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Interacting elastic lattice polymers: A study of the free energy of globular rings
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We introduce and implement a Monte Carlo scheme to study the equilibrium statistics of polymers in the
globular phase. It is based on a model of “interacting elastic lattice polymers” and allows a sufficiently good
sampling of long and compact configurations, an essential prerequisite to study the scaling behavior of free
energies. By simulating interacting self-avoiding rings at several temperatures in the collapsed phase, we estimate
both the bulk and the surface free energy. Moreover from the corresponding estimate of the entropic exponent
α − 2 we provide evidence that, unlike for swollen and �-point rings, the hyperscaling relation is not satisfied
for globular rings.
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I. INTRODUCTION

It is well known that diluted polymers in bad solvent
conditions may undergo a conformational transition from the
swollen (extended) phase to a globular one [1–3]. In the last
decades this so-called collapse transition has been the subject
of numerous experimental and theoretical studies that have
been essentially focused either on the swollen phase or on the
nature and scaling properties of the collapse (�) transition
[4–8]. On the other hand very little is known about polymers
in the globular phase [9–15], despite the study of their
statistics can help in understanding the conformational and
thermodynamic properties of more complex forms of compact
polymers such as proteins in native states.

If one is mainly interested in the scaling behavior of
either metric or thermodynamics observables (including crit-
ical exponents) of collapsing polymers, a good model to
consider is the class of N -site interacting self-avoiding walks
(ISAWs), namely, non-self-intersecting walks of N sites on
Bravais lattices with an attractive interaction between adjacent
nonbonded sites. Indeed, by tuning this attraction in terms of
an effective temperature T = 1/β, ISAWs display a collapse
transition towards a globular phase whose thermodynamics is
governed, in the limit of large N , by the scaling behavior of
the partition function [9–15]

ZN (β) ∼ μNe−σN (d−1)/d
Nθ (1 + BN−� · · · ) (1)

(such structure is also supported by theoretical results for par-
tially directed ISAWs [16,17] and for dense polymers [18,19]).
In (1) the connective constant μ and the amplitude B of the
correction to scaling are model-dependent quantities and func-
tion of β, whereas the (entropic) exponent θ is a universal (i.e.,
model-independent) critical exponent whose value depends
only on dimension (d) and on polymer topology (for instance
linear, circular, knotted, etc). Note in (1) the presence of the
term e−σN (d−1)/d

that describes the surface penalty contribution
(σ > 0 for β > β�) related to the higher free energy acquired
by the monomers exposed to the solvent [9,12–15]. The
presence of this surface renders the asymptotic analysis of
the thermodynamics of globular polymers more complicated
than that for dense polymers, at least for two reasons:
First, the presence of the additional unknown parameter σ

increases the complexity of the analysis of the scaling law (1).
Second, there is strong numerical evidence that the surface

generates strong corrections to scaling when linear polymers
are considered [14]. The reason is that configurations with one
or both ends on the surface of the globule surface have different
entropic exponents with respect to those where both ends are
in the interior of the globule, the latter become asymptotically
relevant only for long chains. This effect has been observed
for d = 2 globules [14] and should be even more pronounced
for globular polymers in d = 3, where the surface-to-volume
ratio is larger than in two dimensions. A way to get around
this problem consists for instance in looking at globular rings.

Scaling laws such as (1) are usually studied numerically
by N -varying (grand-canonical) Monte Carlo approaches
[20–23]. An example is the so called BFACF algorithm [20,21]
(from the initials of the authors), a set of local moves including
the deletion or addition of a few monomers along the walk.
Being ergodic within the class of rings with a given knot
type [24], this algorithm has also been extensively used to
study the effect of topological constraints on the asymptotic
properties of knotted rings in the swollen phase [25]. However,
it is known that its straightforward application to the globular
phase fails to reproduce the N -varying statistics with a con-
trolled average number of monomers 〈N〉 if N is sufficiently
large [26,27], a condition to achieve for studying the scaling
law (1) properly.

