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Relaxation after a change in the interface growth dynamics
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The global effects of sudden changes in the interface growth dynamics are studied using models of the
Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) classes during their growth regimes in dimensions
d = 1 and d = 2. Scaling arguments and simulation results are combined to predict the relaxation of the difference
in the roughness of the perturbed and the unperturbed interfaces, �W 2 ∼ sct−γ , where s is the time of the change
and t > s is the observation time after that event. The previous analytical solution for the EW-EW changes is
reviewed and numerically discussed in the context of lattice models, with possible decays with γ = 3/2 and
γ = 1/2. Assuming the dominant contribution to �W 2 to be predicted from a time shift in the final growth
dynamics, the scaling of KPZ-KPZ changes with γ = 1 − 2β and c = 2β is predicted, where β is the growth
exponent. Good agreement with simulation results in d = 1 and d = 2 is observed. A relation with the relaxation
of a local autoresponse function in d = 1 cannot be discarded, but very different exponents are shown in d = 2. We
also consider changes between different dynamics, with the KPZ-EW as a special case in which a faster growth,
with dynamical exponent zi , changes to a slower one, with exponent z. A scaling approach predicts a crossover
time tc ∼ sz/zi � s and �W 2 ∼ scF (t/tc), with the decay exponent γ = 1/2 of the EW class. This rules out the
simplified time shift hypothesis in d = 2 dimensions. These results help to understand the remarkable differences
in EW smoothing of correlated and uncorrelated surfaces, and the approach may be extended to sudden changes
between other growth dynamics.
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I. INTRODUCTION

The study of kinetic roughening theory and related contin-
uous and atomistic models is motivated by the technological
interest in thin films, multilayers, and related nanostructures, as
well as the theoretical and experimental interest in fluctuating
interface problems [1–4]. Some important classes of interface
growth are those connected to the Edwards-Wilkinson (EW)
equation [5], in which linear interface tension is the domi-
nant relaxation term, and to the Kardar-Parisi-Zhang (KPZ)
equation [6], which includes a nonlinear effect of the local
slope. Recent advances in the solution of the KPZ equation
[7–13] and some experimental realizations [14–16] renewed
the interest in those problems.

A relatively small number of works considered thin film
and interface growth problems with time-dependent conditions
[17–21], although there is a large number of experimental
problems with that feature, ranging from fluid imbibition in
porous media [19,22,23] to thin film electrodeposition [18,24].
Many of those models and experiments show anomalous scal-
ing of the surface roughness [25]. A more recent application is
the deposition of compositionally graded films, in which the
flux of different species vary in time [26–29]. This technique
may improve film adhesion and reduce internal stress, among
other benefits.

Another possibility is a sudden change in the dynamics
during the interface growth. For instance, this is the case of
a change from sputtering to annealing in a cycle of surface
cleaning [4]. Moreover, any change from a surface cleaning
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process to thin film deposition on that surface may be viewed
as a potential application. Since erosion or dissolution are
frequently present in those processes, we recall that KPZ
scaling was already observed in several etching and dissolution
models [30–33]. On the other hand, KPZ scaling was also
observed in LiCoOx films after high-temperature annealing,
with initial deposition by sputtering [34]. Thus, the apparently
simple situation of a sudden change in the growth dynamics
may have a variety of applications that involve KPZ scaling.

The problem of changes in the EW equation in dimension
d = 1 was studied in Ref. [35] and further extended to other
linear growth equations in all d [36]. Those works showed
power-law relaxation of the difference �W 2 of the square
roughness of the perturbed and the unperturbed system, which
measures the global response to the perturbation [35,36]. This
feature may be important for experimental works in which
there is any sudden change in conditions such as temperature,
pressure, and composition, since a delay in the response to a
change may affect the desired film properties. Indeed, the slow
relaxation referred above was observed when both the initial
and the final EW dynamics were in the growth regime, which
corresponds to typical experimental conditions, in contrast
to the exponential relaxation observed in steady state (very
long time) properties. On the other hand, recent works studied
autoresponse functions in KPZ models [37,38], which measure
the average local response to a perturbation and show particular
aging properties. This is an additional reason to search for a
deeper understanding of the relaxation of global quantities, in
particular when KPZ growth is involved.

