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Lateral phase separation in polymer-blend thin films: Surface bifurcation
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We use simulations of a binary polymer blend confined between selectively attracting walls to identify and
explain the mechanism of lateral phase separation via a transient wetting layer. We first show that equilibrium
phases in the film are described by one-dimensional phase equilibria in the vertical (depth) dimension, and
demonstrate that effective boundary conditions imposed by the film walls pin the film profile at the walls. We
then show that, prior to lateral phase separation, distortion of the interface in a transient wetting layer is coupled
to lateral phase separation at the walls. Using Hamiltonian phase portraits, we explain a “surface bifurcation
mechanism” whereby the volume fraction at the walls evolves and controls the dynamics of the phase separation.
We suggest how solvent evaporation may assist our mechanism.
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I. INTRODUCTION

Understanding the mechanisms controlling phase separa-
tion in polymer-blend films is important for processing organic
electronic devices such as polymer light emitting diodes and
photovoltaic films, since film morphology is linked heavily
to device performance. This work, which expands upon a
recently published paper [1], identifies a different mechanism
which explains the dynamics of lateral phase separation
via a transient wetting layer. The distinction between the
layered morphology of vertical phase separation (one phase in
contact with a surface) and the nonwet morphology of lateral
phase separation (both phases in contact with a surface) was
recognized in early numerical studies of binary blends [2],
with a high wall-field, low thermal noise regime corresponding
to a layered morphology, and a low wall-field, high thermal
noise regime corresponding to a partially wet morphology. The
vertical layering of phases was realized both experimentally
[3] and computationally [4,5], even in the nonwet regime when
it is energetically favorable for both phases to be in contact with
the surface [6,7]. Experiments later revealed that the vertical
layers forming in the nonwet regime can break up as lateral
structures appear at a surface [8]. The initial formation of
a transient wetting layer (bilayer) which breaks up due to
an instability has also received more recent attention [9,10].
Despite the recognition of these phenomena, the dynamics of
the breakup of the transient wetting layer are not understood,
nor is the fundamental mechanism underlying the dynamics.
We use diffusion simulations of polymer-blend films confined
between selectively attracting walls to identify the dynamics
of lateral phase separation, using Hamiltonian phase portraits
of one-dimensional (1D) phase equilibria to explain a “surface
bifurcation mechanism” [11,12].

Sections IV–VII may be sufficient to understand our main
result, since preceding sections are concerned mainly with
theory. We proceed as follows: In Sec. II we revisit the
problem of solving for 1D phase equilibria in binary polymer-
blend films. In Sec. III we derive our diffusion equation.
In Sec. IV we show that 1D phase equilibria (calculated
in the vertical dimension perpendicular to the walls) can
effectively describe both the vertically segregated (bilayer)
and laterally segregated state, and we discuss exactly how

effective boundary conditions enforced by the film walls will
pin the film profile at the walls. In Sec. V we show our diffusion
simulations of lateral phase separation via a transient wetting
layer (TWL) and explain this phenomenon using 1D phase
equilibria. We argue that the growth of lateral inhomogeneities
at the confining walls (bifurcation of the film profile at the
walls, controlled by the wall boundary conditions) coincides
with distortion of the interface in the unstable TWL: this causes
the particular dynamics of lateral phase separation. In Sec. VI
we compare our results with experiments involving solvent
evaporation. We conclude in Sec. VII.

II. 1D PHASE EQUILIBRIA

The Flory–Huggins–de Gennes free energy functional F
for a 1D binary polymer blend (monodisperse, components A

and B, volume fraction of A given by φ, depth d) confined
between selectively attracting walls (surfaces) at z = 0 and
z = d is [13]

F[φ(z)] = 1

a

∫ d

0
[fFH (φ) + κ(φ)(∇φ)2]dz

+ f ∗
0 (φ0) + f ∗

d (φd ), (1)

where F is given in units of kBT , z measures the vertical
distance from the wall at z = 0, and ∇φ ≡ ∂zφ is the partial
derivative of φ with respect to z. a is the spacing of the
underlying Flory-Huggins lattice. To isolate the symmetry-
breaking effects of the film walls, we restrict ourselves to
a symmetric binary polymer blend (average composition
φ̄ = 1/2, degree of polymerization NA = NB = N ), so the
Flory-Huggins free energy contribution to Eq. (1) in units of
kBT is

fFH = φ

N
ln (φ) + 1 − φ

N
ln (1 − φ) + χφ(1 − φ), (2)

where χ is the Flory-Huggins interaction parameter. The
gradient coefficient κ (φ) in Eq. (1) is

κ(φ) ≡ κ = a2

36φ(1 − φ)
. (3)
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The (bare) surface energies f ∗
0 and f ∗

d are given by [14,15]

f ∗
S (φS) = h∗

SφS + 1

2
g∗

Sφ
2
S

= 1

a

(
hSφS + 1

2
gSφ

2
S

)
≡ 1

a
fS(φS), (4)

where S = 0,d (the index S denotes the confining walls) and
h∗

S ≡ hS/a and g∗
S ≡ gS/a are phenomenological parameters,

taking account of blend-wall interactions and “missing neigh-
bor” contributions due to the walls (surfaces), respectively.
Only the local volume fraction φS enters into Eq. (4). Note
that the definitions fS(φS) = hSφS + 1

2gSφ
2
S are the surface

energies per unit cell. These are convenient because hS and gS

are independent of the dimensionality D of the system [which
enters as a−D in Eqs. (1) and (4)].

We will denote film profiles, describing the volume fraction
φ as a function of distance z, by φ (z). In one dimension the
total free energy is given by

FT OT [φ(z)] = F[φ(z)] − μ

a

∫ d

0
φ(z)dz, (5)

where a factor of kBT has been absorbed into the chemical
potential μ. Equilibrium profiles (equilibria) φ(z) correspond
to a minimum in the total free energy, i.e., δFT OT /δφ(z) = 0,
given equivalently by

δF[φ(z)]

δφ(z)
≡ μ(z)

a
= μ

a
, (6)

meaning that for equilibria φ(z) the local chemical potential
μ (z) is a constant value μ for all z. Note that Eq. (6) contains a
functional (variational) derivative. For any chosen blend ratio
A : B (quantified by the average composition φ̄) equilibria
implied to exist in isolation (rather than coexisting with other
phases) must conserve φ̄, which for a symmetric binary blend
means φ̄ = 1/2. In a laterally segregated film of coexisting
phases φA(z) and φB(z) (rich in components A or B, i.e.,
φ̄B < φ̄ < φ̄A), adjustment of the area and composition of
each phase can conserve material.