Here we introduce a stable numerical scheme to study
the large-N behavior of globular polymers. This is applied
on a model of interacting polymers that from now on we
refer to as an interacting elastic lattice polymer (IELP).
The IELP can be seen as an extension of the elastic lattice
polymer (ELP), a model that has been introduced to study
dynamical properties of linear polymers [28,29] and more
recently extended to investigate the equilibrium properties of
rings in the swollen phase [30]. Briefly (see the next section
for a better definition of the model) an M-monomer IELP is
an ISAW where locally the self-avoiding condition can be
partially relaxed by allowing some consecutive monomers
to condense on the same lattice site. In this respect the M

monomers of an IELP are elastically stored along an ISAW
backbone with fluctuating length N � M . This additional
degree of freedom, not present in the standard ISAW model,
can then be tuned to better stabilize the average length 〈N〉
when N -varying algorithms are used in stochastic sampling.
Moreover, by restricting the sampling to circular IELPs (rings),
the aforementioned finite-size corrections, due to the positions
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of the polymer ends with respect to the globule surface, can be
avoided. Finally, by looking at the asymptotic behavior of the
equilibrium averaged stored length density

ρM = M − 〈N〉
M

, (2)

we have access to the full scaling law (1) and we are able to
estimate its parameters in the globular phase.

This paper is organized as follows: In Sec. II we introduce
the IELP model and its asymptotic behavior in the globular
phase. In particular we show how to extract information on
the μ, σ , and θ exponents by extrapolating the average stored
length density ρM for large M values. In Sec. III we describe
the N -varying Monte Carlo algorithm used to sample closed
IELPs on the hypercubic lattice and its implementation on
a multiple Markov chain scheme, an additional stochastic
procedure known to increase the mobility of the sampling
for compact configurations. In Sec. IV we show the results
obtained for collapsed rings, ending with some conclusions in
Sec. V.

II. THE IELP MODEL FOR GLOBULAR POLYMERS

A commonly used model to study numerically the polymer
collapse transition is the ISAW, namely a SAW augmented
with an attractive energy −E equal to the number of contacts
(nonbonded pairs of nearest-neighbor sites of the SAW). In
the grand-canonical ensemble the large-N behavior of ISAWs
is governed by the singularities of the generating function

G(K,β) =
∑
N

KNZN (β), (3)

where K is the step fugacity, β the inverse of the temperature,
and

ZN (β) =
∑
E

e−βECN (E) (4)

is the canonical partition function associated with the number
of N -site ISAWs with energy E, CN (E). The singularities
of (3) develop as K → Kc(β)− and Monte Carlo algorithms
based on the BFACF moves must bring the value of K as
close as possible to Kc(β) = 1/μ(β) to get good statistics
of configurations with large N .

Unfortunately a straightforward application of the BFACF

algorithm in the globular phase meets a difficulty. Indeed, due
to the presence of the surface term ∼e−σN2/3

in (1) of ZN ,
the grand-canonical average 〈N〉 = 	NNKNZN/	NKNZN

does not grow continuously to +∞ as K → Kc(β)− but
instead jumps discontinuously to infinity right at K = Kc,
making the sampling of long walks quite unrealistic [26].

In order to allow the number of sites N to fluctuate and
grow in a rather controlled way we introduce the IELP model,
an extension of the the ELP model for SAWs in which self-
attracting interaction is taken into account. As in the ELP
model, the idea is to accommodate M � N monomers on
an underlying N -site SAW silhouette drawn on a lattice. To
maintain the connectivity constraint of a polymer chain, at least
one monomer resides in each site of the underlying N -site
SAW and only consecutive monomers can share the same
lattice site (see Fig. 1).

N−1

M−1

FIG. 1. Example of ELPs with M = 16 monomers and N = 10
sites (left) sharing the N -site SAW silhouette (right). Dashed lines
represent the energetic contacts associated with that configuration.