The aim of this work is to study the effect of sudden
changes in the EW and KPZ dynamics, including changes
between these different growth classes. The scaling of the
global quantity �W 2 is analyzed, with support from simulation
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results for a variety of lattice models in d = 1 and d = 2.
A previous analytical solution for the EW-EW changes is
reviewed and provides the background for a simple scaling
approach to the KPZ-KPZ changes, in which the dominant
contribution to �W 2 is predicted from a time shift in the
final growth dynamics. The striking difference from local
autoresponse functions is clearly shown for KPZ in d = 2. For
KPZ-EW changes, crossover times significantly exceed the
growth time with the initial dynamics, which is an expected
general trend when a faster dynamics is changed to a slower
one (corresponding to an increase in the dynamic exponent).
Moreover, remarkable differences in EW smoothing of corre-
lated and uncorrelated surfaces are discussed.

This paper is organized as follows. In Sec. II we present
basic definitions, the interface equations, and the lattice models
considered in this work. In Sec. III we briefly review previous
analytical results on changes between initial and final EW
growth, define a suitable scaling function, and propose an
approach to explain the simplest type of relaxation. In Sec. IV
that approach is extended to changes from initial and final
KPZ growth. In Sec. V we introduce a scaling approach for the
KPZ-EW changes, which are confirmed by numerical results
in d = 1 and d = 2. In Sec. VI we discuss the smoothing of
very rough surfaces by EW dynamics. Section VII summarizes
our results and conclusions.

II. BASIC DEFINITIONS, INTERFACE EQUATIONS,
AND LATTICE MODELS

The simplest quantitative characteristic of an interface is its
roughness (or interface width). It is usually defined as the rms
fluctuation of the height h as

W (L,t) ≡
[〈

(h − h)
2
〉]1/2

, (1)

where L is the lateral size and t is the growth time. The
overbars in Eq. (1) represent spatial averages, and the angular
brackets represent configurational averages. The roughness
can be calculated from the structure factor

S(�k,t) ≡ 〈h̃(�k,t)h̃(−�k,t)〉 (2)

as

W 2(L,t) ≡
∑

�k
S(�k,t), (3)

where h̃ is the Fourier transform of h given by h̃(�k,t) =∑
�r h(�r,t)ei�k·�r (r denotes the position in d dimensions and

�k is the wave vector).
In interface growth processes with normal scaling (in

opposition to anomalous scaling [25]), the roughness follows
the Family-Vicsek scaling relation [39]

W ≈ Lαf

(
t

t×

)
, (4)

where α is the roughness exponent, f is a scaling function such
that f → const in the regime of roughness saturation (t → ∞)
and t× is the characteristic time of crossover to saturation. t×
scales with the system size as

t× ∼ Lz, (5)

where z is the dynamic exponent. For t � t× (but after a
possible transient), the roughness scales as

W ∼ tβ, (6)

where β = α/z is the growth exponent. In this growth regime,
the structure factor scales as

S(k,t) ∼ k−(2α+d)g(kzt), (7)

where g is a scaling function.
In this work, our interest is to study the interface evolution

in the growth regime, with negligible finite-size effects. The
roughness of the interface with a sudden change of dynamics
at time s is referred to as Wc(t,s), and the roughness of the
interface grown with the final dynamics since t = 0 is referred
to as Wu(t,s). The exact result for EW-EW changes in d = 1
[35,36] suggests defining a reduced time as

τ ≡ t/s − 1. (8)

A general scaling form for the roughness difference

�W 2(t,s) ≡ ∣∣W 2
c − W 2

u

∣∣ (9)

between the changed and unchanged systems is

�W 2 ∼ scτ−γ . (10)

The KPZ equation is

∂h

∂t
= ν∇2h + λ

2
(∇h)2 + η(�r,t), (11)

where h is the interface height at the position �r in a
d-dimensional substrate at time t , ν represents the surface
tension, λ represents the excess velocity, and η is a Gaussian
noise [1,6] with zero mean and covariance 〈η(�r,t)η(�r ′,t ′)〉 =
Dδd (�r − �r ′)δ(t − t ′). The EW equation [5] corresponds to the
KPZ equation with λ = 0, while uncorrelated growth (UG) is
obtained for ν = 0 and λ = 0.