We recently extended a Hamiltonian phase portrait method
[11] to study a nontrivial problem, namely films of finite
thickness with asymmetrically attracting surfaces (the use of
phase portraits, such as in the seminal work by Pandit and
Wortis [16], is discussed further in Ref. [12]). Our method
allowed all equilibria to be identified, and their evolution
through phase space tracked as film depth and temperature are
changed. We will describe how to interpret Hamiltonian phase
portraits in Sec. V. Here we will only show how a Lagrange
multiplier is required to manipulate the phase portraits to
obtain equilibrium profiles, and state the boundary conditions
arising from the presence of confining walls. Underlying
the Hamiltonian phase portrait method is the Euler-Lagrange
equation. The Lagrangian density L is the integrand of Eq. (1):

L(φ,∇φ) = a−1[fFH (φ) + κ(φ)(∇φ)2]. (7)

For a symmetric blend, a suitable constraint equation required
for profiles which independently conserve material is

1

a

∫ d

0

(
φ(z) − 1

2

)
dz = 0. (8)

We choose the simple constraint a−1φ and write a new
Lagrangian L′ as follows:

L′ = L + a−1λφ. (9)

λ is a Lagrange multiplier. The Euler-Lagrange equation for
equilibrium profiles φ(z) is then

2κ∇2φ − ∂φκ(∇φ)2 = ∂φfFH + λ, (10)

where ∂φ is the partial derivative with respect to φ.
Equation (10) is not enough to fully specify a solution; we
require two boundary conditions to numerically solve for
a unique solution. Setting the variational derivative of the
total free energy (5) with respect to φ(z) to zero, we obtain
two boundary conditions (written in terms of the dimension
independent surface energies):

+ 2κ(φ0)∇φ0 = +∂f0

∂φ
≡ +h0 + g0φ0, (11)

+ 2κ(φd )∇φd = −∂fd

∂φ
≡ −hd − gdφd. (12)

The boundary conditions (11) and (12) must be satisfied,
along with the constraint equation (8) via choice of λ, to
specify equilibrium profiles φ (z) which also satisfy the Euler-
Lagrange equation (10) [14,15,17].

III. DIFFUSION EQUATION

To derive our diffusion equation, we require the local
chemical potential μ

(
z′), given by the variational derivative

of the free energy (1) at z′:

μ(z′) = a
δF[φ(z)]

δφ(z′)
. (13)

We point out that Eq. (1) can be written as

aF[φ(z)] =
∫ d

0
[fFH (φ) + κ(φ)(∇φ)2

+ f0(φ)δz0 + fd (φ)δzd ]dz, (14)

where δzS represents the Kronecker δ function: δzS(z = S) =
1, δzS(z �= S) = 0 (S refers to the value of z at the walls,
i.e., S = 0 or S = d). The variational derivative in Eq. (13)
describes how F changes when we perturb the profile φ(z) by
an infinitesimally small amount ε at the point z = z′:

δF
δφ

= lim
ε→0

1

ε
{F[φ(z) + εg(z,z′)] − F[φ(z)]}. (15)

g(z,z′) is a test function (not rigorously a δ function or δ

distribution) whose value is 0 for z �= z′ and 1 for z = z′. It is
necessary to use such a test function due to the finite range of
the integral in the functional Eq. (14).

We will begin with the variational derivative of the gradient
term κ(φ) (∇φ)2 in Eq. (14). We use the contractions g(z,z′) ≡
g and κ ≡ κ (φ) when convenient, and discard all terms O(ε2)
in the expanded integrands since they vanish in the limit ε →
0. Note that the integrals vanish when we take z′ = z due to
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the properties of the test function g(z,z′). We arrive at

1

ε

∫ d

0
κ(φ + εg)[∇(φ + εg)]2 − κ(φ)[∇φ]2dz

=
∫ d

0
2κ∇φ∇g + g(∂φκ)(∇φ)2dz

= [2κ∇φg]d0 −
∫ d

0
2κ g∇2φdz

−
∫ d

0
2∇φg∇κdz +

∫ d

0
g(∂φκ)(∇φ)2dz

= [2κ∇φ]d0 − 2κ ∇2φ − 2∇φ∇κ + (∂φκ)(∇φ)2

= [2κ∇φ]d0 − 2κ∇2φ − (∂φκ)(∇φ)2. (16)

The variational derivative of the Flory-Huggins free energy (2)
is simply ∂φfFH , and the variational derivatives of the surface
energies in Eq. (4) are [∂φfS(φ)]δzS . So we have for the local
chemical potential μ(z) at point z

μ(z) = −2κ(φ)∇2φ − (∂φκ)(∇φ)2 + ∂φfFH

+ [+2κ(φ)∇φ + ∂φfd (φ)]δzd

+ [−2κ(φ)∇φ + ∂φf0(φ)]δz0, (17)

where the surface energy terms and [2κ (φ) ∇φ]d0 have been
combined, since both pairs of terms act at the walls [the
terms [2κ (φ) ∇φ]d0 are often missing from similar work in
the literature].

Equation (6) means the chemical potential must be constant
everywhere at equilibrium, μ(z) = μ. The Euler-Lagrange
equation (10) must also be satisfied by equilibrium profiles
φ(z). Substituting Eq. (10) into Eq. (17) we obtain for
equilibrium

μ(z) = −λ + [+2κ(φ)∇φ + ∂φfd (φ)]δzd

+ [−2κ(φ)∇φ + ∂φf0(φ)]δz0, (18)

which requires that the boundary conditions Eqs. (11) and
(12) are naturally satisfied (not artificially enforced in the
numerics). By adding the Lagrange multiplier in Eq. (9), we
find that

μ ≡ μsim = −λ, (19)

i.e., at equilibrium, the Lagrange multiplier is the negative of
the chemical potential.

We assume the material current can be written as J (z) =
−M∗∇δF/δφ where M∗ is the mobility, assumed to be
constant for simplicity. From the continuity equation ∂φ/∂t =
−∇ · J we obtain

∂φ(z)

∂t
= M∗

a
∇2μ(z) ≡ M∇2μ(z). (20)

Inserting Eq. (17) into Eq. (20) gives us our diffusion
equation. Scaling space by z′ = |χ − χS |1/2 z/a and time
by τ = NM |χ − χS |2 t/a2, and using the identity χC/2 =
1/N for a symmetric polymer blend (χC is the critical
temperature of the blend and χS is the value of χ at the
spinodal, which for a symmetric blend gives χS = χC) we

obtain

∂φ(z)

∂τ
= 1

N
∇′2

(
1

|χ − χS |
∂fFH

∂φ
+ (1 − 2φ)

φ(1 − φ)

κ

a2
(∇′φ)2

− 2
κ

a2
∇′2φ + δzd

|χ − χS |
[

∂fd

∂φd

+2
|χ − χS |1/2

a
κ∇′φ

]

+ δz0

|χ − χS |
[

∂f0

∂φ0
− 2

|χ − χS |1/2

a
κ∇′φ

])
, (21)

where ∂φfFH = (χC/2) ln (φ/1 − φ) + χ (1 − 2φ).
Equation (21) must be discretized for simulations (we

use “simulation” throughout to mean numerically solving
our resulting equation of motion). We divide the range in z

by a mesh of D grid cells of depth 
z, so the film depth
d = D
z and the surface terms act in the grid cells i = 1
and i = D respectively. As first discussed by Henderson and
Clarke [18], and later given firmer foundations by Fukuda et al.
[19], inconsistencies can arise unless we normalize the surface
(wall) energy (4) to make the free energy (14) invariant to the
mesh size:

fi(φi) → fi(φi)


z
= hi


z
φi + 1

2

gi


z
φ2

i , (22)

where i = 1 or i = D. The surface gradient terms ±2κ (φ) ∇φ

must also be normalized by 
z−1, else the resulting discretized
diffusion equation is not consistent with its continuous
counterpart Eq. (21).

