o

) + A2
(
σ z

s − σ z
o

)
, (47)

and

f2L

(
σ z

s1,σ
z
o1,σ

z
s2,σ

z
o2

) = A1
(
σ z

s1 + σ z
o1

) + A2
(
σ z

s2 − σ z
o2

)
.

(48)

We suppose that initially there are no sequences of length
2L in the population and that the population of length L

sequences is at equilibrium. Since HL is a linear combination
of the σ operators the equilibrium population is a tensor
product of coherent states on the “s” and “o” sectors, |zs〉s ⊗
|zo〉o. Using the methods in Ref. [12] we find

zs = (A1 + A2)/μ +
√

[(A1 + A2)/μ]2 + 1, (49)

zo = (A1 − A2)/μ +
√

[(A1 − A2)/μ]2 + 1, (50)

with a mean fitness of the length L sequences:

〈fL〉 =
√

(A1 + A2)2 + μ2 Ls

+
√

(A1 − A2)2 + μ2 Lo − μL − ν. (51)

Similarly, we find mean fitnesses of the length 2L sequences
in the DLoF state and in the EAC state:〈

f DLoF
2L

〉 =
√

(A1 + A2)2 + μ2 Ls

+
√

(A1 − A2)2 + μ2 Lo − μL − c, (52)

〈
f EAC

2L

〉 = (√
A2

1 + μ2 +
√

A2
2 + μ2 − 2μ

)
L − c. (53)

For c < ν, the mean fitness of the length 2L sequences
is always higher than that of the length L sequences, and
therefore as t → ∞ the fraction of length 2L sequences in the
whole population tends to one. In this regime, two phases of
the length 2L sequences compete with each other. In case of

FIG. 2. Parameters A1 = A2 = A for the left figure and Lo/L =
0.1 for the right figure.

A1 = A2 = A, we find the phase boundary in the phase space
of (Lo/L,A/μ):

Lo

L
= 1 − 2

√
1 + (A/μ)2 − 1√

1 + 4 (A/μ)2 − 1
. (54)

This gives the phase diagram shown in the left figure of Fig. 2.
For a fixed value of Lo/L, the phase boundary is determined
by the condition 〈f DLoF

2L 〉 = 〈f EAC
2L 〉:

√
(A1 + A2)2 + μ2

(
1 − Lo

L

)
+

√
(A1 − A2)2 + μ2

Lo

L

=
√

A2
1 + μ2 +

√
A2

2 + μ2 − μ, (55)

which can be solved numerically and gives the phase diagram
in the right figure of Fig. 2.

For c > ν, the DLoF phase always has lower fitness than
the unduplicated phase so that there is a competition between
the unduplicated and EAC phases only. Depending on the
parameters Lo/L,A1,A2,μ,ν, and c, the asymptotic state is
either the EAC phase or a state dominated by unduplicated se-
quences of length L. The phase is determined by a competition
between the fitness benefits of subfunctionalization and the
greater mutational load associated with maintaining two gene
copies. The EAC phase is favored when both subfunctions
have significant fitness benefits (A1,A2  μ) and when the
optimal sequences for the two subfunctions are significantly
different (large Lo). Since we are interested in the competition
between length L and length 2L sequences we focus on the
dynamics in the c > ν regime.

As the duplication operator D satisfies D2 = 0 we can
expand

e−Ht = e−(HL+H2L)t + ν

∫ t

0
ds e−(HL+H2L)sDe−(HL+H2L)(t−s).