The exact solution of the EW equation gives z = 2 and
α = (2 − d)/2 for d � 2 (α = 0 in d = 2 corresponding to
logarithmic scaling) [5]. In d = 1 the KPZ equation has z =
3/2 and α = 1/2 [6]; in d = 2 the best current numerical
results give z ≈ 1.61 and α ≈ 0.39 [40–42]. UG has β = 1/2
and no roughness saturation, so that α and z are not defined.

Many lattice models share the same scaling exponents with
EW or KPZ equations and are said to belong to the EW or to
the KPZ class. These models are expected to be represented
by those equations in the continuous limit (very large sizes,
very long times), possibly with additional higher order spatial
derivatives that are irrelevant under renormalization [1].

In all models studied here, the growth begins with a flat
substrate at t = 0. Lattice sizes are L = 214 in d = 1 and
L = 210 in d = 2. One time unit corresponds to Ld deposition
trials (deposition of one layer of particles in solid on solid
models). Maximal growth times are chosen well below the
saturation regime, except if explicitly indicated. Changes take
place at time s, with s varying from 10 to 103.

The lattice model in the EW class studied here is the Family
model [43]. At each step of this model, a column of the deposit
is randomly chosen, and the minimum height is searched
up to a distance N from that column. If no column in that
neighborhood has a height smaller than that of the column
of incidence, a new particle sticks at the top of this one.
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Otherwise, it sticks at the top of the column with the smallest
height in that neighborhood. If two or more columns have the
same minimum height, the sticking position is the one closest
to the incidence column, and, in the case of a new draw, one
of the smallest and closest columns is randomly chosen. The
increase of N corresponds to an increased interface tension
compared to the noise intensity, i.e., an increase of the ratio
ν/D in the corresponding EW equation. Hereafter, the Family
model with searching distance N will be referred as FN model.

The KPZ models considered here are the restricted solid-
on-solid (RSOS) model [44] and the etching model of Mello
et al. [30]. The latter is particularly interesting due to the large
number of applications of etching processes (by aggressive
solutions, sputtering, etc.).

In the RSOS model [44], the incident particle may stick
at the top of the column of incidence if the differences
of heights between the incidence column and each of the
neighboring columns do not exceed �hMAX = 1. Otherwise,
the aggregation attempt is rejected.

The model for etching of a crystalline solid of Mello et al.
[30] is simulated here in its deposition version, hereafter called
the ETCH model. At each deposition attempt, the height of the
column of incidence is increased by one unit (h(i) → h0 + 1),
and any neighboring column whose height is smaller than h0

grows until its height becomes h0 (in the true etching version
of this model, the columns’ heights decrease by the same
quantities above).

Finally, the UG is simulated with aggregation at the top
of the column of incidence, independently of the neighboring
heights.

III. CHANGES EW-EW

One-dimensional EW growth with a sudden changes in the
interface tension was studied by Chou et al. [35]. Subsequently,
Chou and Pleimling extended that approach to changes in
interface tension and noise amplitude in any dimension [36].
Considering initial dynamics with parameters (νi,Di) and the
final one with (νf ,Df ), the difference in the square roughness
can be written as [35,36]

�W 2(t,s) ≡ ∣∣W 2
c − W 2

u

∣∣ ∼
∑

�k

e−2νf k2(t−s)

k2
�GEW (k2s),

(12)
with

�GEW (k2s) =
∣∣∣∣∣Di

1 − e−2νik
2s

2νi

− Df

1 − e−2νf k2s

2νf

∣∣∣∣∣ . (13)