We also include a second lateral dimension y running
parallel to the confining walls, using index j , and apply
periodic boundary conditions in this dimension. The free
energy functional (1) changes such that a−1 → a−2, but our
careful definitions means that we need only replace factors
of a−1 with a−2 in Secs. II and III [thus Eq. (19) remains
unchanged]. We use a square simulation mesh 
y = 
z.
Using φij to represent the volume fraction of A at the grid
cell ij , our 2D discrete diffusion equation is

∂φij

∂τ
= 1

N
∇′2

(
1

|χ − χS |
∂fFH

∂φ
|ij

+ (1 − 2φij )

φij (1 − φij )

κij

a2
(∇′φ|ij )2 − 2

κij

a2
∇′2φ|ij

+ δiD


z′

[
a−1

|χ − χS |1/2

∂fd

∂φd

+ 2
κDj

a2
∇′

zφ|Dj

]

+ δi1


z′

[
a−1

|χ − χS |1/2

∂f0

∂φ0
− 2

κ1j

a2
∇′

zφ|1j

])
, (23)

where κij ≡ κ(φij ) and ∂φfFH |ij ≡ ∂φfFH (φij ). The gradient
terms ∇′ and ∇′2 are now 2D, while ∇′

z ≡ ∂ ′
z. For the surface

terms ∂fd/∂φd and ∂f0/∂φ0, we have kept the notation for the
continuous spatial variable z (0 and d), although these terms
must be evaluated for grid cells with i = 1,D. (Note that the
lattice spacing a cannot be scaled out of the surface terms; see
Ref. [19].)

We make the film walls (surfaces) impenetrable, so material
conservation is required,

d

dτ

∫ d

0
φ(z)dz = 0, (24)
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and implemented by a no-flux condition at the walls. To
discretize Eq. (23), we use a central differencing scheme for
space and a forward differencing time step:

φτ+
τ
ij = φτ

ij + 
τ
∂φij

∂τ
. (25)

IV. 1D EQUILIBRIA IN 2D FILMS

Throughout this paper, we use a symmetric polymer
blend φ̄ = 0.5 with N = 100, hence χc = 0.020. We use the
following wall parameters and terminology: for “asymmetric”
films h0 = −0.05, g0 = 0.18, hd = gd = 0 (a B-attracting
wall at z = 0 and a neutral wall at z = d); for “antisymmetric”
films h0 = −0.05, g0 = 0.18, hd = −0.13, gd = 0.18 (a B-
attracting wall at z = 0 and an A-attracting wall at z = d,
such that the walls attract opposite components in exactly
the same way); and for “symmetric” films h0 = hd = −0.05,
g0 = gd = 0.18 (a B-attracting wall at z = 0 and z = d).
Simulations are started seeded with initial random noise,
i.e., φ(z,y) = 0.5 + δφ, where δφ is chosen from a Gaussian
distribution with mean zero and width σ , which will be
specified. We show a simulation with noise in Sec. VI A
(Fig. 19) to prove that our results are general. Since scaled
space depends on the temperature χ , we discuss our results in
terms of unscaled space z (in units implied by the Hamiltonian
method of Ref. [11]) and scaled time τ .

Since the wetting temperature depends on the film thickness
and wall interactions, we have defined the wetting temperature
χW throughout as the cutoff temperature at which spontaneous
lateral phase separation of a transient wetting layer no longer
appears to occur (i.e., the wetting layer is stable, and the contact
angle of the wetting phase with the surface remains zero) for
an asymmetric film of depth d = 20.1 (the film depth used
in Sec. V). This gives an estimate of 0.0213 < χW < 0.0214
(this provides an upper limit for all of our wall configurations,
since our asymmetric configuration has one neutral wall; see
Ref. [20]).

A. Laterally homogeneous films

To study laterally homogeneous films we restrict ourselves
to asymmetric films, use quasi-1D simulations in which
the lateral dimension y is too narrow to support laterally
segregated states, and use σ = 0.0001 for a nearly homoge-
neous initial film. These quasi-1D simulations are directly
comparable with calculated 1D film profiles. We studied three
different temperature regimes: above the critical temperature
χ = 0.015 (Fig. 1), below the critical temperature but above
the wetting temperature χ = 0.021 (Fig. 2), and below the
wetting temperature χ = 0.026 (Fig. 3).

In Figs. 1–3 the three subfigures show each film at a very
early time (a), an intermediate time (b), and at equilibrium (c).
Animations are available in the Supplemental Material [21].
The data points φi (1 � i � D) are averages of φij taken over
index j (the lateral dimension) for fixed index i, and the dashed
lines are the 1D equilibrium profiles of asymmetric films
calculated by a Hamiltonian method. We make the following
observations: at equilibrium the simulation data match the
profiles; the simulations reproduce the profiles more accurately
as the mesh size is reduced (
τ = 0.000 04 was used for
each temperature regime); and as 
z → 0, the simulation data
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FIG. 1. (Color online) 1D simulation data for χ = 0.015 (χ <

χC), film depth d = 14.85, and asymmetric walls. Times are τ = 1
(a), τ = 2 (b), τ = 15 (c). The calculated equilibrium profile (green
dashed line) required λ = −0.000 745, while μsim = +0.000 791 for

z = 0.41. Equilibrium is a monolayer with positive adsorption of
B material at the B attracting wall (z = 0).

conform exactly to the calculated profiles. Further proof of this
is shown in Table I, which shows that as 
z → 0 the simulation
equilibrium chemical potential converges to the negative of the
Lagrange multiplier required to numerically solve for the film
profile, as predicted by Eq. (19) (these finer 
z are absent in
Figs. 1–3 to preserve clarity).