Certainly one could sample IELPs by updating the position
of all M monomers within the lattice [31]. However, this level
of detail is not necessary when the energy function depends
only on the N -site ISAW silhouette: in this case it is sufficient
to sample directly the ISAW backbone with rates that take into
account the degeneracy of each ISAW configuration. Since
for each N -site ISAW there are (M−1

N−1 ) possible IELPs, the
total weight associated with an IELP configuration with M

monomers, N lattice sites, and E contacts is given by

W = KNe−βE

(
M − 1

N − 1

)
. (5)

By summing over all possible values of E and N compatible
with M we obtain the generating function of IELPs with M

monomers,

ZIELP(M,β) =
∑
N�M

(
M − 1

N − 1

)
KNZN (β). (6)

Note that, when M and K are both kept fixed, the number
of sites N oscillates around an average 〈N〉K,M,β that scales

linearly with M , with fluctuations of the order of
√

M . This
property, as we will show below, is very helpful in sampling
long walks undergoing a � collapse.

A second advantage in sampling IELPs is the possibility
of estimating μ(β), σ (β), and θ by computing the asymptotic
of the mean stored length density (2) within a saddle-point
approximation [30]. To show this we first notice that, by
defining ω(β) ≡ μ(β)K and substituting the scaling (1) in (6),
the average 〈N〉 can be computed by using the relation

〈N〉(β) = ω
∂

∂ω
ln ZIELP(M,β). (7)

If the partition function of ISAWs were simply ZN (β) =
μ(β)N , one would get the exact expression N∞(β) =
〈N〉(β) = Mω(β)/[1 + ω(β)] [30]. Thus, by using the change
of variable N = xN∞, the saddle-point approximation of the
partition function becomes

ZIELP(M,β) ∼ (1 + ω)M
√

ωM

2π

∫ +∞

−∞
eMωF (x)dx (8)
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with

F (x) = − (x − 1)2

2
+ 1

Mω
{−σ (xN∞)2/3

+ θ ln(xN∞) + ln[1 + B(xN∞)−�]}. (9)

Denoting by x̄ the location of the maximum of F (x), the
approximation gives

ZIELP(M,β) ∼ (1 + ω)M
eMωF (x̄)

√|F ′′(x̄)| . (10)

Since in the large-M limit

|F ′′(x̄)| = 1 + O

(
1

M

)
, (11)

x̄ = 1 + O

(
1

M

)
, (12)

we get

MωF (x̄) = −σN2/3
∞ + θ ln N∞ + ln[1 + B(N∞)−�]. (13)

We then have

〈N〉 = ω
∂

∂ω
ln ZIELP(M,β) = N∞

[
1 − 2σ

3

N
−1/3
∞

1 + ω
+ θ

N∞

1

1 + ω
− B�N−�−1

∞
1 + BN−�∞

1

1 + ω

]

= N∞

[
1 − 2σ

3

N
−1/3
∞

1 + ω
+ θ

Mω
− B�

Mω

(
1 + ω

Mω

)� (
1 + BN−�

∞
)−1

]
, (14)

from which we get the scaling of the density ρM (β) = 1 − 〈N〉/M to order 1/M1+�,

ρM (β) = ρ∞(β)

[
1 + 2σ (β)

3

(
ω(β)

1 + ω(β)

)2/3 1

M1/3
− θ

M
+ B(β)�

(
ω(β)

1 + ω(β)

)−� 1

M1+�

]
, (15)

where

ρ∞(β) = 1 − N∞
M

= 1

1 + ω(β)
. (16)

We stress that at high temperature the surface term is not
present and the leading term is the one proportional to the
exponent θ , which scales as 1/M [30]. On the other hand, in
the globular phase the σ term is ∼1/M1/3: in the limit of large
M it dominates the entropic one, which now acts as a (weak)
correction to scaling.

III. MONTE CARLO ALGORITHM FOR IELP

Since the Monte Carlo algorithm for IELPs is based on
the BFACF moves, its ergodicity is a direct consequence of the
one already proven for the BFACF algorithm [32]. The Monte
Carlo scheme samples ISAW configurations according to the
statistical weight (5) of IELPs; it is then enough to require that
the rate of jump RAB from a configuration A to a configuration
B satisfies the detailed balance condition WARAB = WBRBA.
From Eq. (5) we get

RAB

RBA

= WB

WA

= KNB−NAe−β(EB−EA)

(
M − 1

NB − 1

)/(
M − 1

NA − 1

)

= KNB−NAe−β(EB−EA) (NA − 1)!(M − NA)!