With this form, �GEW (0) = 0. If the initial and the final dy-
namics are in the growth regime at times s and t , respectively,
then k2s,k2t � 1. The lowest nonzero order in the expansion
of �GEW (x) depends on the type of change: if only D is
changed (νi = νf ), then it is first order in x ≡ k2s; if only ν

changes (Di = Df ), the leading order is the second one. In any
case, �W 2(t) can be written in terms of the scaling variable
u ≡ k2sτ [see Eq. 8], which gives γ = d/2 (change in D) and
γ = d/2 + 1 (change in ν), with c = 1 − d/2 in both cases
[see Eq. (10)].

FIG. 1. (Color online) Scaling of the roughness difference in the
changes: (a) UG-F1 with s = 10 (red squares), s = 100 (green
triangles), and s = 1000 (blue crosses), using c = 0.42; (b) F50-F1
with times s = 10 (red squares), s = 30 (green triangles), and
s = 100 (blue crosses), using c = 0.48. The solid lines in (a) and
(b) have slope −3/2 and −1/2, respectively.

In d = 1, changing only interface tension leads to c = 1/2
and γ = 3/2. Numerical results of Chou et al. [35] gave
exponent γ ∼ 3/2 typically for νi/νf < 10 and νf s > 0.1,
which corresponds to an initial interface tension not much
larger than the final one. A limiting case in lattice models
is the UG-F1 change, where νi = 0. Indeed, Fig. 1(a) shows
�W 2(t)s−c versus τ , using the value c = 0.42 that provides
the best data collapsed for three different value of s. It confirms
the predicted slope −3/2, with some deviations only for
large τ .

On the other hand, Chou et al. [35] obtained γ ≈ 1/2 in a
wide region with νi/νf > 104 and νf s < 1, with fixed D. This
condition typically corresponds to a very large initial interface
tension, which produces a smooth surface that rapidly brings
the interface to a steady state of very low roughness. In lattice
models, this is illustrated by the change F50-F1, which is
shown in Fig. 1(b). The best data collapse is obtained with
c = 0.48, and the slope of the plot is close to −1/2 (some
deviations appearing only for s = 10 at long times, in which
the accuracy of �W 2 is low).

The form of �GEW in Eq. (13) helps to understand
this result. The first contribution to �GEW vanishes in
the saturation regime of the F50 model, and, consequently,
�GEW (x) is of first order for small x. It gives c = 1/2 and
γ = 1/2, in agreement with the numerical estimates. This is
similar to the case of changing the noise amplitude, although in
F50-F1 we understand that only a change in interface tension
is present.
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An equivalent reasoning that leads to a first order dominant
term in �GEW and its corresponding exponents is to assume
that �W 2(t) is dominated by a difference of roughnesses of
the final dynamics with starting times 0 and s. This gives

�W 2(t,s) ≈ At2β − A(t − s)2β ∼ st2β−1. (14)

Since β = (2 − d)/4 for EW growth [5], we obtain c = 1 −
d/2 and γ = d/2. This is certainly a good approximation when
the roughness at t = s is very small, which is the case of the
F50 model. However, it also applies when the initial roughness
is not small. In this case, the initial and final dynamics have the
same dynamic exponent z; thus the initial correlations, created
in a time s, are changed by the final dynamics in a time of the
same order. For this reason, �W 2(t,s) is approximately related
to a difference of starting times of order s. In this context, the
case Di = Df , νi �= νf can be understood as a particular case
in which this first order correction vanishes and a more rapid
decay is observed.

IV. CHANGES KPZ-KPZ

The relaxation of �W 2(t,s) in the integrated KPZ equation
in d = 1 was studied by Chou and Pleimling [36], who
obtained the scaling relation (10) with γ = 1/3 and c = 2/3.
We will show that, interestingly, those results are predicted by
the same scaling argument that leads to Eq. (14), now with
KPZ exponents. Moreover, our arguments can be extended to
d > 1, as follows.