B. Pinning of profiles at the walls

From Figs. 1–3 we see, in agreement with the literature [7],
that the value of φ at the B-attracting wall appears to be very
quickly pinned to its equilibrium value, and from this pinning
center a concentration wave is crossing the film. On the other
hand, the profile near the neutral wall is unperturbed at very
early times, and it would appear that there is no such rapid
pinning of φ at the neutral wall. For each temperature regime,
a point is reached when the concentration wave has crossed
the film, and the profiles show a monotonous increase in B

towards the B attracting wall at z = 0 and flat profile at z = d.
For Fig. 3, the film then develops nonmonotonous behavior
at z ≈ 2.5 (characterized by a minimum in φ near but not at
the B-attracting wall) shortly prior to achieving metastable
equilibrium.

A more careful inspection of the diffusion equation (23) and
boundary conditions (11) and (12) shows us that the profile is
in fact pinned at both the B-attracting wall and the neutral wall,
but that “pinning” does not refer to just the volume fraction φ,
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FIG. 2. (Color online) 1D simulation data for χ = 0.021 (χC <

χ < χW ), film depth d = 40.60, and asymmetric walls. Times are τ <

1 (a), τ = 9 (b), τ = 25 (c). The calculated equilibrium profile (green
dashed line) required λ = −0.000 033, while μsim = +0.000 036 for

z = 0.68. Equilibrium is a bilayer with a soft interface separating
the B-rich phase and A-rich phase.

but rather to both coordinates (φ,2κ∇φ). The surface terms of
the diffusion equation (23) effectively enforce the boundary
conditions (11) and (12) such that they are fulfilled at all times
during the simulation, not only at equilibrium. For the B-
attracting wall, although φ is pinned at early times, it in fact
does continue to change slightly, as does ∇φ. For the neutral
wall, Eq. (12) with hd = gd = 0 shows us that ∇φ = 0 solves
the boundary condition for any value of φ, so although the
value of φ does not appear to be pinned, ∇φ is pinned to
zero. The wall-blend interactions thus enforce the boundary
conditions at all times, but (φ,2κ∇φ)0,d may still change while
satisfying these boundary conditions. This observation will
be important to our discussion of lateral phase separation in
Sec. V, in which a graphical interpretation of this pinning can
be made by considering phase portraits: no matter how the
trajectories of the film profiles change during film evolution,
the ends of the trajectories are always pinned to the boundary
conditions (11) and (12).

C. Laterally segregated films

We now discuss 2D simulations at χ > χW , for which
global equilibrium is a laterally segregated film. We will
reserve discussion of the dynamics of lateral phase separation
for Sec. V, and focus here on showing that the coexisting
equilibria that can be calculated in one dimension (in the
dimension running between the walls) do in fact occur in
laterally segregated 2D films. Figures 4 and 5 show, for
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FIG. 3. (Color online) 1D simulation data for χ = 0.026 (χW <

χ ), film depth d = 20.92, and asymmetric walls. Times are τ = 2 (a),
τ = 20 (b), τ = 100 (c). The calculated equilibrium profile (green
dashed line) required λ = +0.000 120, while μsim = −0.000 118
for 
z = 0.40. The equilibrium profile is nonmonotonous with a
minimum (∇φ = 0) at z ≈ 2.5.

an asymmetric and a symmetric film respectively, only the
laterally segregated state corresponding to global equilibrium,
which should technically consist of only a single pair of
coexisting phases in contact. We previously argued, on the

TABLE I. Lagrange multiplier λ (for the calculated 1D profile)
and equilibrium chemical potential μsim (obtained from simulations)
for different temperature regimes χ , depths d , and varying mesh size

z (including all the data from the simulations for Figs. 1–3). As the
mesh size becomes finer 
z → 0, we observe μ → −λ, as predicted
by Eq. (19). The rate equation (23) is therefore accurate and precise.

χ λ d 
z μsim

0.015 −0.000745 14.85 0.10 +0.000745
0.41 +0.000791
0.74 +0.000832
1.24 +0.000897
1.85 +0.000985

0.021 −0.000033 40.60 0.25 +0.000033
0.68 +0.000036
1.13 +0.000037
1.69 +0.000039

0.026 +0.000120 20.92 0.20 −0.000120
0.40 −0.000118
0.65 −0.000116
1.05 −0.000112
1.74 −0.000101
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FIG. 4. (Color online) The laterally segregated state for χ =
0.026 (χ > χW ), depth d = 20.1, and asymmetric walls, using

z = 0.36 and 
τ = 0.10 × 10−5. The lateral dimension y ≈ 90
(with periodic boundary conditions) is wide enough to support two
lateral phases.

subject of solving for these coexisting phases in one dimension,
that since a Lagrange multiplier λ �= 0 always acts to increase
the free energy of a profile relative to the same profile for
λ = 0 (“same profile” in this context means that the solution
trajectory through phase space is qualitatively the same, except
for distortion due to a nonzero λ; see Sec. V) that the coexisting
solutions should be calculated in one dimension for λ = 0
[11]. Since actual coexistence of these lateral phases in a 2D
film requires an interface we should expect λA = λB �= 0 in
general.

To compare the 2D simulation data of Figs. 4 and 5 with the
1D coexisting phases calculated via a 1D Hamiltonian method
(requiring a choice of λ and Hamiltonian H, explained in
Sec. V), we took 1D cross sections of the 2D data at points
at yA and yB , which are at the cores or centers of the A-rich
and B-rich phases respectively. The cross sections from the
asymmetric film of Fig. 4 (yA ≈ 20 and yB ≈ 70) are shown
in Fig. 6, which also contains two pairs of curves. The curves
to which no data points are directly aligned were obtained from
a 1D calculation of the lateral phases using λ = 0. However,
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FIG. 5. (Color online) The laterally segregated state for χ =
0.026 (χ > χW ), depth d = 20.1, and symmetric walls, using 
z =
0.36 and 
τ = 0.25 × 10−5. The lateral dimension y ≈ 90 (with
periodic boundary conditions) is wide enough to support two lateral
phases.
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FIG. 6. (Color online) 1D vertical cross sections from Fig. 4 (data
points), and calculated profiles (curves) of coexisting phases for
χ = 0.026 (χ > χW ), depth d = 20.1, and asymmetric walls. The
curves matching the data points (blue and pink) were calculated
with λ = −μsim = −0.000 491 (HA = 0.001 357,HB = 0.000 988),
while the other curves (red and green) were calculated with λ = 0
(HA = 0.000 923, HB = 0.000 924).