(NB − 1)!(M − NB)!
. (17)

We now specialize the discussion to M-monomer circular
IELPs, whose underlying silhouette is given by an N -step
self-avoiding polygon (SAP) on a d-dimensional hypercubic
lattice. Note that in this case the periodicity in monomer
labeling requires N + 1 ≡ 1 with the number of monomers
equal to the number of steps. The BFACF moves that need some

care in their implementation are those changing the number N

of monomers. These are based on the addition or removal of
a crankshaft bulge: in such a motif a site i along the chain is
a nearest neighbor of site i + 3 and, together with i + 1 and
i + 2, they form a unit square on the hypercubic lattice (see a
d = 2 example in Fig. 2).

The addition or removal of two sites connects the ensemble
of SAPs with NA = N sites to that of SAPs with NB = NA + 2
sites. Accordingly, Eq. (18) simplifies to

RAB

RBA

= K2e−β(EB−EA) (N − 1)!(M − N )!

(N + 1)!(M − N − 2)!

= K2e−β(EB−EA) (M − N )(M − N − 1)

(N + 1)N
. (18)

In practice a local update A → B that proposes the addition
of two monomers is implemented by choosing, with uniform
probability P ind

A = 1/N , one of the N bonds of polygon A.
Then one of the 2d − 2 possible directions orthogonal to the

B

R

R

AB

BAA

FIG. 2. Example of a proposed move (and its inverse) that
transforms locally an N -site configuration A to an (N + 2)-site
configuration B.
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chosen bond (i,i + 1) is picked up with probability P dir
A =

1/(2d − 2).
The reverse update B → A is implemented accordingly

by choosing a bond of the polygon B with probability
P ind

B = 1/(N + 2). By calling AAB and ABA the acceptance
probability of the direct (A → B) and reverse (B → A)
moves, respectively, the jump rates RAB and RBA can be
written as

RAB = fABP ind
A P dir

A AAB = fAB

2d − 2

1

N
AAB,

(19)
RBA = fBAP ind

B ABA = fBA

1

N + 2
ABA,

where fAB and fBA are the frequencies with which the
direct and reverse moves are proposed, respectively. These
frequencies can be chosen to satisfy the detailed balance (18).
By choosing fAB = 2d − 2 and fBA = 1 we get

RAB = 1

N
AAB,

(20)
RBA = 1

N + 2
ABA.

With this choice the acceptance probabilities become

AAB

ABA

= N

N + 2

RAB

RBA

= N

N + 2
K2e−β(EB−EA) (M − N )(M − N − 1)

(N + 1)N

≡ K2e−β(EB−EA)q(M,N ), (21)

where we have defined the ratio

q(M,N ) = (M − N )(M − N − 1)

(N + 1)(N + 2)
. (22)

Note that q(M,N ) � 1 for N � (M − 2)/2 and q(M,N ) > 1
otherwise.

In the spirit of a Metropolis criterion, the idea is to maximize
both AAB and ABA compatibly with the above constraint on
q(M,N ). Ideally, one of the two should be equal to 1. The
following acceptance rates of the proposed move N → N + 2
and N → N − 2 satisfy the above requirements for any value
of N :

A(EA,N → EB,N + 2) = min{1,K2}
× min{1,q(M,N )}
× min{1,e−β(EB−EA)}, (23)

A(EB,N → EA,N − 2) = min{1,K−2}
× min{1,q−1(M,N − 2)}
× min{1,e−β(EA−EB )}. (24)

Hence, for a d-dimensional hypercubic lattice, when the
frequency of proposed moves that increase the number of
steps from N to N + 2, fAB , is 2d − 2 times the frequency
of the reverse moves (fBA), we can apply the filters (23)
and (24) to accept them. For an efficient implementation
of the algorithm once, say, the move N → N + 2 is pro-
posed, it is more convenient to pass first the filter equal to

min{1,K2} min{1,q(M,N )} and then, after the self-avoidance
test is passed, accept the move with probability equal to
min{1,e−β(EB−EA)}. In addition to the N -varying moves the
Monte Carlo scheme provides local corner flips [32] and
two-point pivot moves [32], the latter being essential to sample
rings with arbitrary topology.

