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L. Jonathan Cook, D. A. Mazilu, I. Mazilu, B. M. Simpson, E. M. Schwen, V. O. Kim, and A. M. Seredinski
Department of Physics and Engineering, Washington and Lee University, Lexington, Virginia 24450

(Received 13 March 2014; revised manuscript received 27 May 2014; published 30 June 2014)

Self-assembly of nanoparticles is an important tool in nanotechnology, with numerous applications, including
thin films, electronics, and drug delivery. We study the deposition of ionic nanoparticles on a glass substrate
both experimentally and theoretically. Our theoretical model consists of a stochastic cooperative adsorption and
evaporation process on a two-dimensional lattice. By exploring the relationship between the initial concentration
of nanoparticles in the colloidal solution and the density of particles deposited on the substrate, we relate the
deposition rate of our theoretical model to the concentration.
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I. INTRODUCTION

Self-assembly of nanoparticles is an important tool in nan-
otechnology, and an active area of interdisciplinary research,
with applications spanning a variety of fields, such as optics,
materials science, electronics, and nanomedicine [1]. There
are a multitude of experimental techniques that take advantage
of the natural tendency of particles to self-assembly due to
chemical bonds [1]. One of the most intuitive and cost-effective
methods for creating thin films, for example, is layer-by-
layer self-assembly, also known as ionic self-assembly of
monolayers (ISAM). It was first introduced by Iler [2] and
later used in the creation of antireflective coatings [3]. To
create the thin films, layers of cations and anions are deposited
by alternately dipping the substrate in aqueous solutions of
appropriate ions. The same principle is used for other types of
applications, such as the creation of thin films using nanotubes
[1] and drug attachment and encapsulation of nanoparticles
using synthetic dendrimers [4,5].

The main goal of our paper is to present a stochastic sta-
tistical physics model that encapsulates the essential features
of the self-assembly of ionic nanoparticles from a colloidal
suspension onto a glass substrate. The model is validated
by experiments conducted in our laboratory that show the
effect of the concentration of the colloidal suspension on the
nanoparticle coverage of a glass substrate.

Analytical and computational models of sequential adsorp-
tion have proven successful in describing diverse physical
systems ranging from surface deposition and chemisorption
on crystal surfaces [6] to epidemic problems [7,8] and voting
behavior [9]. The dynamics of nanoparticle deposition is
another application of such models. It is currently an active area
of research in nanotechnology studies [10], which addresses
interesting open questions on the theoretical front [11].

Two classes of models that have been particularly success-
ful are random sequential adsorption (RSA) [12–14], in which
particles are adsorbed or deposited at a fixed rate at random
unoccupied sites on a grid, and cooperative sequential adsorp-
tion (CSA) [15], in which adsorption rates depend upon the
occupation of neighboring sites. One-dimensional sequential
adsorption models have been studied thoroughly in different
physical contexts [12,15], but adsorption in two dimensions
is less understood. There are many computational adsorption

models [16], but few analytical solutions have been developed
for the general two-dimensional case. Recently, analytical re-
sults have been reported for the random sequential process [13]
and reaction-diffusion processes on Cayley trees and Bethe lat-
tices [17–22]. Adding the possibility of particle detachment, or
evaporation, to such models brings additional complications.
One of the standard tools used to study these systems, the
empty-interval method [16], fails when evaporation is consid-
ered. Evaporation has been treated analytically in a few studies
of one-dimensional systems using a quantum mechanical
approach [23].

We will describe the ISAM process using a stochastic
cooperative sequential adsorption with evaporation (CSAE)
model on two-dimensional lattices. These methods are ideally
suited for modeling ISAM since the deposition process of
nanoparticles is stochastic and the deposited nanoparticles
are electrically charged, as are the substrate deposition sites,
suggesting a cooperative sequential adsorption model with de-
position rates dependent on nearest-neighbor site occupation.

The general CSAE model that we utilize leads to analytical
solutions for the particle density. In order to validate the
model, we conducted an experimental study of the effect
of the colloidal suspension concentration on the steady-state
coverage density of the glass substrate. The analytical results
are compared to the experimental data and to Monte Carlo
computer simulations. We found excellent agreement between
the three methods.