the simulation for Figs. 4 and 6 gave μsim = 0.000 491, so
it is unsurprising that the data and the 1D calculated profiles
do not coincide. The second set of curves, which are almost
obscured by the data points, are the 1D profiles calculated
with Lagrange multiplier λ = −μsim = −0.000 491. These
1D cross sections, while describing the majority of the cores
of the phases very accurately, do not of course describe the
interface between the phases. The cross-sectional profiles
obtained from the data for the symmetric film of Fig. 5
(yA ≈ 40 and yB ≈ 86) are shown in Fig. 7, along with 1D
coexisting phases calculated for λ = −μsim = −0.001 202
(a pair of A-rich and B-rich coexisting phases of depth
d = 20.1 cannot be calculated for λ = 0). The relatively steep
gradients in the A-rich phase cause some minor discretization
errors, causing the B-rich phase of the symmetric film to be
slightly less B-rich than expected. No data are shown for
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FIG. 7. (Color online) 1D vertical cross sections from Fig. 5
(data points), and calculated profiles (curves) of coexisting phases
for χ = 0.026 (χ > χW ), depth d = 20.1, and symmetric walls.
The calculated profiles required λ = −μsim = −0.001 202 (HA =
0.001 922, HB = 0.001 092). It is not possible to obtain A-rich
profiles of depth d = 20.1 for λ = 0.
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FIG. 8. (Color online) Simulation snapshots for χ = 0.026 (χ >

χW ), d = 20.1 and asymmetric walls (
z = 0.50, 
τ = 1.0 × 10−5).
(a) Metastable bilayer state with minor lateral inhomogeneities
(τ = 100); (b) distortion of bilayer interface with corresponding
inhomogeneities at the walls (τ = 892); (c) breakup of the bilayer
interface as a column of B-rich material reaches the z = d wall (τ =
1665); (d) stable laterally segregated coexisting states (τ = 3655).

antisymmetric films, since in this special case λ = −μsim = 0,
and so we find that the lateral interfaces between the perfectly
antisymmetric 1D phases do not introduce a nonzero chemical
potential. We conclude that the laterally segregated state is
effectively described by 1D equilibria in the dimension running
perpendicular to the confining walls.

V. BREAKUP OF WETTING LAYER

Figures 8, 10, 12, 14, and 16 show, for χ > χW , simulation
snapshots of films undergoing lateral phase separation via a
transient wetting later. Animations of our 2D simulations are
available in the Supplemental Material [21]. The width of the
initial noise δφ was σ = 0.05, this choice allowing both the
TWL and laterally segregated state to be probed. It is important
to highlight here that the absence of a random noise term in
our current model means that the final lateral states we present
do not always consist of “wide” lateral phases (resulting
from the merging of narrower lateral phases, for example)
which are closer to “true” global equilibrium (a single pair of
laterally coexisting phases). However, the distinction between
multiple lateral phases (wide or narrow) and a single pair
of laterally coexisting phases is of little practical relevance
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(b) Coexisting Phases

FIG. 9. (Color online) 1D phase portraits for equilibria in Fig. 8
(asymmetric walls). (a) Metastable bilayer (TWL) (λ = +0.000 119,
H = 0.000 743); (b) Coexisting phases (λ = −μsim = −0.000 497):
A-rich phase (HA = 0.001 362) and B-rich phase (HB = 0.000 989).
φd of all three phases are rather distinct. φT WL

0 and φB
0 are quite

similar, but both distinct from φA
0 .

to the mechanism we discuss here, or to most experiments.
The lateral phases that appear in our simulations are the same
phase equilibria that correspond to global equilibrium, and
we refrain from using the latter term only because it could
possibly be misleading (coarsening of the lateral phases in our
simulations is technically possible). We present a simulation
in which continuous random noise was included in Sec. VI A
(Fig. 19), which shows that our results still hold in the case
of continuous noise, and that wider lateral phases form in that
case.

In this section, we make use of Hamiltonian phase portraits,
Figs. 9, 11, 13, 15, and 17, to discuss the 1D phase equilibria
[11,12]. For this system, Hamiltonian phase portraits consist of
the flow of canonical coordinates (φ,2κ∇φ) which minimize
the bulk free energy functional F . The satisfied boundary
conditions enforced by the walls [Eqs. (11) and (12)] are
therefore represented by straight lines, since the boundary
conditions pin (φ,2κ∇φ) at the walls. The solution “trajecto-
ries” are those parts of the phase portraits which flow between
the wall boundary conditions. The phase portraits (which are
symmetric around φ = 0.5 for a symmetric blend if λ = 0) are
distorted by the Lagrange multiplier λ �= 0, which is a chemical
potential. Suitable choices of both λ and the Hamiltonian
constant H (these sensitive parameters will be given to six
decimal places) are necessary to produce phase equilibria
trajectories of specified depth d and average composition φ̄.
The phase portraits themselves provide significant insight, as
the evolution of trajectories can be tracked graphically as
depth, temperature, and wall interaction parameters change.
Most importantly, we must understand that the ends of the
trajectories are always pinned to the boundary conditions
(even out of equilibrium, as shown in Sec. IV B). This is why
bifurcation of the profile at the walls is inherent in lateral phase
separation. We will denote the profile value of the TWL at the
z = 0 wall by (φ,∇φ)T WL

0 , and similarly for other cases. To
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assist in reading the phase portraits, we have colored (shaded)
the trajectories to match the color range for φ shown in the
simulation figures. Note that as χ increase, the bilayer interface
sharpens. For χ < χW , this interface is rather diffuse, and
the bilayer is stable against lateral phase separation, since a
configuration of coexisting phases no longer has a lower free
energy than the bilayer phase.

The wall configuration of the asymmetric film (a B-
attracting wall and a neutral wall) is a special case in that
there is only one surface field. This particular case (used as the
example in our recent paper [1]) highlights the qualitatively
different behavior at each confining surface and does not
include any convenient symmetries that fix the chemical
potential [e.g., μ(z) = 0 for antisymmetric films]. General
asymmetry complicates our discussions of the phase portrait
method and would leave us short of discussing behavior at a
neutral wall. However, a neutral wall is nonetheless a special
case, and so after discussing asymmetric films in Sec. V A
we will extend our discussion to two nonzero surface fields in
Sec. V B.

A. One surface field

Figures 8, 10, and 12 are snapshots from 2D simulations
at χ > χW for χ = 0.026, χ = 0.023, and χ = 0.022 respec-
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FIG. 10. (Color online) Simulation snapshots for χ = 0.023
(χ > χW ), d = 20.1, and asymmetric walls (
z = 0.50, 
τ = 0.5 ×
10−5). (a) Metastable bilayer state (τ = 200); (b) distortion of bilayer
interface as lateral structures grow primarily at z = d wall (τ = 550);
(c) A-rich phases growing from z = d surface (τ = 700); (d) stable
laterally segregated coexisting states (τ = 1500).
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FIG. 11. (Color online) 1D phase portraits for equilibria in
Fig. 10 (asymmetric walls). (a) Metastable bilayer (TWL) state
(λ = −0.000 113, H = 0.001 332), with two crosses of the z = 0
boundary condition (BC) along the flow; (b) coexisting phases
(λ = −μsim = −0.000 367): A-rich phase (HA = 0.001 618) and
B-rich phase (HB = 0.001 404). φd (φ0) of all three phases are rather
distinct (similar).

tively, for asymmetric films of depth d = 20.1, showing direct
observations of lateral phase separation via a transient wetting
layer. Time increases from subfigures (a) to (d). In all cases
the film first evolves into a bilayer (vertically stratified) state,
which is the TWL, and this bilayer subsequently breaks up
into laterally segregated states. Figures 9, 11, and 13 show 1D
phase equilibria (d = 20.1) in Hamiltonian phase space for the
phases that form in Figs. 8, 10, and 12 respectively.