(56)
Applying this expansion to the initial state we have

e−Ht (|zs〉s ⊗ |zo〉o)

= e〈fL〉t (|zs〉s ⊗ |zo〉o)

+ ν

∫ t

0
ds e〈fL〉(t−s)e−H2LsD(|zs〉s ⊗ |zo〉o). (57)

The first and second terms on the right-hand side describe the
population of sequences of length L and of length 2L at time
t , respectively [20,21].
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The action of the duplication operator D is problematic.
In order to use the coherent states approach we must assume
that the population is symmetric, i.e., that any two sequences
Si and Sj which have the same Hamming distance from
the reference sequences S1 and S2 should have the same
population. However, the operator D destroys this symmetry
since, for example, duplication of the sequence Si increases
the population of the sequence (Si,Si) but does not increase
the population of the sequence (Si,Sj ) even though both
sequences Si and Sj have the same Hamming distances from
both reference sequences S1 and S2.

To deal with this problem we modify the action of the
duplication operator to maintain the symmetry. We define the
modified duplication operator D̃ by

D̃Si = 1

n

∑
j

(Si,Sj ), (58)

where the sum runs over all sequences Sj which have the same
distances from S1 and S2 as those of Si , and n is the number
of such sequences. In terms of representations of su(2), D̃

is the orthogonal projection of D onto the representation of
symmetric populations. Since in our model fitness is only a
function of distance from the reference sequences the change
from D to D̃ does not affect any macroscopic details of the
evolution, such as mean fitness.

The action of the modified operator, D̃, on the states |d) is

D̃ |d) = |d) ⊗ |d) . (59)

The action on a coherent state is therefore found to be

D̃|z〉 = D̃

(
L∑

d=0

L!

(L − d)!d!
zd |d)

)
(60)

=
L∑

d=0

L!

(L − d)!d!
zd |d) ⊗ |d) . (61)

Rewriting |d) in terms of coherent states and evaluating the
sum we find

D̃|z〉 = (L + 1)2

(2π )2

∫∫
dz1dz̄1

(1 + z1z̄1)L+2

∫∫
dz2dz̄2

(1 + z2z̄2)L+2

× (1 + zz̄1z̄2)L|z1〉 ⊗ |z2〉. (62)

On the tensor product of coherent states in Eq. (57) the operator
D̃ acts as

D̃(|zs〉s ⊗ |zo〉o) = (D̃|zs〉s) ⊗ (D̃|zo〉o). (63)

We will calculate the size of the populations of length L and
length 2L sequences at time t . From Eq. (57) the population
of length L sequences at time t is

pL(t) = ((·|s ⊗ (·|o)e−Ht (|zs〉s ⊗ |zo〉o)

= e〈fL〉t ((·|s ⊗ (·|o)(|zs〉s ⊗ |zo〉o)

= e〈fL〉t (1 + zs)
Ls (1 + zo)Lo, (64)

and the population of length 2L sequences at time t is

p2L(t) = ν

∫ t

0
ds e〈fL〉(t−s)((·|s1 ⊗ (·|o1 ⊗ (·|s2 ⊗ (·|o2)

× e−H2LsD̃(|zs〉s ⊗ |zo〉o)

= ν

∫ t

0
ds e〈fL〉(t−s)((·|s1 ⊗ (·|s2)e−H2Ls(D̃|zs〉s)

× ((·|o1 ⊗ (·|o2)e−H2Ls(D̃|zo〉o). (65)

Since the Hamiltonian H2L is linear, its action can be computed
separately on each of the four sectors, s1, o1, s2, and o2.
Defining

zi± = (Ai/μ) ±
√

(Ai/μ)2 + 1, (66)

αi(s) = −zi−(1 − zi−) + (1 + zi−) exp[−μ(zi+ − zi−)s],

(67)

βi(s) = (1 − zi−) + (1 + zi−)zi− exp[−μ(zi+ − zi−)s],

(68)

where i ∈ {1,2}, we find

((·|s1 ⊗ (·|s2)e−H2Ls(D̃|zs〉s)

=
(

α1(s)α2(s) + β1(s)β2(s)zs

(z1−2 + 1)(z2−2 + 1)

)Ls

e−Lscs/L

× exp

[
1

2
Lsμs(z1+ − z1− + z2+ − z2− − 4)

]
, (69)

((·|o1 ⊗ (·|o2)e−H2Ls(D̃|zo〉o)

=
(

α1(s)β2(s) + β1(s)α2(s)zo

(z1−2 + 1)(z2−2 + 1)

)Lo

e−Locs/L

× exp

[
1

2
Loμs(z1+ − z1− + z2+ − z2− − 4)

]
. (70)

Inserting these results into the integral, Eq. (65), allows us to
calculate the population of sequences of length 2L at time t .