In Sec. II of this paper, we describe the ISAM process and
our experimental results for the concentration dependence of
the coverage density. In Sec. III, we present the analytical
model and its mean field solution. Section IV is dedicated to a
comparison between experiment, theory, and the Monte Carlo
simulations. We summarize our results and discuss some open
questions in Sec. V.

II. EXPERIMENT: IONIC SELF-ASSEMBLY
OF SILICA NANOPARTICLES

The use of ionic self-assembled monolayers allows detailed
structural control of materials at the nanoscale, combined with
ease of manufacturing and low cost. The ISAM process allows
the deposition of alternating layers of cations and anions by
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FIG. 1. (Color online) ISAM process of creating multiple bilayers.

dipping a substrate in aqueous solutions of the appropriate
ions, as illustrated in Fig. 1. Because it is a dipping process,
any exposed surface is homogeneously coated, allowing highly
uniform, conformal coatings on irregular shapes. The basic
building block for the film is a cation-anion bilayer, which
may consist of either two polyelectrolytes (a polycation and
a polyanion), a polyelectrolyte and a nanoparticle, or two
different nanoparticles. The thickness of a bilayer is a function
of the diameter of the nanoparticle and the packing of the
particles from layer to layer. The optical properties of the
resulting film can be tuned by the choice of nanoparticles
and by the number of bilayers deposited. A comprehensive
review of the technique and its applications can be found in
Ref. [10]. Although there are numerous studies on the subject
of thin-film characterization [24,25], the goal of creating thin
films with a graded index of refraction is still outstanding.
A study published by Yancey et al. [26] shows that the
coverage of the substrate plays an important role in tuning
the index of refraction of the thin film. The Maxwell-Garnett
approximation [27], in fact, predicts that the index of refraction
depends on surface coverage.

In our experiments we deposited negatively charged
spherical silica nanoparticles of nominal 40- to 50-nm
diameter on negatively charged glass slides using
poly(diallyldimethylammonium chloride) (PDDA) as poly-
cation. The silica nanoparticles (SNOWTEX ST-20L from
Nissan Chemical) were in a colloidal suspension at stable
pH = 10.3 and room temperature T = 21◦C. The glass slides
were cleaned under sonication, in three successive 20-min
steps, with LABTONE detergent, 1N sodium hydroxide
solution, and deionized water, and then dried with flowing
nitrogen gas. The dipping time was 10 min for each bilayer. We
varied the concentration of the silica suspension by diluting it
with deionized water. We examined the nanoparticle coverage
of the substrate using SEM micrographs, in which deposited
particles appear as light regions on a dark background. A
sample SEM micrograph is shown in Fig. 2. We processed
two single-bilayer micrographs for each concentration data
point. Using an automated pixel-counting method we de-
termined the average coverage of light pixels, representing
presence of deposited particles. The experimental data is
presented in Sec. IV, alongside and compared to the analytical
solution.

FIG. 2. A sample SEM micrograph at 25 000× magnification.
Nanoparticles deposited on the substrate appear as light regions.

III. THEORETICAL MODEL FOR THE IONIC
SELF-ASSEMBLY PROCESS

We model the glass slide uniformly covered by the PDDA
polymer as a finite two-dimensional lattice with N total sites.
We consider the silica nanoparticles as charged monomers
that attach to and detach from the lattice sites. We define an
occupation number ni = 0 for an empty site and ni = 1 for
an occupied site. Our model considers both evaporation of
monomers and deposition of monomers with rates dependent
on the number of occupied neighbors.

We define the following transition rate for the particle
occupation:

c[ni → (1 − ni)] = γ ni + (1 − ni)αβ
∑

j∈NN nj . (1)

The first term in the transition rate is the evaporation term:
if a particle is present, it will evaporate with probability γ .
The second term describes the deposition of monomers. If
the lattice cell is empty, a monomer will attach with a rate
equal to αβη, where η = ∑

j∈NN nj is the number of occupied
nearest neighbors. When η = 0 (no nearest neighbors present),
the intrinsic deposition rate is α. The rate β attenuates this
intrinsic deposition rate based on the number of occupied
nearest neighbors.