Figures 8(a), 10(a), and 12(a) all show a “bilayer” state with
a B-rich (A-rich) phase coating the B-attracting (neutral) wall,
respectively, and a “soft” interface separating these phases [22]
(for comparison, Figs. 2 and 3 are both bilayer profiles, while
the profile of 1 is a monolayer with positive adsorption of B at
the B-attracting wall at z = 0). Figures 9(a), 11(a), and 13(a)
show, in phase space, the independently existing solution of
lowest free energy (a bilayer), λ having been chosen to ensure
φ̄ = 1/2. The average chemical potential of the bilayer state in
Figs. 8, 10, and 12 (the average is over all grid cells) confirm
that the films are in the 1D metastable bilayer states shown
in the phase portraits of Figs. 9(a), 11(a), and 13(a) (e.g.,
for χ = 0.026, 〈μsim〉 = 0.000 112, while −λ = 0.000 119 for
the calculated profile).

Figures 8, 10, and 12 show that lateral inhomogeneities
in the bilayer state continue to grow with time and the
interface separating the phases of the bilayer becomes distorted
[subfigures (b)]. Any distortion of the interface appears to
correspond to lateral inhomogeneities which have appeared at
the confining walls, most notably at the neutral wall at z = d.
The average chemical potential remains approximately that
of the bilayer during this distortion, and only when the interface
appears to break up does the average chemical potential begin
to rapidly change, indicating that the film is now in the process
of leaving its long-lived metastable equilibrium. At later times
[subfigures (c)] the interface breaks up: Fig. 8(c) shows the
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FIG. 12. (Color online) Simulation snapshots for χ = 0.022
(χ > χW ), d = 20.1, and asymmetric walls (
z = 0.56, 
τ =
0.25 × 10−5). (a) Metastable bilayer state (τ = 100); (b) late stages of
bilayer state with visible change of φ at the z = d wall (τ = 1000); (c)
merging of adjacent growing A-rich lateral phases at around y ≈ 50
and y ≈ 300 (τ = 1800); (d) stable laterally segregated coexisting
states (τ = 4000).

interface moments after a column of B-rich material reaches
the z = d surface; Fig. 10(c) shows the interface just prior to
breakup, showing significant variations in φd ; and Fig. 12(c)
shows the film after the breakup of the interface as some lateral
phases merge to reduce interfacial energy. It can be seen that
points where the interface touches down on the walls and where
the lateral phases develop from are exactly the same points
where the initial lateral variations at the walls took place, and
in fact it appears that the A-rich phases are growing from the
neutral wall at z = d. The final states [subfigures (d)] of Figs. 8,
10, and 12 show the film in the laterally segregated state, and
it is clear that the lateral phases have formed exactly where the
initial lateral variations at the walls took place. This strongly
suggests that the wall-blend interactions are controlling the
dynamics of lateral phase separation.

Figures 9(b), 11(b), and 13(b) are phase portraits of the
A-rich and B-rich laterally coexisting phases respectively,
calculated using the chemical potentials extracted from the
simulations λ = −μsim when the film has achieved a static
laterally segregated state. The phase portraits describe the
profiles from the simulations exactly, and clearly show how
the profiles evolve as χ is changed, including the increased
homogeneity of the B-rich phase as χ = 0.026 → 0.023 and
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FIG. 13. (Color online) 1D phase portraits for equilibria in
Fig. 12 (asymmetric walls). (a) Metastable bilayer (TWL) (λ =
−0.000 184, H = 0.001 580); (b) coexisting phases (λ = −μsim =
−0.000 333): A-rich phase (HA = 0.001 747) and B-rich phase
(HB = 0.001 589). The B-rich trajectory shows φB ≡ 1 − φ in-
creases towards the z = 0 wall, which was not the case for Figs. 8
and 10. φd (φ0) of all three phases are rather distinct (similar).

a qualitative change in the B-rich solution for χ = 0.023 →
0.022 as the B-attracting wall becomes richer in B material
than elsewhere in the B-rich phase. Previous work in one
dimension has already shown that a bilayer state is unstable
with respect to a laterally segregated state due to having
a greater free energy [11,12], and it is now apparent that
the result carries across to two dimensions. We conclude
that the transient wetting layer, which initially forms due
to preferential attraction by the confining walls, breaks up
because it is metastable with respect to the laterally segregated
state. The intrinsic instability of the transient wetting layer
as a whole is different from an instability in the interface
between the vertically segregated phases of the bilayer. We
expand on this point presently, using the phase portraits
Figs. 9, 11, and 13 to explain the dynamics of the film
evolution.

For χ = 0.022, Fig. 13 shows that the trajectory (colored
part of the phase portrait) of the TWL passes through each
boundary condition only once (although the Hamiltonian
flow crosses each boundary condition twice, in the region
of interest) and the same is true for the A-rich and B-rich
trajectories, which flow between crosses similar to that of
the TWL. In this case, we see that |φA

0 − φB
0 | � |φA

d − φB
d |

(φd is quite different for the coexisting phases, unlike φ0)
and |φT WL

0 − φA
0 | � |φT WL

d − φA
d |, which means that for the

A-rich phase to form, φd must change by much more than
φ0. As Fig. 12 shows, lateral phase separation happens as the
A-rich lateral phases appear to grow from the z = d wall.
For χ = 0.023, even though the B-rich trajectory exists on
a different region in the phase space [the closed tear-shaped
loop in Fig. 11(b)] such that the “bulk” of the profile is slightly
different, Fig. 10 shows that the lateral phases still appear to
grow from the z = d surface, since the same arguments as for
the previous case can be made. For χ = 0.026, Fig. 9 shows
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that the TWL trajectory crosses each boundary condition
twice, and each coexisting phase flows between a different
cross of the flow with the boundary conditions. φ0 and φd

for both the A-rich and B-rich phases differ much more from
φT WL

0,d than in the case of χ = 0.022. This is especially true
of φA

0 . Figure 8 shows that the breakup of the interface is
due to significant variations in φ at both confining walls,
the largest variations in φT WL

0 of the bilayer being precisely
where the columns of A-rich phase form. This is expected
from inspection of Fig. 9, which shows that φT WL

0 and φB
0 are

still fairly similar, but φA
0 of the A-rich phase is significantly

different from both those values. The column of B-rich phase
reaches the z = d surface when φd , which had been gradually
change during the interface distortion, suddenly undergoes a
quick transient φT WL

d → φB
d as the interface appears to reach

the surface and break. The phase portraits thus offer practical
insight into the dynamics of the breakup of the transient
wetting layer.

