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Influence of adsorption or desorption and surface diffusion on the formation kinetics
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The formation kinetics of open half-monolayer films on solid substrates is studied by the deposition of particles
from a gaseous (vapor) phase to a cold substrate (room temperature) provided the lateral interaction between the
particles of adsorbed layer (adlayer) is attractive. A detailed analysis of two limiting cases is presented: when
the half-monolayer film formation rate is limited by the adsorption of particles from the gas phase and when
the formation of the half-monolayer film surface is determined by the rate of surface diffusion of the adsorbed
particles. The asymptotic analysis of the coverage dispersion evolution and the characteristic spatial scale of
coverage inhomogeneities at the early and late stages of relaxation of a submonolayer film after quenching under
the spinodal is carried out. It is found that separation of the adlayer occurs, so inhomogeneities of submonolayer
films at the later stages of the process tend to equilibrium values of coverage in any case. However, asymptotic and
numerical analysis shows that in the second case for some relationship between the kinetic and thermodynamic
parameters of the adlayer an intermediate asymptotic relaxation process can be observed. It testifies to a kinetic
slowdown of the separation process at the spinodal values of coverages. This fact manifests as the appearance
of the intermediate plateau in the evolution curves for the coverage dispersion and nonmonotonic change of the
characteristic spatial scale of coverage inhomogeneities. Moreover, at the early stages of the coverage evolution,
the incubation period is revealed in the development of its inhomogeneities. It is shown that at the later stages of
the separation of the half-monolayer film, the characteristic spatial scale of coverage inhomogeneities increases
with time according to the law τ 1/2 and the width of the transition region between enriched and depleted regions
of adlayer decreases as 1/τ 1/2.
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I. INTRODUCTION

The problem of obtaining homogeneous ultrathin (sub-
monolayer) films with the desired properties is of special inter-
est, in particular for application in micro- and optoelectronics.
The control of the layer-by-layer formation process is of great
importance. A significant role in forming such films belongs
to the adsorption of alien atoms or molecules on the surface
of solids. From a physical viewpoint, the adsorption layer
(adlayer) is a two-dimensional system located on the boundary
between vapor and solid. The study of these properties is
interesting not only for practical aims, but also for fundamental
physics [1,2].

The main difficulty in the generalization and an adequate
description of physical phenomena in such films is related to
the process of evolution determined by many factors. Even
though the adsorbed film grows upon an atomically smooth
surface, it is not evident that homogeneous submonolayer
coverage will form. Another important aspect of film formation
is the structure of the coverage, which can be ordered or
amorphous. The quality of that structure is determined not
only by the sorption capability of the substrate, but by the
character of the intralayer (lateral) interaction of the sorbate
atoms or molecules also [3]. If this interaction has a repulsive
character, then a phase transition of the order-disorder type by
temperature should be observed in the film at low temperature.
The processes of two-dimensional ordering are especially
important for submonolayer films, which is why a number
of experimental [4–7] and theoretical works [8–10] have been
devoted to investigations in films like these. Otherwise, under
attractive lateral interaction, the coverage will have a tendency

[11] to separate upon the regions enriched and depleted by
adatoms, specifically at low temperatures. In particular, phase
separation of the spinodal type [12] can be observed under
certain conditions in such films.

It should be noted that spinodal decomposition has been
studied by computer simulation methods in adsorbed films of
different nature (liquid, polymeric, semiconductor, and ferro-
magnetic ones). Experimental detection of phase separation
of spinodal type in thin semiconductor films in a number of
cases can be carried out by means of photoluminescence and
TEM [13] and also by differential ac chip calorimetry [14] and
atomic force microscopy [15].

For theoretical research of spinodal decomposition in
polymeric films, the methods of computer simulation are
often used, namely, the molecular dynamics method [16] and
Monte Carlo simulation scheme [17,18]. A phenomenological
approach to the description of the kinetics of spinodal
decomposition in an unstable region in both liquid [19,20] and
polymeric [21–23] films is based on the numerical solution of
the Cahn-Hilliard equation, where the coverage or thickness of
films is used as the order parameter. Under this approach in the
case of polymeric films, originally, the existence of two stages
of phase separation of spinodal type [21] was ascertained
theoretically and then three stages of this process were found
[22]. Experimental confirmation of the many-stage character
of the above-mentioned phenomena, i.e., the existence of
the early, late, and intermediate stages of spinodal phase
separation, was presented in [23] by studying the spinodal
decomposition in polymeric films. It should be noted that all
of these works [21–23] studied many-stage phase separation
in thin but still multilayer films. As will be seen below, the

1539-3755/2014/89(6)/062406(11) 062406-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.062406


FELDMAN, STEFANOVICH, AND TEREKHOVA PHYSICAL REVIEW E 89, 062406 (2014)

many-stage nature of the spinodal decomposition is inherent
in this type of film with low coverage, i.e., it can be observed
even in half-monolayer films on solid substrates.

It should be mentioned that in all of the above theoretical
studies [16–22], the separation processes of thin films (spin-
odal decomposition) was discussed without accounting for
material contact with the gaseous phase, i.e., when the total
number of atoms or molecules adsorbed on the substrate has
been fixed. In fact, due to adsorption and desorption processes
of particles from the gas phase, a number of the particles in the
film itself do not stay unchanged. Therefore, constructing the
theory of formation of the films in each case requires a valid
account of the exchange process adlayer particles and the gas
phase with the condition of particle deposition on the substrate
[24]. It should be noted that attempts to take into account the
arrival of the particles from the gas phase were made before
[25–27]. However, in Ref. [25], spinodal decomposition was
considered for the directed flux of adsorbate particles from
a gaseous phase. This condition corresponds to receiving
the films by molecular-beam epitaxy, not to the case of
gas-phase deposition that we consider below. In [26,27], the
adlayer was treated as an open system and described by
a Landau-Khalatnikov equation with a nonconserved order
parameter. However, such a statement cannot explicitly take
into account the source of inflowing particles in the adlayer.