Evolutionarily, the interesting case is the one in which
the double-copy sequences initially have lower fitness than
their single-copy parents but through the accumulation of
advantageous mutations can raise their mean fitness above
that of the single-copy population. The first condition requires
that

fL(Si) − ν > f2L(Si,Si) − c, (71)

which reduces to ν < c. The second condition was calculated
in Ref. [12] and gives

〈fL〉 < 1
2Lμ(z1+ − z1− + z2+ − z2− − 4) − c. (72)

Figure 3 shows the relative size of the populations p2L(t)
and pL(t) for a choice of parameters satisfying these two

FIG. 3. Fraction of the population in which the gene is duplicated
as a function of time. Parameters are L = 1000, Ls = 900, A1 =
A2 = 1.0 × 10−5, μ = 1.0 × 10−7, ν = 1.0 × 10−4, and c = 1.0 ×
10−3.
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FIG. 4. Distribution of the population as a function of distance
from the two reference sequences, d(S,S1) (vertical axis) and d(S,S2)
(horizontal axis), at various times t . For duplicated sequences the
sum of the distributions of each of the two subsequences is shown.
Parameters are the same as in Fig. 3. White regions in the diagrams
denote points forbidden by the condition d(S1,S2) = Lo. The dis-
tribution changes rapidly at t∗ ≈ 5.3 × 105: for t = 5.23 × 105 the
distribution is not visibly different from the initial distribution, and
by t = 5.34 × 105 the distribution is already indistinguishable from
its final (asymptotic) form.

conditions. Figures 4 and 5 show the evolution of the
population of sequences as a function of the distance from the
sequences S1 and S2 which optimize each gene subfunction.
The figures show two distinct regimes: initially the population
sustains a small, constant fraction of length 2L sequences,
until a time t∗, after which the population of length 2L

FIG. 5. Population distribution of the length L sequences as a
function of distance (left) and population distribution of the two
subsequences (two gene copies) of the length 2L sequences as a
function of distance (right) from each reference sequence (i = 1,2).
The solid line is at t = 5.23 × 105, the dashed line is at t = 5.28 ×
105, and the dotted line is at t = 5.30 × 105.

sequences starts to exponentially outgrow the population of
length L sequences. For t < t∗ the length 2L sequences have
not had time to evolve sufficiently to outperform their length
L competitors, and the small, constant fraction of length 2L

sequences is sustained only by the continuing duplication. For
t > t∗ a significant number of the length 2L sequences have
adapted enough to outperform the length L sequences.

This analysis gives us a way to estimate t∗. If the length
2L sequences are sustained only by the continuing duplication
then the dominant contribution to the integral, Eq. (65), comes
from those sequences which have recently been duplicated at
time t , i.e., when s ≈ 0. The integrand in this case is

e〈fL〉t ((·|s1 ⊗ (·|o1 ⊗ (·|s2 ⊗ (·|o2)D̃(|zs〉s ⊗ |zo〉o)

= e〈fL〉t (1 + zs)
Ls (1 + zo)Lo . (73)

The length 2L sequences which have had the most time to
adapt are those which were duplicated early on, i.e., for which
s ≈ t . If we assume that t is large enough so that αi(t) and
βi(t) are approximately constant then the integrand is

((·|s1 ⊗ (·|o1 ⊗ (·|s2 ⊗ (·|o2)e−H2Lt D̃(|zs〉s ⊗ |zo〉o)

=
(

(1 − z1−)(1 − z2−)