The simulations of Figs. 8, 10, and 12 seem to show that
the breakup of the bilayer state proceeds from the neutral
wall at z = d. Since the profiles are pinned to the boundary
conditions at all times, lateral phase separation clearly requires
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FIG. 14. (Color online) Simulation snapshots for χ = 0.026
(χ > χW ), d = 20.1, and antisymmetric walls (
z = 0.50 and 
τ =
1.0 × 10−5). (a) Metastable bilayer state (τ = 150); (b) rupture
of coexisting A-rich and B-rich layers of bilayer, coupled with
bifurcation of φ at both walls (τ = 1300); (c) continued rupture of
layers distorts interface towards the walls, since the wall boundary
conditions must be satisfied (τ = 2500); (d) the boundary conditions
of the laterally segregated states are met (τ = 4500).

that the single value of the volume fraction at each wall must
undergo a bifurcation into two values: φT WL

0,d → φA
0,d ,φ

B
0,d , the

bifurcation at the z = d wall being much more pronounced
for asymmetric films (clearly, due to the interface between the
coexisting phases, there are more than two values at the wall,
but it is much simpler to discuss the coexisting states in terms of
the 1D phase equilibria). Note that this “surface bifurcation” is
technically (φ,2κ∇φ)T WL

0,d → (φ,2κ∇φ)A0,d ,(φ,2κ∇φ)B0,d but
it is sufficient here to discuss only φ0,d (which can be
experimentally measured). The distortion of the interface in
the TWL is coupled to phase separation at the walls due to the
boundary conditions enforced by the walls.

B. Two surface fields

Figure 14 shows snapshots from simulations of a polymer
blend between antisymmetric confining walls. As in the case
of asymmetric confinement, a bilayer state (TWL) first forms
which subsequently breaks up to give a laterally segregated
state. The Hamiltonian flow containing the bilayer trajectory,
shown in Fig. 15(a), is very similar to the flow in Fig. 9(a).
Figure 15(a) shows that the TWL trajectory passes through
∇φ = 0 (stationary points) near each wall, with a correspond-
ing maximum in φA ≡ φ (φB ≡ 1 − φ) near the A-attracting
(B-attracting) wall. Figure 14 shows that the distortion of
the interface in the bilayer appears to be caused by growing
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FIG. 15. (Color online) 1D phase portraits for equilibria in
Fig. 14 (antisymmetric walls). (a) Metastable bilayer (TWL) (λ = 0,
H = 0.000 752); coexisting phases (λ = −μsim = 0): (b) A-rich
phase (HA = 0.000 899); and (c) B-rich phase (HB = 0.000 899).
Since λ = 0 the phase portraits are symmetric around φ = 0.5. The
bilayer trajectory passes through ∇φ = 0 near each BC, while the
A-rich (B-rich) trajectories pass through ∇φ = 0 only near the
A-attracting (B-attracting) wall BC at z = d (z = 0).
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lateral inhomogeneities at these stationary points, although the
wall boundary conditions ensure that lateral inhomogeneities
simultaneously grow at the walls. However, it certainly appears
that rupture of the film proceeds from the stationary points
near the surfaces. Inspection of the phase portraits of Fig. 15
shows that in order for the film to laterally separate, not only
does the volume fraction at the confining walls have to undergo
bifurcation, but one of the stationary points needs to disappear:
for the A-rich (B-rich) phase, the stationary point near the
A-attracting (B-attracting) wall is preserved and enriched
in A-material (B-material), while the other stationary point
disappears exactly where the B-rich (A-rich) phase forms;
the enrichment and removal of a stationary point happens at
the same depth, so we see lateral phase separation occurring
at the stationary points, causing a distortion of the interface
towards the walls where the stationary points disappear. Also,
for lateral phase separation to occur, the required change in the
profiles at the walls is much less than the change required at
the stationary points, and while it is clear that lateral phase
separation at the walls is inherent in this process, as film
thickness is increased the stationary points in the trajectories
can pass arbitrarily close to fixed points in the phase space
(these fixed points are located at ∇φ = 0 between the gaps in
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FIG. 16. (Color online) Simulation snapshots for χ = 0.026
(χ > χW ), d = 20.1, and symmetric walls (
z = 0.50, 
τ = 1.0 ×
10−5). (a) Metastable trilayer state (τ = 50); (b) A-rich (central)
layer begins to phase separate, causing corresponding changes in
φ throughout the trilayer (τ = 300); (c) rupture of the A-rich layer
once bifurcation of φ at the walls is sufficient (τ = 450); (d) stable
laterally segregated coexisting states (τ = 1000).

the Hamiltonian flows), meaning that the amount of the film
profile constituting a stationary point can become arbitrarily
thick.

It should be noted that the final state of Fig. 14 does indeed
contain the laterally coexisting phases shown in the phase
portraits of Fig. 15, and does not simply show an oscillatory
interface. Lateral phase separation in antisymmetric films is
in fact the transition from a delocalized interface (bilayer
state) to an interface bound to one of the walls (laterally
coexisting states) [22,23]. In Sec. VI A (Fig. 19), we show
that the lateral domains of Fig. 14 will evolve into wider
trapezoidal phases [24] when a noise term is included in the
simulation.

For a film between symmetric walls, shown in Fig. 16, the
TWL that forms first is actually a trilayer structure. It is clear
that lateral phase separation occurs when the central layer
ruptures. The phase portraits of Fig. 17 show that this rupture
again occurs at a stationary point in the profile, where ∇φ = 0.
The rupture of the central layer preserves the A-rich stationary
point of the trilayer for the A-rich phase, and columns of B-rich
phase form in the depleted regions caused by the enrichment
of the A-rich stationary points.