Given this transition rate, the number of particles on the
lattice changes according to the following equation:

∂ni

∂t
= −γ ni + (1 − ni)αβη. (2)

A. Mean-field solution

In order to find the equation that governs the time depen-
dence of the overall particle density, we take the ensemble
average of ni :

∂〈ni〉
∂t

= −γ 〈ni〉 + 〈(1 − ni)αβη〉. (3)

Since this equation contains higher-order correlations, we
employ the mean-field technique, which allows for the cor-
relations to be approximated as

〈ninj 〉 = 〈ni〉〈nj 〉. (4)
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Using this approximation, we arrive at the following equation:

∂〈ni〉
∂t

= −γ 〈ni〉 + (1 − 〈ni〉)αβ〈η〉, (5)

where 〈η〉 = ∑
j∈NN 〈nj 〉.

In Fig. 2, we see that the size of a particle is much less than
the size of the slide. As such, edge effects due to the finite size
of the slide should be negligible in the interior of the slide.
Additionally, we see a uniform distribution of particles on the
slide. From these two observations, we find that the coverage
density is independent of the location on the slide. Therefore,
the average site density ρi = 〈ni〉 is the same as the overall
average coverage density ρ = ∑

i
ρi

N
:

ρi = ρ. (6)

Using this information leads to a rate equation for the particle
density:

∂ρ

∂t
= −γρ + (1 − ρ)αβ4ρ. (7)

For the steady state, ∂ρ

∂t
= 0, this is a self-consistent

transcendental equation that can be solved numerically:

ρ = αβ4ρ

γ + αβ4ρ
. (8)

Equation (7) can be solved numerically using standard soft-
ware such as Maple or Mathematica. In Fig. 3, we present the
time-dependent particle density for three different values of β

(0.1, 0.5, and 0.9) at a fixed γ = 0.3 and α = 1. For all three
β’s the shape of these curves is the same, but the steady-state
values of the particle density are drastically different. A more
in-depth analysis of the steady-state coverage is required and
will be presented in Sec. IV, in connection with its dependence
on concentration.

FIG. 3. (Color online) Particle density as a function of time for
three values of β with γ = 0.3 and α = 1. The three values of β

shown are 0.1 (black, dashed line), 0.5 (red, dot-dashed line), and
0.9 (green, solid line).

From a theoretical point of view, it is worth noting that
Eq. (7) can be generalized for any coordination number z, as

∂ρ

∂t
= −γρ + (1 − ρ)αβzρ. (9)

The solution of this mean-field equation can be obtained for
a generic geometry with an effective coordination (per site)
z. Such a solution would show that a different coordination
number (in the mean-field limit) just corresponds to a different
effective β, i.e., the parameter would be βz rather than β.
Because we are comparing our analytical results to a very
specific experiment, we discus in this article just the particular
case of a square lattice of coordination number z = 4 and
β < 1, to simulate electrostatic screening.

The case of β > 1 corresponds to a physical situation in
which the presence of occupied neighbors favors adsorption.
This choice can apply to a voter- or an epidemic-type model.
The numerical solutions for β > 1 are very similar in shape
to the ones presented in Fig. 3 for β < 1. The main difference
is the increased rate at which the lattice fills up to 100%
coverage. The cooperative aspects of the model disappear for
β = 1; it becomes a Langmuir model [28].

B. Connection to the Ising model

We arrive at the same self-consistent transcendental equa-
tion for the particle density in the steady state if we approach
the problem in the context of the Ising model on a two-
dimensional lattice. The Hamiltonian associated with the
two-dimensional Ising model of a system of N spins in an
external field is

H = −J
∑

i,j∈NN

sisj − B

N∑
i=1

si . (10)

The first term describes the interactions between nearest-
neighbor spins, and the second term expresses the interaction
between each spin and an external magnetic field B. The spin
numbers are si = 1 for a spin-up, and si = −1 for for a spin-
down.