The aim of this work is to study theoretically the dynamic
interplay between processes of adsorption or desorption and
surface diffusion in ultrathin film with coverage ϑ close to
0.5 (half monolayer) when the lateral interaction is attractive.
Moreover, we consider that the adlayer is obviously an open
system that is not only in thermal contact with the substrate, but
in material contact with the gas phase. In the framework of the
phenomenological approach, we establish how the temperature
of the substrate and the relationship between the adsorption or
desorption and surface diffusion affect the phase separation of
the half-monolayer film at all its stages.

The paper is structured as follows. In Sec. II, in the frame-
work of nonequilibrium thermodynamics, a phenomenological
approach is developed for the description of adlayer formation
deposed onto a cold substrate and subjected to rapid quenching.
In Sec. III a derivation of the dynamic equation describing
the subsequent temporal evolution of a half-monolayer film
coverage is given. Taking into consideration that the coverage
fluctuations at the initial moment of time have a random
character, in order to describe the subsequent process of
half-monolayer film formation, we use a statistical approach
developed in Sec. IV. Section V contains a detailed analysis
of the evolution of coverage dispersion and the characteristic
scale of inhomogeneities in the case of slow surface diffusion.
In Sec. VI an analogous treatment is given for the case of
rapid diffusion processes. Section VII analyzes the temporal
evolution of the width of the transient region between enriched
and depleted regions of adlayer. The article concludes with a
briefly summary of the results.

II. NONEQUILIBRIUM THERNODYNAMICS
OF THE ADSORPTION LAYER

We consider a massive monocrystalline substrate with an
atomically smooth surface placed in a vacuum camera, which

is filled with vapor sorbate under low pressure. Since the
deposition of atoms (molecules) will occur on a cold substrate,
its surface is assumed to be sufficiently rigid. We consider the
situation when the energy of adatoms (molecules) interact with
the substrate, i.e., the adsorption energy u0 is negative. Under
vacuum deposition, the adsorption prevails over the desorption
processes. Therefore, the atomic adsorption will proceed on
the substrate surface even in the case when the value of the
pressure P in the vapor phase is comparatively small. Since
the pressure of vapors of the deposition material above the
substrate usually does not exceed 10−4–10−3 Torr, that gaseous
phase can be considered as an ideal gas.

We assume that the substrate, on which atoms from the
vapor phase are deposited, is massive and the adsorption layer
is small. Therefore, the adlayer acquires instantly the substrate
temperature and is in thermal equilibrium with the substrate.
For simplicity, we assume that there is only a nearest-neighbor
pair interaction between adatoms in the adsorbed layer and the
lateral interaction energy uL is negative. To be specific, but
without loss of generality, we assume that the substrate has a
bcc crystal structure, so the coordination number of interstitials
on the substrate surface is 4. Then we assume that the adsorp-
tion layer grows by the Frank–van der Merwe mechanism
(layer-by-layer growth), corresponding to complete wetting.
Here we study the formation of the first monolayer. Since it is
assumed that the process of deposition of the adlayer occurs
at low temperatures and the lateral interaction is considered to
be weak, in this case, a good approximation is the mean field
approximation. In this approximation, the specific free energy
of the atomic submonolayer per one available place for adsorp-
tion (interstitial) on the surface of the substrate has the form

f (T ,ϑ) = −u0ϑ − 2uLϑ2 + T [ϑ ln ϑ + (1 − ϑ) ln(1 − ϑ)],

(1)

where ϑ = Na/N is the coverage defined as a ratio of the
number of adatoms Na to the total number N of seats on
the substrate available for adatoms, 0 < ϑ < 1. Since the
substrate is maintained at a low temperature, atom evaporation
from the substrate will not occur. Consequently, the number of
substrate atoms, as well as the number of seats on the substrate
N , will remain fixed over all time. In Eq. (1) and below, the
temperature T is measured in energetic units. In addition, for
convenience, the absolute values of the adsorption energy and
lateral interaction are denoted by u0 and uL, respectively.

The expression (1) for the specific free energy f (T ,ϑ) was
written on the assumption that the coverage ϑ is homogeneous.
We are interested in the evolution of heterogeneities of the
coverage, so we consider ϑ as a function of coordinates on the
surface and time hereinafter. As we are dealing with an open
system, the thermodynamic potential � of the grand canonical
ensemble should be used for the description of evolution of
inhomogeneities. Thus, the expression for the adlayer potential
� has the form of the functional

� =
∫

S

[f (T ,ϑ) + 1

2
γ ( �∇ϑ)2 − μg(P,Tg)ϑ]σ dS, (2)

where σ is the surface density of the number of seats available
for adatoms, γ is a constant evaluated as γ ≈ r2

0 uL, and r0 is
the characteristic radius of the lateral interaction. The function
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FIG. 1. Phase diagram of the adsorption layer. Here s is a
spinodal, b is a binodal, ϑe1 and ϑe2 are the binodal values of coverage,
A0 is a point corresponding to the state of the adlayer until quench
with initial temperature T0, and Tc is a critical temperature. The points
A1, A2, and A3 correspond to quenching temperatures T1, T2, and T3,
respectively.

f (T ,ϑ) is described by expression (1). The last term in (2)
takes into account the material contact of the adlayer with the
gas phase, i.e., an exchange of particles. Under equilibrium,
the chemical potential of the adlayer μ = ∂f/∂ϑ is equal to
the chemical potential of the gas μg , which is determined by
its pressure P and temperature Tg ,

μg = (P,Tg) = Tg ln
(
P

/
PTg

)
. (3)

In the case of a single-atom gas, the value of PTg
has

dimensionality of pressure and it is defined by the relation

PTg
= Tg

(
mTg

2π�2

)3/2

, (4)

where m is the mass of a sorbate atom or molecule. The tem-
perature of the gas Tg can be considered independent from the
temperature of the substrate T since establishing thermal equi-
librium between the substrate and the gas required a certain
amount of time, particularly if it is a rarefied gas, and the sub-
strate is small in volume compared to the volume of the vessel.