The algorithm just described designs a Markov chain on
the space of IELPs with fixed parameters β and M . Several
runs at different values of M are then necessary to span a
broad range of density values at fixed β. An efficient way
to get several simulations with different M at once can be
obtained by embedding the above algorithm in a sampling
scheme where several Markov chains at different M’s run in
parallel, and swaps of configurations between contiguous (in
M) Markov chains are performed stochastically. This super-
Markov chain is known as multiple Markov chains and in the
past has been proved to be very effective in increasing the
sampling efficiency [7,33,34].

By considering (5) one can determine the acceptance
ratio of configurations swapping between two Markov chains
respectively of parameters M and M ′: since β and K are fixed,
the only relevant term in (5) is the factorial and the acceptance
probability of the swap move A = {(M,N )&(M ′,N ′)} →
B = {(M,N ′)&(M ′,N )} reduces to

AAB = min

{
1,

(M − N )!(M ′ − N ′)!
(M − N ′)!(M ′ − N )!

}
. (25)

If M ′ > M this equation can be written as

AAB = min

{
1,

M ′−M−1∏
i=0

M ′ − N ′ − i

M ′ − N − i

}
. (26)

Since each term of the product is larger than 1 for N > N ′, a
swap that moves the longer configuration to higher values of
M is always accepted.

For multiple Markov chains at different β’s, the swapping
of configurations between two contiguous (in β space) Markov
chain is likely to be accepted if there is a non-negligible
overlap between the energy distributions sampled by the
two Markov chains. Here the interacting Markov chains are
taken at different M’s and a good acceptance rate of swaps
between two neighboring chains is expected if there is a
non-negligible overlap of the corresponding N distributions.
Since the dispersion in the N ’s sampled is ∼√

M , the spacing
between subsequent values of M should also scale as ∼√

M .
With this choice of M the swapping moves should occur
quite frequently, allowing a good mobility of the sampled
configuration in the space of M values and hence decreasing
the correlation times between in the stochastic sampling (see
Fig. 3).

IV. RESULTS

Simulations of circular IELPs on the cubic lattice are based
on the sampling scheme described in the previous section with
K = 1, i.e., ω = μ. By fixing β we run in parallel 46 Markov
chains, each with a given value of M from a minimum Mmin =
100 up to a maximum Mmax = 1000. As explained in Sec. II,
the asymptotic behavior of the average stored length density
ρM (β) can be exploited to investigate the scaling properties
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FIG. 3. (Color online) Some of the sampled length distributions
for inverse temperature (a) β = 0 (swollen phase) and (b) β = 0.5
(collapsed phase). The 12 curves are for different M values, ranging
from M = 690 (left) to M = 1000 (right). The similar overlaps
between contiguous distributions are obtained by choosing a spacing
between the corresponding M’s that scales as

√
M .

of the free energy of globular rings. To test the validity of
the approach, let us first consider the scaling of ρM (β) in the
swollen phase. In this case σ = 0 in (1) and the leading term
in (15) is proportional to θ and goes as 1/M .

Figure 4 shows the scaling behavior of ρM (0) as a function
of 1/M for rings on the cubic lattice. The data converge linearly
to an intercept ρ∞, as expected. By fitting the data with � =
1/2 we get the estimates ρ∞(0) 
 0.161 253 and θ 
 −1.759.
Given that ρ∞(β) = 1/[1 + μ(β)] and that in rings θ is usually
denoted by α − 2, we finally get

μ(0) = 4.684 12(15), α = 0.241(22). (27)

These estimates are, within error bars, compatible with the
ones obtained in previous studies on the scaling properties
of self-avoiding polygons [30,32]. We perform a similar
analysis at the � point (β = 0.269 [22,35])) where the surface

0 0.002 0.004 0.006 0.008 0.01
1 / M

0.165

0.17

0.175

0.18

ρM

FIG. 4. (Color online) Mean stored length density vs 1/M for
β = 0 (top) and β = 0.269 (bottom). The dashed lines are fits based
on (15) with σ = 0.