(1 + z1−2)(1 + z2−2)

)L

(z1−z2− + zs)
Ls (−z1− − z2−zo)Lo exp

{[
1

2
Lμ(z1+ − z1− + z2+ − z2− − 4) − c

]
t

}
. (74)

The crossover between the two regimes occurs approximately when these two contributions are equal, which gives

t∗ =
[

1

2
Lμ(z1+ − z1− + z2+ − z2− − 4) − c − 〈fL〉

]−1

×
[
L ln

(
(1 + z1−2)(1 + z2−2)

(1 − z1−)(1 − z2−)

)
+ Ls ln

(
1 + zs

z1−z2− + zs

)
+ Lo ln

(
1 + zo

−z1− − z2−zo

)]
. (75)

For the parameters used in Fig. 3 this estimate gives t∗ =
5.3 × 105, which shows that our approximation is good in this
case.

Note that t∗ is only positive and finite when the inequality,
Eq. (72), is satisfied and tends to infinity when Eq. (72) is
satisfied as an equality. As found in Ref. [12], the condition,
Eq. (72), as an equality marks a phase transition between two
distinct equilibrium phases, one in which sequences of length
L dominate the population and one in which sequences of
length 2L dominate the population. The divergence of t∗ at
the threshold is thus an example of critical slowing down.

Figure 6 shows t∗ plotted as a function of mutation rate
and demonstrates that there is an optimum mutation rate
at which t∗ is a minimum. The existence of an optimum
mutation rate is to be expected—too low a mutation rate
increases the time necessary for the population of length
2L sequences to adapt; too high a mutation rate and the
higher mutational load on the length 2L sequences destroys
their advantage. It is possible to obtain an equation for the
optimum mutation rate from ∂t∗

∂μ
= 0, but it is not possible to

give a closed form for the optimum mutation rate from this
equation.
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FIG. 6. t∗ as a function of mutation rate μ, showing the existence
of an optimum mutation rate which minimizes t∗. Other parameters
are the same as in Fig. 3. For μ > 1.08 × 10−6, the inequality,
Eq. (72), is no longer satisfied and t∗ diverges. The optimum mutation
rate occurs when μ∗ = 2.16 × 10−7 per base per generation.

The evolution appears discontinuous around t∗; that is, the
peak of the population distribution does not move smoothly
but jumps from a point equidistant from S1 and S2 (the
original pleiotropic gene) to points close to S1 and S2 (the
subfunctionalized genes). The discontinuity can be understood
as follows: over many generations the subfunctionalized genes
evolve in a very small subpopulation of duplicated sequences
(too small to be visible in the figure), while most of the
population retains the original pleiotropic gene. Once the
subfunctionalized genes have been discovered this small
subpopulation has a fitness advantage and eventually grows
to dominate the population. The fact that the crossover at time
t∗ is determined by the evolution of a small subpopulation
implies that in real populations the effects of finite population
size are likely to be very significant.

V. DISCUSSION

We have developed and studied a statistical physics model
of escape from adaptive conflict for gene duplication, based
on the Crow-Kimura quasispecies model. We described the
dynamics of a mixed population of individuals with single and
double copies of a pleiotropic gene with two functions. The
evolution dynamics can be mapped onto the dynamics of a
quantum spin chain, which we solved using the spin coherent
state path integral.

In the long time limit, there is a competition to dominate in
a mixed population between individuals with single genes (the
length L sequences) and individuals with duplicated genes (the
length 2L sequences). In the c < ν regime, the mean fitness of
duplicated genes is always higher than that of individuals with
single genes, so that the fraction of individuals with duplicated
genes in a mixed population tends to 1 as t → ∞. Furthermore,
among individuals with duplicated genes, there is a sharp
phase transition between the EAC phase, in which each copy
of duplicated genes evolves toward subfunctionalization, and
the DLoF phase, in which one copy maintains its pleiotropic
function and the other copy undergoes neutral mutation to lose
its original function. The phase is determined by a competition
between the fitness benefits of subfunctionalization and the
greater mutational load associated with maintaining two gene
copies. The EAC phase is favored when both subfunctions have
significant fitness benefits (A1,A2  μ) and when the optimal
sequences for the two subfunctions are significantly different
(large Lo). That is, subfunctionalization occurs when the cost
for gene duplication is smaller than the gene duplication rate,

and the fitness benefits of both subfunctions and the distance
(Lo) between the sequences optimizing the two functions are
larger than some critical values.