With knowledge of the specific free energy f = f (T ,ϑ),
we can build a T -ϑ diagram of the adsorption layer. Differ-
entiating the function f with respect to the coverage ϑ , we
obtain a curve that responds to the equilibrium values of the
coverage ϑe and is called binodal (Fig. 1).

In the homogeneous case, the equilibrium values of the
coverage ϑe are defined by the equality of chemical potentials
of the adsorbed film and gas (μ = μg), i.e., by the equation

μ = ∂f

∂ϑ

∣∣∣∣
ϑ=ϑe

= −u0 − 4uLϑe + T ln
ϑe

1 − ϑe

= μg. (5)

As can be seen from (5), the equilibrium coverage ϑe depends
on temperature and the chemical potential of the thermostat,
whose role is played by the substrate. The simplest and
theoretically most interesting and practically significant case
is realized when the equilibrium coverage is close to 50%

and the chemical potential of the gas is close to the chemical
potential of the adlayer (μg ≈ −u0 − 2uL). In this case, Eq. (5)
is transformed into

T ln
ϑe

1 − ϑe

= 4uL

(
ϑe − 1

2

)
, (6)

whence it follows that the value of coverage ϑe = 1/2
(half monolayer) is equilibrium. At high temperatures (T >

uL ≡ Tc) this state of the film is homogenous and stable.
However, if we make the temperature of the substrate lower
abruptly and with it the adlayer temperature T < Tc, the
homogeneous state with coverage ϑe = 1/2 becomes unstable.
Instead, two other equilibrium states appear, ϑe1 = 1/2 − υe

and ϑe2 = 1/2 + υe, which are symmetric relative to ϑe =
1/2. Both of these equilibrium states are stable. Here the
value υe denotes equilibrium deviation of the coverage from
the value 1/2 in a half-monolayer film. Therefore, if a
homogeneous equilibrium film with a coverage of 0.5 forms
at high temperature T0 > Tc by rapid quenching to cool down
to the substrate temperature T < Tc, it will tend to decompose
on the parts with equilibrium (binodal) coverages ϑe1 and ϑe2.

Doubly differentiating the function f = f (T ,ϑ) with re-
spect to the coverage ϑ and equating the obtained result to
zero

∂2f

∂ϑ2
= −4Tc + T

ϑ(1 − ϑ)
= 0, (7)

we obtain the dashed curve on the T -ϑ diagram, which is
called a spinodal (Fig. 1). The region below the spinodal curve
(miscibility gap) corresponds to the absolute thermodynamic
instability of the half monolayer. If the adlayer is transferred
rapidly into this unstable region, for example, by means of
rapid quenching of the substrate, then the adlayer will tend
to separate on the regions enriched and depleted of adatoms
instantly, as a result of its thermodynamic instability. The
equilibrium diagram (Fig. 1) demonstrates that in the present
high-symmetry case, the adlayer (half monolayer) will be
divided eventually on the regions with coverages ϑe1 and
ϑe2, i.е., the decomposition will occur on the regions with
equilibrium coverages located on the binodal curve (but not
on the spinodal one). This fact is determined by the openness
of the system. Subdivision of the separation process into
individual stages and significant details of separation kinetics
is controlled, as we will see later, not only by the observation
temperature T , but also by the temperature T0, from which the
quenching starts. The relation between the characteristic time
of adsorption and the characteristic time of surface diffusion is
also important. Our aim is to describe the separation kinetics
of the adlayer over all its stages.

III. DERIVATION OF THE DYNAMICAL EQUATION

We assume that under certain high temperatures
T0(T0 > Tc) the homogeneous half-monolayer coverage
forms. If we rapidly cool down the substrate, the subsystem
of adsorbed atoms instantly acquires the temperature of the
substrate due to the good thermal contact. As a result, when the
adlayer turns out to be below the spinodal curve due to the pro-
cess of quenching, the accidental frozen high-temperature
fluctuations of the coverage ϑ remain within it. In this case the
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thermodynamic equilibrium in the system of the adsorption
layer and gaseous phase is disturbed. However, since the
adsorbed layer is an open system, then either the adsorption
of atoms on substrate or desorption occurs, depending on the
relationship between the chemical potentials of the gas and
the adsorbed layer. The diffusion process takes place in the
absorbed layer at the same time. So rearrangement of adatoms
will proceed on the substrate. Thus, for the description of the
kinetics of these two simultaneous processes in the adlayer,
we suggest the use of the equation of material balance in the
form of the continuity equation with the sources or sinks

∂ ϑ

∂ t
+ div �J =

(
∂ ϑ

∂ t

)
ext

. (8)

The driving force of the gas adsorption process onto the
substrate is the difference between the chemical potentials of
the gaseous phase and the adsorbed layer. Then the right-hand
of Eq. (8) is responsible for the adsorption (or desorption)
of gas atoms (or molecules) onto the substrate (or from the
substrate) and it can be represented in the form(

∂ϑ

∂t

)
ext

= β(μg − μ) = −β
δ�

δϑ
. (9)