0 0.05 0.1 0.15 0.2
1 / M1/3

0.13

0.14

0.15

0.16

ρM

FIG. 5. (Color online) Mean stored length density vs 1/M1/3 for
(from top to bottom) the values of β = 0.32, 0.36, 0.4, 0.45, and 0.5.
The dashed lines are fits based on (15) with B = 0.

correction is still absent. The data are also reported in Fig. 4
and by fitting them using (15) with � = 1/2 and σ = 0 we
find

μ(0.269) = 5.047 62(22), α = 0.528(31). (28)

The estimate of α is more complicated than in the swollen
phase due to the presence of logarithmic corrections [36] but
the value we find agrees, within error bars, with the mean-field
value α = 1/2 that, in d = 3, is supposed to be exact.

We now focus on the scaling properties of globular rings
by considering values of β > β� = 0.269 [22]. In this case
the surface free energy term proportional to σ is not negligible
and the leading term in (15) should scale as 1/M1/3. This is
confirmed in Fig. 5 where, by plotting the data ρM (β) as a
function of 1/M1/3 a linear behavior occurs for sufficiently
large values of M and β. The linear extrapolation of these data
at 1/M1/3 → 0 would give an estimate of ρ∞(β), the slope
of the linear approximation of the curves an estimate of σ (β),
while their curvature furnishes an estimate of θ . Since finite-
size effects are present in our data, one should in principle
include into the nonlinear fit the correction to scaling that
depends on B and �. However, these two additional unknown
parameters would destabilize the fit. We decided instead to
proceed as follows: We partitioned the data into three groups
according to the M values. In the first group the data with the
largest ten values of M are excluded, in the second group are
excluded points with the five largest and the five smallest M’s,
while the third one excluded the ten smallest M’s. The third
group, the most asymptotic one, has been used to estimate
μ(β), σ (β), and θ while the estimates from the other two
groups are used to estimate the error bars. In Table I we listed
the estimates of μ(β), σ (β), and θ (β) for a wide values of β

in the globular phase. For comparison also the estimates in the
swollen phase and at the � point have been included.

We first notice that both ln μ(β) and σ (β) in the globular
phase increase with β (see Fig. 6) and, deep inside the phase
the dependence is linear in β. Since ln μ(β) is proportional
to the bulk free energy per monomer f (β) of the model, the
linear behavior is expected by simple rigorous bounds on f (β)
(see, for example, [35]). The linear behavior of σ (β) can be

062601-5



M. BAIESI AND E. ORLANDINI PHYSICAL REVIEW E 89, 062601 (2014)

TABLE I. Numerical estimates of μ, σ , and α obtained by fitting
the data of Figs. 5 and 4 with Eq. (15).

Phase β μ σ α

Swollen 0 4.68412(15) 0.241(22)
� point 0.269 5.04762(22) 0.528(31)
Globular 0.32 5.20(1) 0.06(3) 0.8(2)

0.36 5.45(4) 0.34(10) 2.4(9)
0.4 5.75(2) 0.58(5) 2.8(6)
0.45 6.17(2) 0.82(4) 2.5(3)
0.5 6.68(2) 1.06(5) 2.1(4)

explained in a similar way by noticing that, in the large-β limit,
the statistics of the globular phase is dominated by almost
“spherical” configurations with surface area of the order of
CN2/3. This gives a bound on the surface free energy σ (β) of
the order of βC.