In the c > ν regime, whether individuals with single
genes or individuals with duplicated genes dominate in the
population depends on the mutation and selection parameters.
We chose the mutation and selection parameters such that
individuals with duplicated genes initially have lower fitness
than their single gene parents but through the accumulation
of advantageous mutations can raise their mean fitness higher
than those of a single gene population. For these parameters,
we showed that there is a sharp change in the composition of
the mixed population at time t∗: before t∗ the population sus-
tains a small, constant fraction of individuals with duplicated
genes; after t∗ the population of individuals with duplicated
genes starts to exponentially outgrow the population of indi-
viduals with single genes and eventually the mixed population
consists only of individuals with duplicated genes. We also
presented how to estimate t∗ and showed that there is an
optimal mutation rate at which t∗ is a minimum. The crossover
at t∗ is the result of a small subpopulation of duplicated
sequences which develop the two subfunctionalized genes
and thereby eventually outperform the rest of the population.
A smaller mutation rate increases the time necessary for the
subfunctionalized genes to evolve, and a larger mutation rate
decreases the fitness benefits of subfunctionalization due to
increased mutational load. Thus, the existence of an optimal
mutation rate is to be expected.

The values of parameters used in the analysis and figures
are based where possible on empirical data. If the fitness
value of AiL = 0.01 is taken to represent a 1% fitness benefit
to the organism coming from each gene function and each
organism produces on average one offspring per generation,
then t gives approximately the number of generations. Thus,
for the parameter values used in the figures, the model predicts
a duplication will take on the order of 106 generations to
become fixed in the population. Experimental measurement of
the duplication rate, ν, is difficult, and estimates can vary
by several orders of magnitude according to the methods
used [22]. For bacteria and DNA-based viruses, for which
the quasispecies model is most directly applicable, typical
rates are of the order of 10−3–10−5 per gene per generation
[23]. Estimates of the spontaneous mutation rates for the same
organisms range from 10−6–10−10 per base per generation
[24]. We have been unable to find any empirical estimates
of the fitness cost c of sustaining a duplicated gene, but in
our model the possible values of c are constrained by the
requirement that the EAC phase be selected. For the choices
of parameters above this gives 1.0 × 10−4 < c < 2.0 × 10−3.

The results of our quasispecies model apply to infinite
populations. However, the behavior of the model and previous
theoretical work [25] show that finite size effects such as
genetic drift are likely to be very significant in the evolution of
subfunctionalization in real populations. Therefore extending
the model to finite populations is an important future work.

As far as we know, this is the first presentation of a mathe-
matical model showing the evolutionary dynamics toward the
EAC state. In order to focus on the evolutionary dynamics,
we considered the simplest fitness landscape, the linear fitness
function. Since the spin coherent state path integral can give
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the dynamics for any symmetric fitness function, the same
analysis can also be applied to more complicated cases. We
are presently working in the investigation of the effects of
epistasis in the evolutionary dynamics toward the EAC state.
Duplication is also known to be important in the evolution
of transcription factors, where duplication of a transcription
factor encoding gene reduces the selective pressure and allows
one copy to accumulate more mutations [26,27]. Furthermore,
if a regulated gene has several binding sites then there is
an evolutionary competition between the maintenance of two

weaker binding sites or a single stronger binding site [28].
It should be possible to study such systems by adapting the
model presented here.
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