The constant β may be approximated by the value
β ∼ (tau0)−1, where ta is the characteristic time of adsorption
(the average time an adatom stays on the substrate). It
can be easily seen that with regard to relation (9), Eq. (8)
obtains the universal character, combining features of both
the Cahn-Hilliard equation and the Landau-Khalatnikov one.
Moreover, the coverage in (8) acts simultaneously as a
nonconserved order parameter and as a concentration of
the atoms (molecules) deposited on the substrate. According
to [28], an expression for the adatoms density flow �J on the
surface substrate may be written as

�J = −M �∇ δ�

δϑ
. (10)

Here M is generalized mobility of adatoms

M = bϑ(1 − ϑ), (11)

where b is a temperature-dependent constant. We will consider
the situation when the depth of quenching of the adsorbed
layer under the spinodal is small. Then we can assume that the
coverage ϑ in the adlayer is not very different from 1/2, i.e.,
the coverage in the adsorbed layer can be written as

ϑ = 1
2 + υ(x,t), (12)

where υ(x,t) is a small variation of the coverage from 1/2,
i.e., υ(x,t) � 1.

Substituting Eqs. (9)–(12) into Eq. (8), with regard to the υ

function, which is small, we get the evolution equation in the
form

∂ υ

∂ τ
= 4ευ

(
α − 4

3
υ2

)
+ (ε − α + 4υ2)�υ − 1

4
�(�υ),

(13)

where � is a two-dimensional Laplace operator with respect to
coordinates in the plane of the adlayer. Equation (13) has been

made dimensionless with respect to the spatial coordinates and
time by using the relation

ξ = r

r0
, τ = t

td
, td = r2

0

Ds

, Ds = buL, (14)

where Ds is the surface diffusion coefficient. Under the surface
diffusion coefficient we are referring to the single-particle (or
tracer) diffusion coefficient.

In Eq. (13), one of the basic operating parameters determin-
ing the character of adlayer evolution is the thermodynamic
parameter α(T ) characterizing the supercooling degree of the
adlayer

α(T ) = 1 − T/Tc (15)

related to the depth of the adlayer quenching by temperature
under the spinodal. The second is the kinetic parameter ε,
which is equal to the ratio between the characteristic time of
surface diffusion td and the characteristic time of adsorption
or desorption ta ,

ε = td

ta
. (16)

Thus, the value ε characterizes the ratio of the rates of
two basic processes in a half-monolayer film, namely, surface
diffusion and adsorption or desorption, respectively. If ε � 1
(td � ta), surface diffusion takes place in a submonolayer
film, whereas the processes of adsorption (or desorption)
go on slowly. Conversely, if ε � 1 (td � ta), adsorption
(or desorption) are the main processes influencing the film
formation and surface diffusion may not be taken into account
in this case [29].

The parameter ε introduced here may be expressed
through the physical constants, evaluated directly from ex-
periment [27,30], in the form

ε = r2
0 ν

D0
s

exp

(
Ed − Ea

T

)
, (17)

where D0
s = a2νd is the preexponential factor of the sur-

face diffusion coefficient, ν is the preexponential factor of
adsorption, νd is vibration frequency of an adatom on the
substrate, a is the nearest-neighbor distance, and Ed and Ea

are the activation energies of surface diffusion and adsorption,
respectively. As an example of a similar situation, we can
point to experimental investigations of the deposition of
СO molecules onto the Ni (111) substrate [30,31], where
all the parameters in formula (17) were defined, namely,
ν = 1017 s−1, Ds = 1, 2×10−9 m2/s, r0 = 3×10−10 m, T =
220 K, Ed = 0.3 eV, and Ea = 1.1 eV. Using these values and
expression (17), we obtain that the value of ε is very small.

In this work we will develop a theory for arbitrary values
of ε since in different specific cases the value of ε may
be varied within a wide range. For example, using values
of the characteristic time of surface diffusion td and the
adsorption (or desorption) time ta for different temperatures at
the deposition of NO molecules onto the Pt (110) substrate [32]
and substituting them in (16), we obtain that the parameter
ε < 1 at T = 313 K but ε > 1 at T = 385 K.

The following shows the role of evaluating the different
terms on the right-hand side of Eq. (13). We notice that the
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first term is connected with the sources (sinks) in Eq. (8), i.e.,
it describes the processes of atom adsorption (or desorption)
on the substrate. At the late stages, it causes decomposition of
the adlayer on regions with two thermodynamic equilibrium
(binodal) values of coverage ϑe1 and ϑe2. The second term is
a diffusive one that prevails at the early stages. It describes
the uphill diffusion subject to the condition that ε � α, i.e.,
it causes decomposition of the adlayer on the regions with
intermediate (spinodal) values of coverage; however, it gives
rise to blurring of the heterogeneities at ε > α. Finally, the last
term provides the smoothing of transition regions between the
enriched and depleted (with an adsorbate) sections of the film.

IV. CORRELATION ANALYSIS OF
THE EVOLUTION EQUATION

The initial condition for the coverage as a function of
coordinates should be added to Eq. (13) for consistent
consideration of adlayer relaxation kinetics:

υ( �ρ,τ )|τ=0 = υ0( �ρ), (18)

where �ρ is a two-dimensional radius vector located in the plane
where the adsorbed film is formed. Since the high-temperature
fluctuations of the coverage are fixed by rapid quenching of the
substrate, the function υ0( �ρ) appearing at the initial condition
should be considered as a random function of coordinates.
It follows that the solutions of Eq. (13) will be random
functions of coordinates also. Therefore, there it is necessary
to use a statistical analysis to determine Eq. (13) with the
random initial condition (18). Specifically, it is a question of
finding the correlation function of the random field υ( �ρ ′,τ ).
The characteristics of the correlation function (dispersion
and correlation radius) provide a basic understanding of the
coverage evolution.