Finally the estimates of the entropic exponent α for rings
are reported in the last column of Table I and plotted in Fig. 7
for the three sets of data grouped as explained before [we
recall that the estimates at β = 0 and β = β� are obtained by
using (15) with σ = 0 and � = 1/2]. In addition, from the
figure it is readily seen that the hyperscaling relation 2 − α =
νd [2,37] is confirmed both in the swollen phase (β = 0),
where ν ≈ 0.587 97(7) [38] and at the � point, where ν = 1/2.
In the above relation ν is the critical exponent governing the
scaling behavior of the average extension of the polymer, and
d = 3.

In the globular phase (ν = 1/d) the value of α is not known
from the theory and, as far as we know, there are no numerical
results supporting the hyperscaling relation α − 2 = −1. The
plot in Fig. 7 shows for β > β� an initially steep increase of
α − 2 followed by an unstable behavior deep in the globular
phase. While the sharp increase just above the � point is
a good indication of a single value of α characterizing the
globular phase, the actual estimate of this value seems to
fluctuate widely between α = 2 and α = 2.7. This is probably
due either to the fact that the sampling at high values of β is
not robust and reliable enough or that the neglected correction

0 0.1 0.2 0.3 0.4 0.5
β

0

0.5

1

1.5

2

βΘ

ln μ

σ

FIG. 6. (Color online) Estimate of the bulk (ln μ) and surface σ

free energy contributions at various inverse temperatures β.

0 0.1 0.2 0.3 0.4 0.5
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FIG. 7. (Color online) Estimates of the entropic exponent α − 2
as a function of the inverse temperatures β. The three sets of data for
β > 0.3 show how the estimates of α change by taking more and more
asymptotic data. The dashed horizontal lines refer to the hyperscaling
values −νd expected respectively for rings in the swollen phase and
at the � point. The dot-dashed horizontal line refers to the value that
one would expect from hyperscaling in the collapsed phase.

proportional to B in (15) is important in this region for the
values of M considered. More investigations are needed to
clarify this issue. On the other hand, by focusing on the
crossings formed by the three sets of estimates one observe
that, as M increases, the β values of the crossings shift towards
the � point and correspondingly the α exponents goes closer
to a value between 2.7 and 3.0. Despite the important degree
of uncertainty in the estimates of α, we can say that, unlike in
the swollen phase and at the � point, the hyperscaling relation
is not valid for globular polymers.

V. CONCLUSIONS

In this paper we have introduced and implemented a
Monte Carlo scheme to study the scaling properties of N -step
interacting polymers on the cubic lattice. The sampling scheme
is based essentially on the N -varying BFACF moves acting on
a class of self-attracting rings that we refer as IELPs. These
are chains of M monomers that locally could fold into the
same lattice site and hence that can accumulate their total
length M � N along their N -step backbone. If the interaction
energy coincides with that of the backbone, however, it is not
necessary to simulate the moves of the M-monomer IELPs,
it is just sufficient to sample N -step configurations with a
reweighting term that takes into account the multiplicity of the
possible rearrangements of M monomers in N sites. Unlike
the standard grand-canonical algorithms, this scheme bounds
from above the number of steps N by M , preventing the
uncontrolled growth of the average 〈N〉 during the sampling,
a problem that severely affects the N -varying sampling of
globular configurations.

By looking at the asymptotic properties of the stored length
density ρM (β) as a function of the inverse temperature β we
have been able to study the scaling behavior of the free energy
of the interacting SAP model for several values of β, from the
swollen phase down to the globular phase, passing through the
� point. To test the validity of our algorithm, we first estimated
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the bulk free energy ln μ(β) and the entropic exponent α − 2
of the model at β = 0 and β = β�, finding a good agreement
with previous results. In the so far unexplored globular phase,
in addition to the bulk free energy ln(μ) we gave an estim-
ate of the surface free energy σ (β). Finally, by looking at
the entropic exponent α − 2 we furnish good evidence that,
unlike in the swollen phase and at the � point, the hyperscaling
relation α − 2 = −νd does not hold for the class of collapsed
globular rings.

The Monte Carlo scheme based on IELPs should be
particularly useful to study globular rings of fixed knot

type [30]. It would then be interesting to apply this sampling
scheme to investigate the role of topology in the scaling
properties of the free energy of globular knotted rings.
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