We can map our model onto an equivalent spin model, in
which the spin numbers are related to the occupation numbers
ni , si = 2ni − 1. Using the detailed balance condition, we
can solve for the coupling constants in terms of the defined
attachment and detachment rates α, β, and γ :

K = J

kT
= 1

4
ln(β), (11)

h = B

kT
= 1

2
ln

(
αβ2

γ

)
. (12)

The equation derived for the magnetization of a system
of spins in an external magnetic field in the mean-field
approximation is [16]

M = tanh(4KM + h). (13)

With the coupling constants K and h found above, and M =
(2ρ − 1), we arrive at a transcendental equation identical to
Eq. (8).
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C. Computer simulations

We perform Monte Carlo simulations on a two-dimensional
square lattice in order to investigate the dynamics of the CSAE
process and evaluate the steady-state solutions under various
parameter regimes. Our simulations utilize a 120 × 120 two-
dimensional grid onto which particles are both deposited
at empty sites and evaporated from filled sites. In order to
minimize edge effects, data is recorded for only the 100 ×
100 matrix at the center of the larger lattice. The interior of
the lattice is chosen instead of periodic boundary conditions;
this choice mimics what is done experimentally. Only a small
portion of the glass slide is analyzed, which is typically far
away from the edges of the slide. The edges in the simulations
have a higher average site density due to the reduced number
of neighbors. Additionally, the average site density near the
edges in the simulation decays rapidly to the average bulk
density as shown in Fig. 4 for the left edge. Similar results
are seen for the other edges. Edge effects were not seen in the
SEM micrographs, which is another reason we only consider
the interior of the lattice.

Particles are deposited at empty cells with the rate αβη,
where η represents the sum of occupied neighboring sites.
Particles evaporate from filled cells with the rate γ , which is
independent of the state of neighboring sites. To update a site,
a random site is chosen. If the site is occupied, the particle
will evaporate with rate γ . If the site is empty, then it will
become occupied with rate αβη. To make the simulation reach
the steady state more efficiently, we only consider updates that
change the configuration of the lattice. A different reaction
(evaporation, adsorption with no neighbors, adsorption with
one neighbor, etc.) is randomly chosen. We weight the choice
of each reaction by the number of sites that would allow this
reaction multiplied by the rate of the reaction. Once a reaction
is chosen, a site with the given reaction is randomly chosen to
change. Starting with an empty lattice, we allow the system to

0.3 
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0.45 

0.5 

0.55 

0.6 

0 5 10 15 20 25 30 
Site Index Number 

FIG. 4. (Color online) Simulation results showing the the effects
on the average site density near the left edge of the lattice. The sites
are indexed with site 1 next to the edge. The density shown is the
column average of rows 31 to 90 on a 120 × 120 lattice with γ = 0.3,
α = 1, and β = 0.5.

reach steady state by waiting 1.44 × 106 site updates. We then
average the particle density at steady state over 100 realizations
of the system.

For physical systems with repulsion between particles,
the rate of deposition decreases when neighboring sites are
occupied. We model this situation by choosing β to be between
zero and one for all simulations. A simple rescaling of time in
Eq. (7) shows that the ratio of α to γ controls the steady state
density. Therefore, we set α = 1 and vary γ without loss of
generality.

As seen in Fig. 5, the mean-field result is in excellent
agreement with the simulation results and captures the relevant
dynamics of this model for β � 0.4. Additionally, we see
in Fig. 5(b) that the density as a function of β could be

(b)

(a)

FIG. 5. (Color online) Comparison of simulation (blue squares)
and mean-field results (red line). (a) Particle density as a function of
γ with α = 1 and β = 0.7. (b) Particle density as a function of β with
α = 1 and γ = 0.3.
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approximated by a linear function for β � 0.4. At smaller
values of β, the mean-field theory fails to agree with the
simulation due to stronger spatial correlation, which the theory
neglects. Since the simulation models an ISAM, we now look
at connecting this linear dependence to a similar one found in
the experimental data.

IV. COMPARISONS: EXPERIMENT AND THEORY

Our CSAE model considers a simple case of deposition and
evaporation of monomers and yields a transcendental equation
for the particle density of the steady state that can be solved
numerically. For the proposed model, the Eq. (8) associated
with the steady state is rewritten here for convenience:

ρ = αβ4ρ

γ + αβ4ρ
.