C. Bypassing the wetting layer

If the dynamics of lateral phase separation via a tran-
sient wetting layer are ultimately controlled by wall-blend
interactions (via boundary conditions enforced by the walls),
then it should be possible to manipulate the dynamics in
the film by attempting to control behavior at the confin-
ing walls. Here, we recommend a method that may prove
useful in obtaining a laterally segregated state in polymer
thin films: in the case of our asymmetric confinement
(B-attracting wall at z = 0, neutral wall at z = d), if the
B-attracting wall could be turned off temporarily to become a
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FIG. 17. (Color online) 1D phase portraits for equilibria in
Fig. 14 (symmetric walls). (a) Metastable trilayer (TWL) (λ =
−0.000 750, H = 0.000 968); (b) coexisting phases (λ = −μsim =
−0.001 204): A-rich phase (HA = 0.001 922) and B-rich phase
(HB = 0.001 092). In all cases, ∇φ = 0 is located exactly in the
center of the film.
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FIG. 18. (Color online) Simulation snapshots for χ = 0.026
(χ > χW ), d = 20.1, and asymmetric walls (
z = 0.84, 
τ = 1.0 ×
10−4). Both walls are initially neutral, then the z = 0 wall is “turned
on” (film becomes asymmetric) at τ = 160. (a) Bulklike separation,
with domains aligned to walls to satisfy BCs requiring ∇φ = 0
(τ = 150); (b) moments after z = 0 wall is turned on (τ = 160);
(c) rapid evolution towards the coexisting states of the asymmetric
film (τ = 170); (d) laterally segregated state (τ = 300) is reached an
order of magnitude faster than via a transient wetting layer.

neutral wall, then we should suppose for a near critical mixture
that a transient wetting layer will not form (in a noncritical
blend φ �= 1/2, layering parallel to the walls may sometimes
still occur [2]). If we then turn on the wall, we may obtain
the laterally segregated state without having formed a bilayer
first.

Figure 18 demonstrates that this may work in practice.
When both walls are turned off [subfigure (a)], we see phase
separation into domains with ∇φ = 0 (required for neutral
walls). There are (in terms of 1D equilibria) two values of
φT WL at each wall. The z = 0 wall is turned on to attract
B material at τ = 160 in subfigure (b) (asymmetric wall
configuration) and there is immediate preferential attraction
of B material to the z = 0 surface. However, φA

0 and φB
0

have been obtained, rather than φT WL
0 . The TWL has been

avoided and the film can evolve directly towards the laterally
segregated state, shown in subfigure (d), and lateral segregation
is achieved an order of magnitude faster than via a TWL. In
solvent evaporation experiments, it might be possible to use
this mechanism by choosing a solvent to adjust the wall-blend
interactions.

VI. DISCUSSION

A. Random noise

The absence of a random noise term in our simulations,
although maintaining clarity in our results, is why many
lateral phases do not become more macroscopic at very late
times (e.g., Fig. 14 does not show the wide trapezoidal-
shaped coexisting phases expected at long times [24] although
such trapezoidal shaped phases are simply wide versions of
the phases shown), although this consideration is of little
practical relevance in many experiments including solvent
evaporation. Figure 19 shows a simulation for antisymmetric
walls in which a continuous noise (consisting of Gaussian
white noise with mean zero and amplitude (width) 0.01, in
the form of random thermal currents, giving an additional
contribution to Eq. (23) of ∇ · J ∗(z,y,t) as in Ref. [24]). We
see that a bilayer still forms and breaks up via the mechanism
we have already presented. There are smaller scale lateral
variations at the surface initially, and wider domains form at
later times. Figure 19 appears to reproduce a contact angle
appropriate for an antisymmetric film. We do not find that the
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FIG. 19. (Color online) Simulation snapshots for χ = 0.026
(χ > χW ), d = 20.1, and antisymmetric walls (
z = 0.84, 
τ =
1.0 × 10−4). Random noise is included at every time step. (a) The
bilayer interface is heavily distorted (τ = 25); (b) lateral A-rich
phase begins to form as the A-rich layer of the bilayer ruptures
(τ = 125); (c) A-rich phase retreats from B-attracting wall (z ≈ 150)
and neighboring A-rich phases grow (τ = 2225); (d) macroscopic
trapeziodal domains form at longer times (τ = 5000). These phase
equilibria match those in Figs. 14 and 15.
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A(B)-attracting surface is coated by B(A)-rich material, as is
sometimes suggested by schematic representations (the phase
portraits of Fig. 15 support this; the A(B)-rich trajectories
must pass through φ = 0.5 near the B(A)-attracting wall for
antisymmetric films, which agrees with the idea that these
coexisting phases have an interface “bound” to one of the
walls [22,23]).

B. Solvent evaporation

Many practical applications using polymer films involve
solvent evaporation. Here we discuss the implications of our
model, which could be easily extended to include solvent,
for experiments involving solvent evaporation. We do this
because our model reproduces and explains many phenomena
without needing to include solvent. We suggest that solvent
may influence lateral phase separation in several ways:
(i) fast solvent evaporation provides lateral inhomogeneities
in the transient wetting layer, which provide a kinetic route
to the laterally segregated state that is often not reached
(our simulations and frozen out-of-equilibrium states found
in experiments [25] show strong resemblances); (ii) solvent
evaporation allows phase separation to occur at the top
surface which proceeds into the film [26], the solvent pro-
viding increased miscibility which prevents bilayer formation
(the equilibria of ternary polymer-polymer-solvent films are
analogs of equilirbia for binary polymer-polymer films [27]);
and (iii) overall reduction of solvent causes phase separation,
and lateral phase separation occurs in stages that appear to
match our simulations, with high, medium, and low solvent
concentrations corresponding to a bilayer, a bilayer with a
distorted interface, and a laterally segregated state, respectively
[28]. A Marangoni-like instability has been suggested to
explain the distortion of the bilayer interface prior to lateral
phase separation [10,12,28], although we have shown that the
intrinsic instability of the bilayer and surface bifurcation is

sufficient to cause distortion of the interface. Therefore we
should consider that the phase equilibria of polymer films
and the surface bifurcation mechanism we have presented
here might be responsible for the film evolution seen in many
experiments.

VII. CONCLUSION

We have derived a diffusion equation describing a binary
polymer blend confined between two preferentially attracting
walls or surfaces. We compared the phases produced in our
simulations with profiles calculated using a 1D Hamiltonian
phase portrait method to show that our diffusion equation
correctly reproduces continuum behavior and that all of
the equilibria that arise in two dimensions are simply 1D
coexisting phases, existing in two dimensions under an altered
chemical potential due to the lateral interfaces between these
coexisting phases. We also show how the film profile is pinned
at the film walls by effective boundary conditions.

We have identified the dynamics of lateral phase separation
via a transient wetting layer for several wall-blend interaction
configurations, showing that distortion of the interface in the
transient wetting layer is coupled to changes in the film profile
at the walls. The instability of the bilayer (below the wetting
temperature) as a whole is not the same as an instability in the
interface of the bilayer; in all cases we have studied, the growth
of lateral inhomogeneities at the walls limits and dictates the
dynamics. We have explained the dynamics with a “surface
bifurcation mechanism”: the pinning of the profile at the film
walls by effective boundary conditions imposed by the walls
means that the film must undergo bifurcation of the profile at
the walls in order to laterally phase separate into coexisting
phases. The distortion of the interface in the wetting layer
coincides with phase separation at the surfaces. Since our
results should also extend to ternary blends, we discussed how
solvent evaporation may assist our proposed mechanism.
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