After multiplying both parts of Eq. (13) by υ( �ρ ′,τ ) and
averaging over the ensemble of random field realization, we
obtain an equation of the form

∂K(�s,τ )

∂τ
= a(τ )K(�s,τ ) + b(τ )�K(�s,τ ) − 1

2
�2K(�s,τ ).

(19)

Here

K(�s,τ ) = 〈υ( �ρ ′,τ )υ( �ρ,τ )〉 (20)

is the required second-order correlation function, with
�s = �ρ ′ − �ρ. For convenience of the following analysis, we
introduce the notation

a(τ ) = 8ε
[
α − 4

3K(0,τ )
]
, b(τ ) = 2[ε − α + 4K(0,τ )]

(21)

in Eq. (19). As for the initial correlation function of the random
field of υ, it would be reasonable to select the correlation
function in a Gaussian form

K(�s,0) = D0 exp
(−s2

/
R2

0

)
, (22)

where D0 ≡ K(0,0) is the initial dispersion and R0 is the initial
correlation radius.

We have made some assumptions to obtain the equation (19)
for the second-order correlation function (20). Apparently,

under the aforesaid procedure, besides the second-order
correlation function, the fourth-order correlation function
will appear. Therefore, for a constructive solution of the
problem it is necessary to use a procedure for uncoupling
the fourth-order correlation function for a random function
υ( �ρ,τ ) on the product of second-order correlation functions.
We note that for a random field of arbitrary type, uncoupling the
fourth-order correlation function on the product of the second-
order correlation function is not quite correct. However, it
is known that two limiting cases exist when this procedure
is accurate, namely, the random field is Gaussian or it has
two values. Taking into account that at the late stages, i.e.,
in the thermodynamic limit, the coverage ϑ takes only two
thermodynamic equilibrium values ϑe1 and ϑe2, i.e., permitting
the random field of coverage υ( �ρ,τ ) to have two values, then
we may approximately write an uncoupling in the form

〈υ3( �ρ ′,τ )υ( �ρ,τ )〉 ≈ K(0,τ )K(�s,τ ). (23)

Notice that the uncoupling in the form (23) at the early stages
reduces to a qualitatively correct result also.

If we apply the Fourier transformation on the �s coordinate
to Eq. (19), it takes the form

dK(�q,τ )

dτ
= a(τ )K(�q,τ ) − b(τ )q2K(�q,τ ) − 1

2
q4K(�q,τ ).

(24)

Since Eq. (24) is an ordinary differential equation of first
order with separating variables, then its solution can be written
formally in the form

K(�q,τ ) = K(�q,0) exp

(
−q4τ

2

)
exp

(∫ τ

0
[a(τ ′) − b(τ ′)q2]dτ ′

)
.

(25)

In order to find the K(0,τ ) function, i.e., coverage disper-
sion, equality (25) should be integrated in the variable �q. Then
we obtain

K(0,τ ) = (2π )−2
∫ ∫ ∞

−∞
dqxdqyK(�q,0) exp

(
−q4τ

2

)

× exp

(∫ τ

0
[a(τ ′) − b(τ ′)q2]dτ ′

)
. (26)

Applying the Fourier transformation on the �s to the initial
correlation function (22), we can find the Fourier transform of
K(�q,0) [from (26)]:

K(�q,0) = πR2
0D0 exp

(−q2R2
0

/
4
)
. (27)

Substitution of the expression (27) into (26) gives

K(0,τ ) = πR2
0D0

4π
I (τ ) exp

(∫ τ

0
a(τ ′)dτ ′

)
, (28)

where the following notation is introduced:

I (τ ) =
∫ ∞

−∞
exp

(
−q4τ

2
− ρ(τ )q2

)
dqxdqy,

ρ(τ ) = R2
0

4
+

∫ τ

0
b(τ ′)dτ ′. (29)
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After calculating the integral I (τ ) in (29), we obtain the
integral equation relative to the function K(0,τ ) in the form

K(0,τ ) = k
D0R

2
0√

τ
[1 − �(x(τ ))] exp

(
x2(τ ) +

∫ τ

0
a(τ ′)dτ ′

)
,

(30)

where �(x) is the error integral [33], k = √
π/(4

√
2) is

some constant, and the functions x(τ ) = ρ(τ )/
√

2τ and
a(τ ) are expressed in terms of K(0,τ ) according to (29)
and (21). The integral equation (30) is the self-consistent
condition for the function K(0,τ ) ≡ D(τ ), where D(τ ) is
the time-dependent coverage dispersion. Then the solution of
Eq. (30) and finding the temporal dependence of the coverage
dispersion enable us to retrace the character of the evolution
of inhomogeneities under the phase transition of the adlayer
over all the stages.