The experimental data shows a linear dependence between
the particle density and the inverse of concentration. Using
our model, we found a relationship between the concentration
of the nanoparticle suspension and the theoretical probability
rate β. In particular, we found numerical solutions for the
particle density ρ in Eq. (8) for fixed α = 1 and γ = 0.3, which
match the experimental data shown in Fig. 6. Although Eq. (8)
is a nonlinear function, a linear approximation matches the
numerical solution well, which is also shown in Fig. 6. From
this comparison, we conclude that, according to our model,
for constant temperature, the concentration of the nanoparticle
solution is a function of β:

C = 1

75(1 − β)
, (14)

for the chosen values of α = 1 and γ = 0.3, or for any values
of α and γ for which the ratio γ

α
= 0.3.

FIG. 6. (Color online) Comparison of experimental data and
theory for particle density as a function of the inverse of concentration
of the colloidal suspension in arbitrary units. The equations associated
with the linear fit are: (i) theory (red line), y = −0.0077x + 0.7655;
(ii) experiment (blue squares), y = −0.0078x + 0.7566 with R2 =
0.94681. The theoretical fit is drawn from the numerical solutions to
Eq. (8).

We linearize Eq. (8) by performing a Taylor expansion
about β = 1,

ρ = ρ(β = 1) + (β − 1)
∂ρ

∂β

∣∣∣∣
β=1

+ . . . , (15)

where we only keep the linear term. Using ρ(β = 1) = α
γ+α

,
we obtain the following result:

ρ = α

γ + α
− (1 − β)

[
4

(
α

γ + α

)2(
1 − α

α + γ

)]
. (16)

As long as this ratio is equal to 0.3, the intercept of
the theoretical and experimental lines is identical, and the
difference between the two slopes is minimal.

For the model presented in this paper, we also explored the
case of the detachment rate being dependent on the number
of neighbors, γ

∑
j∈NN nj . In the end, it seemed an unnecessary

complication to consider such dependence, because the results
showed that the model can be recast in terms of the ratio β

γ
.

From an experimental point of view, this cooperative
sequential adsorption model with evaporation can lead to
interesting applications. The ability to predict or estimate the
steady-state coverage makes possible the prediction of the
index of refraction [27], which is dependent on the overall
particle density. A graded index of reflection is an outstanding
goal in the creation of antireflective coatings. The model
can also be modified for other lattice structures, such as
Cayley trees with any coordination number z, with applications
in modeling drug encapsulation in nanomedicine [4]. The
attachment and detachment rates can be chosen to reflect
nearest-neighbor attraction (β > 1) and repulsion (β < 1).

V. CONCLUSIONS

In this article, we presented a cooperative sequential ad-
sorption with evaporation model for the experimental process
of ionic self-assembly of charged silica nanoparticles (ISAM).
Experimentally, we investigated the effect of the concentration
of the nanoparticle suspension on the particle density at
fixed temperature. We found that the particle density depends
linearly on the inverse of the concentration. Theoretically, we
found equations for the time-dependent particle density and the
density of the steady state. Our solutions are also validated by
Monte Carlo simulations. We compared our theoretical results
with the experimental data and found an excellent agreement
between the two for β � 0.4. We conclude that we can directly
relate our theoretical probability rate β to the nanoparticle
concentration using Eq. (14).

Several open questions may be addressed by extending our
results. The model presented matches well the particle density
of the steady state found experimentally, but it doesn’t capture
the dynamics of the system on its way to the steady state.
Experimental studies [3] indicate that 90% of the particle
attachment happens in the first 30 s of the dipping process,
followed by a slower approach to the final steady state.
We plan to further study this time-dependent behavior both
experimentally and theoretically. We will explore the dynamics
of our model when time-dependent attachment and detachment
rates are being considered, in agreement with the experiment.
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Our theoretical model can be generalized to include other
aspects of the ISAM process, such as the presence of dimers
and other particles of various shapes and sizes in the colloidal
suspension. The analytical method used in our study is the
mean-field method, which disregards correlations between
particles. Using a different mathematical approach might lead
to possible analytical results for these correlations.
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