In order to elucidate how the characteristic spatial scale of
inhomogeneities of the adlayer coverage changes over time, we
identify it (the scale) with the correlation radius Rc, i.e., with
a characteristic distance where the correlation function (20)
decreases. The parameter R0 used in the definition of the
initial correlation function (22) is in fact the initial value
of the correlation radius Rc(0). In general, the correlation
radius can be determined in various ways. In our case it
is suitable to introduce it in the following way. We suggest
that the volume, limited by the surface corresponding to the
two-dimensional correlation function, is equal to the volume
of some cylinder. The height of this cylinder is equal to
the dispersion K(0,τ ) ≡ D(τ ) and the radius is equal to the
correlation radius of this function, i.e.,

πR2
cD(τ ) =

∫∫
K(�s,τ )dsxdsy, (31)

where integration occurs over the whole two-dimensional
space (sx, sy). From the definition of the Fourier transform
of the correlation function on the spatial coordinates

K(�q,τ ) =
∫∫

K(�s,τ ) exp(−i �q · �s)dsxdsy, (32)

it follows that the right-hand side of (31) is nothing but the
Fourier transform of the correlation function at �q = �0, i.e.,

K(�q,τ )|�q=�0 =
∫∫

K(�s,τ )dsxdsy. (33)

On the other hand, using the obtained expression (25) for the
Fourier transform of the correlation function on the spatial
coordinates, we get

K(�q,τ )|�q=�0 = πD0R
2
0 exp

(∫ τ

0
a(τ ′)dτ ′

)
. (34)

Taking into consideration (30), (31), and (34), we obtain the
expression for the correlation radius

Rc(τ ) = τ 1/4{k exp[ρ2(τ )/2τ ][1 − �(ρ(τ )/
√

2τ )]}−1/2.

(35)

The integral equation (30) for the coverage dispersion
cannot be solved analytically. However, before a numerical
solution, we should carry out the asymptotic analysis of the
dispersion behavior D(τ ) and the correlation radius (35) at the

early and late stages after rapid quenching of the adsorption
film down to the temperature below the critical one. Separately,
we will analyze two limiting situations, namely, when ε � α

and the opposite limiting case when ε � α � 1.

V. ANALYSIS OF SLOW SURFACE DIFFUSION

At first, we suppose that we deal with such adsorbates and
substrates when the adsorption processes occur faster than the
processes of surface diffusion, i.e., when ε � α. Then, after
using the integral equation (30) and applying the asymptotic
expansion for the error integral [33]

�(x) ≈ 1 − exp(−x2)

x
√

π

(
1 − 1

2x2

)
, (36)

a coverage dispersion during the early stages of the process
can be approximated by the analytical expression

D(τ ) ≈ D0

(
1 − 16τ

R4
0

)
. (37)

Here we take into account that for early stages of the process
(τ � 1), the value D(τ ) may be replaced by the initial cov-
erage dispersion D0. As can be seen, the coverage dispersion
decreases at the early stage of the process (i.e., at τ � 1) by
linear law and independent from the parameters ε and α.

Now we consider the behavior of the correlation radius
Rc(τ ) in this situation. When τ � 1, (35) is approximated by
the relation

Rc(τ ) ≈ R0
[
1 + (

4εα + 8
/
R4

0

)
τ
]
. (38)

Therefore, the characteristic spatial scale of the adlayer
coverage inhomogeneities increases by linear law at the early
stages of separation process.

As for the evolution of coverage at the late stages (τ � 1),
the analysis of Eq. (30) shows that in this case the coverage
dispersion D(τ ) tends to a constant value by the law

D(τ ) ≈ 3

4

(
α − 1

8ετ

)
. (39)

FIG. 2. Evolution of the coverage dispersion for ε = 10 in the
case of ε � α. Curves 1–3 correspond to α1 = 0.03, α2 = 0.05, and
α3 = 0.08, respectively.
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FIG. 3. Evolution of the coverage dispersion for α = 0.08 in the
case of ε � α. Curves 1–3 correspond to ε1 = 40, ε2 = 60, and
ε3 = 80, respectively.

The asymptotic analysis of the expression (35) at the late
stages (τ � 1) shows that the characteristic spatial scale of
the adlayer coverage inhomogeneities increases by the square
root law, namely,

Rc(τ ) ≈ 4
√

ετ . (40)

In order to analyze the evolution of the coverage dispersion
over all stages of the separation process, the numerical solution
of Eq. (30) is carried out. The dispersion behavior is studied
with respect to the quenching depth of the adlayer under the
spinodal α(T ) (Fig. 2) and to the parameter ε (Fig. 3).

The curves presented in Fig. 2 show that the deeper the
quenching film under the spinodal, the greater the coverage
dispersion in the adsorbed layer will be. As for the parameter
ε, as Fig. 3 shows, its value only affects the separation kinetics
of the half-monolayer film. The greater the value of ε, the
higher the rate of the separation processes in the adlayer will
be. Similarly, in order to analyze the behavior of the correlation

FIG. 4. Evolution of the correlation radius in the case of ε �
α for ε = 8 and different values of α (α1 = 0.03, α2 = 0.05, and
α3 = 0.08).

FIG. 5. Evolution of the correlation radius for α = 0.08 in the
case of ε � α. Curves 1–3 correspond to ε1 = 2, ε2 = 4, and ε3 = 6,
respectively.

radius at all stages of evolution, the numerical investigation of
relationship (35) is carried out.

As can be seen in Fig. 4, the monotonic growth of the
correlation radius is observed independently on the parameter
α(T ) since curves for different values α1, α2, and α3 are
merged into a single curve. At the early stages of evolution, the
rapid increase of the characteristic spatial scale of coverage
inhomogeneities occurs by the linear law (38). At the final
stage it is transformed to a slow asymptote by the root law (40).

In addition, the effect of the parameter ε on the correlation
radius evolution is analyzed. It turns out that the correlation
radius always increases at large values of ε (ε � α) and the rate
of growth is proportional to the value of the above-mentioned
parameter (Fig. 5).

VI. ANALYSIS OF RAPID SURFACE DIFFUSION

Let us consider the opposite case, when the processes of
surface diffusion go faster than adsorption processes, i.e., when
the relation ε � α � 1 is satisfied. The asymptotic behavior
of dispersion D(τ ) at the early and the late stages at ε � α

has the same form as in the case ε � α. Namely, at the early
stages, the dispersion decreases by the linear law (37). At the
late stages, it tends to a certain constant value by the law,
which is described by the relation (39). However, in contrast
to the case of slow surface diffusion (ε � α) considered
above, an intermediate asymptote of the separation process
of the submonolayer film is observed in the case of rapid
surface diffusion (ε � α) in the defined range of ε and α.
It corresponds to the stages when the function ρ(τ ) has a
negative value. After analyzing the dispersion at these stages,
we establish that the coverage dispersion approaches slowly
(from the bottom) the spinodal values of coverage by the law

D(τ ) ≈ 1

4
(α − ε) − ln(τ/τcr)

16
√

τ
, (41)

where τcr = (4kD0R
2
0/α)2 is the certain characteristic time

depending on the frozen initial fluctuations of coverage.
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FIG. 6. Evolution of the coverage dispersion for ε = 8×10−3 in
the case of ε � α. Curves 1–3 correspond to α1 = 0.03, α2 = 0.05,
and α3 = 0.08, respectively.

The presence of an intermediate asymptote indicates that
the dispersion approach to equilibrium coverage does not
occur immediately, i.e., a kinetic slowdown of the process
for spinodal values of coverage takes place. The intermediate
dispersion value depends on both the quenching depth by
temperature under the spinodal α(T ) and the parameter ε.

The asymptotic behavior of the correlation radius Rc(τ ) at
the early and late stages at ε � α has the same form as in the
case ε � α. Namely, at the early stage, the correlation radius
grows by the linear law (38), but at the late stages it obeys the
root law (40). However, for the case ε � α at those stages of
the process, when dispersion has an intermediate asymptote,
the correlation radius also behaves in a nonmonotonic way.
At the intermediate stages, when ρ(τ ) < 0, the correlation
radius increases by the law of τ 1/4, but at the late stages of
evolution, when ρ(τ ) > 0, it increases by the law of τ 1/2.

In order to verify and illustrate our asymptotic expressions,
the numerical analysis of the coverage dispersion over all
stages of evolution was carried out. The results of this analysis

are presented in Figs. 6 and 7, which show the dependence
of the coverage dispersion on both a parameter α(T ) (Fig. 6)
and a parameter ε (Fig. 7). Figure 7(a) represents the earlier
and Fig. 7(b) describes the later stages of the spinodal
decomposition process of film, respectively.

It could be seen from Figs. 6 and 7(a) that if the system
will be quenching under the spinodal (Fig. 1), the coverage
dispersion decreases at the early stages. Then it increases and
over time tends to approach a constant value independently of
the parameter ε. This means that the half-monolayer film with
heterogeneous coverage on the substrate always forms under
these conditions. The time of the dispersion approach to the
limiting value depends on the parameter ε. This limiting value
is determined by the quenching depth α(T ) of the film under
the spinodal.

As is evident from Fig. 7(a), the incubation period in waiting
for the adlayer separation is observed at the early stages of
the process. This is related to the fact that for heterogeneous
film formation some time is needed to decrease the energy of
frozen high-temperature coverage fluctuations at the expense
of standard diffusion. At this stage the smoothing of the small-
scale coverage heterogeneities proceeds. The duration of the
incubation period depends on the adsorption rate. Namely, the
smaller adsorption rate, the longer the incubation time will be
and the later the formation of a large-scale heterogeneity of
the coverage will be.

As the numerical calculations indicate, in the case ε � α

the intermediate asymptote for coverage dispersion is ob-
served. This is related to the fact that the spinodal precipitates
are formed at the intermediate stages of the separation process,
at the expense of uphill diffusion. However, binodal decom-
position with the formation of thermodynamic equilibrium
values of coverage proceeds only at the later stages [Fig. 7(b)].
Therefore, a conclusion about the existence of the kinetic
retarding stage of the film separation at the spinodal values
of coverage can be made.

Thus, depending on the quenching depth by temperature
α(T ), formation of heterogeneous film with one or another
value of the coverage dispersion [the quenching under the
spinodal (Fig. 1)] takes place. The parameter ε influences both
on the duration of the incubation period and on the rate of the
separation process of the coverage.

(a) (b)

FIG. 7. Evolution of the coverage dispersion at the (a) early and (b) late stages of separation for α = 0.08 in the case of ε � α. Curves 1–3
correspond to ε1 = 10−3, ε2 = 5×10−3, and ε3 = 8×10−2, respectively.
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(a) (b)

FIG. 8. Evolution of the correlation radius at the (a) early and (b) late stages of separation for ε = 8×10−3 in the case of ε � α.
Curves 1–3 correspond to α1 = 0.03, α2 = 0.05, and α3 = 0.08, respectively.

Let us consider now the curves describing the dependence
of correlation radius on the quenching depth α(T ) at the early
and late stages of process (Fig. 8).

As is seen in Figs. 8(a) and 8(b), the deeper the quenching
is, the greater correlation radius will be, i.e. the larger a spatial
scale of coverage inhomogeneities of half-monolayer film
will be.

We now consider the evolution curves describing the time
dependence of correlation radius for different values of ε at
the early and late stages of separation of the half-monolayer
film (Fig. 9).

As is seen in Fig. 9(a), at the early stages, the correlation
radius increases rapidly by the linear law, and then it decreases
slightly during a little time interval, i.e., it behaves in non-
monotonic way. If we compare this curves for the correlation
radius [Fig. 9(a)] with behavior of the dispersion at the early
stages [Fig. 7(a)], it may be seen that the maximum of the
correlation radius at the early stages of the process is directly
related to the incubation time of expectation of nucleus by the

coverage dispersion. In other words, the characteristic spatial
scale of inhomogeneities increases just at the same stage when
the coverage dispersion decreases.

Analyzing behavior of the dispersion [Fig. 7(b)] and
the correlation radius [Fig. 9(b)] on the intermediate
stages of separation, we have noted, that kinetic slow-
down of film separation is observed simultaneously both
by the dispersion and by the characteristic spatial scale of
inhomogeneities.

Thus, we have found that the nonmonotonic behavior of
the correlation radius is observed only in the case ε � α.
At the late stages of separation, regardless of the situation
considered, the correlation radius certainly increases with time
proportionally to τ 1/2, i.e., by the root law. As one can see, the
results of our work are sufficiently well correlated with the
numerical experiments using the Monte Carlo method [18],
for which it was shown that the characteristic spatial size of
inhomogeneities increases by the root law at the late stages,
namely, 〈d〉 ≈ βt1/2, where β = const.

(a) (b)

FIG. 9. Evolution of the correlation radius at the (a) early and (b) late stages of the separation process for α = 0.08 in the case of ε � α.
Curves 1–3 correspond to ε1 = 4×10−4, ε2 = 8×10−4, and ε3 = 8×10−3, respectively.
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VII. ANALYSIS OF THE WIDTH OF THE COVERAGE
TRANSITION REGION

Let us evaluate the width of a transient layer between the
enriched and depleted regions of the adsorption layer in order
to establish the way of its time evolution. We assume that the
region enriched (or depleted) of adsorbate has a circular form
with radius Rc(τ ) and the transient region is in the form of
a ring. The area of the enriched region may be estimated as
S ∼ R2

c (τ ), therewith the area of the transient region (border
layer) will be equal to �S ∼ Rc(τ )δ(τ ). Taking into account
that at the late stages the correlation radius at ε � α and ε � α

varies by the law (40), we estimate the variation of the value
υ2 with a transition from the enriched regions to a depleted
one

�(υ2) ∼ αδ

Rc(τ )
∼ αδ√

τ
. (42)

On the other hand, for the case τ → ∞, in accordance with
(39), the variation of υ2 obeys the law

�(υ2) ∼ 1/τ. (43)

When we compare the relations (42) and (43), the qualitative
temperature and time dependence of the transient layer width
is obtained as

δ(T ,τ ) ∼ 1

α(T )τ 1/2
. (44)

Thus, at the later stages, the width of the transient layer
between the enriched and depleted regions of the film is
inversely proportional to the quenching depth α(T ) and
decreases with time by the inverse root law, i.e., ∼ 1/τ 1/2.

VIII. CONCLUSION

The present study has been devoted to the theoretical
analysis of the formation of a half-monolayer film on a cold
substrate by the deposition of atoms (or molecules) from the
gaseous phase. The power sources of the particles arriving
in the adlayer were not specified, but depend on the state of
the adlayer–gaseous phase system. For adequate consideration
of such a situation, when the adlayer is an open system,
we suggested to describe its temporal evolution using the
continuity equation with sources (8). This dynamic equation
has a universal character since it takes into account the
processes of adsorption (or desorption) and surface diffusion
simultaneously. As a result, we investigate in detail both
possible limiting situations, namely, when the relaxation
processes in the film are limited by the adsorption (or
desorption) processes and the opposite limiting case, when
the processes of surface diffusion of atoms (or molecules) are
determinative.

We note that as the result of rapid quenching of the substrate
the random spatially inhomogeneous fluctuations of coverage
occur in the adsorption layer. To describe their subsequent
temporal evolution, we used a statistical approach that is based
on the introduction of the correlation functions of the order
parameter, i.e., the coverage υ( �ρ,τ ). As a result, we obtained
a self-consistent condition for the dispersion function of
coverage in the form of the integral equation (30). In addition,
we obtained an analytical expression for the correlation radius
as a function of time, which allowed us to study the temporal
evolution of the characteristic scale of spatial inhomogeneities
of coverage.

An asymptotic and numerical analysis of the integral equa-
tion (30) for the dispersion coverage allowed us to establish
the objective laws of developing the coverage inhomogeneities
over all stages of the process, when the half-monolayer film
approaches thermodynamic equilibrium. In particular, it was
shown that at the early stages of the evolution the coverage
dispersion decreases over time by the linear law, independently
of the relationship between the governing parameters (ε and α)
of the process. Therewith, an incubation period of waiting for
a separation of the adlayer is always observed. The lower
the adsorption rate, the longer the duration of the incubation
period will be and hence the later the coverage formed by
large-scale inhomogeneities will be. The law of the dispersion
approach to a constant value corresponding to the binodal
(i.e., thermodynamic equilibrium) coverages was found at
the late stages of the adlayer evolution. In thermodynamic
equilibrium, the value of coverage dispersion is proportional
to the quenching depth of the adlayer under a spinodal. For
the case of rapid diffusion processes (i.e., when ε � α),
the existence of an intermediate asymptote of the relaxation
process was established, which occurs as a result of the kinetic
slowdown of phase separation film on the spinodal values of
coverage.

In addition, the asymptotic analysis of the expression (35)
allowed us to find the temporal dependence of the correlation
radius at the early and late stages of its evolution. It was found
that at the early stages of the evolution the characteristic spatial
scale of inhomogeneities increases linearly over time and at the
later stages by the root law. The width of the transient region
between the enriched and depleted regions of film decreases
with time, according to the law of inverse root at the late stages
of the separation process. Numerical analysis of the temporal
dependence of the correlation radius (35) allowed us to reveal
its nonmonotonic character at the intermediate stages of the
process for the case when the evolution of the film is controlled
by surface diffusion processes.

The results obtained above will help in attaining a deeper
understanding of the formation of ultrathin films on the solid
substrates and will also contribute to the development of
technology to obtain qualitative thin-film coverages.
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