For t � s, �W 2(t,s) for KPZ-KPZ changes is written as a
difference of roughnesses similarly to Eq. (14). This gives the
scaling form (10) with

γ = 1 − 2β, c = 2β, (15)

with exponent β defined in Eq. (6).
Figure 2 shows �W 2(t,s)s−0.66 versus τ for the changes

RSOS-ETCH and ETCH-RSOS in d = 1, with three different

FIG. 2. (Color online) Scaling of the roughness difference in the
changes RSOS-ETCH (upper data) and ETCH-RSOS (lower data)
in d = 1, with s = 10 (red squares), s = 100 (green triangles), and
s = 1000 (blue crosses). The solid line has slope −1/3.

times s. The good data collapse and the long time slope near
−1/3 confirm the above assumptions. It also agrees with the
numerical results of Ref. [36].

The scaling of the difference of the roughness W (not
squared) can be obtained from Eq. (10) by noting that �W 2 =
|W 2

c − W 2
u | = |Wc − Wu|(Wc + Wu), with Wc and Wu scaling

as Eq. (6) for large t = sτ . This gives

�W (t,s) ≡ |Wc(t,s) − Wu(t)| ≈ sβτβ−1, (16)

where exponents in Eq. (15) were used. In d = 1 we obtain
�W ∼ s1/3τ−2/3.

In Ref. [37] an autoresponse function was defined from the
average differences in local heights between two interfaces, A
and B, the former growing with a site-dependent rate up to time
s and, after that, with uniform rate, and the latter growing with
site-independent rates from t = 0. That function is given by

χ (s,t) =
〈

h
(A)
i (t,s) − h

(B)
i (t)

εi

〉
, (17)

where i refers to lattice columns and εi is proportional
to the (small) fluctuation in the growth rate at column i.
Thus, χ (s,t) measures the average local response to a small
perturbation. Surprisingly, χ (s,t) has the same scaling as
�W (t,s) [Eq. (16)], which is a difference in a global quantity
subject to a uniform change in growth parameters.

In d = 2, we also analyzed the changes ETCH-RSOS and
RSOS-ETCH by plotting �W 2(t)s−c versus τ for three times
s and searching for the values of c that provide the best
data collapses. The corresponding scaling plots are shown in
Figs. 3(a) and 3(b), respectively, with c = 0.42 and c = 0.45,
in good agreement with Eq. (14), which predicts c = 0.48 from
β = 0.24 [42]. The predicted slope γ = 0.52 is also shown in
Figs. 3(a) and 3(b), confirming the scaling of Eq. (14).

The autoresponse function χ (s,t) was recently studied in
a KPZ model in d = 2 by Ódor et al. [38], who obtained
χ ≈ s0.3fr (τ ) and fr (x) ∼ x−1.25 for large x. This scaling
is completely different from the scaling of �W 2(t,s) and of
�W (t,s). This shows the striking differences among the local
and global responses in d = 2.

The scaling of �W 2(t,s) for the EW-EW changes was based
on Eqs. (12) and (13). Thus, the rest of this section is devoted
to investigate the consequences of assuming similar relations
for KPZ-KPZ changes. However, we stress that the following
reasoning is based on speculations on KPZ scaling that cannot
be justified by current analytical works on the subject.

Our first step is to replace the scaling of the structure factor
in Eq. (12) by that of KPZ, with corresponding exponents z and
α. Second, a function �G is also used to represent the effect
of the change of dynamics on the mode k. These assumptions
give

�W 2(t,s) ≈
∑

�k
g[kz(t − s)]k−(2α+d)�GKPZ(kzs) (18)

for KPZ-KPZ changes. This is equivalent to assume that the
scaling of �W 2 is not dominated by coupling of different
modes (while in EW scaling there is no mode coupling at all).

Now we also assume that the leading nonzero order of
�GKPZ(x) is the first one, i.e., �GKPZ(x) ∼ x for small x.
Equation (18) can be rewritten in terms of the variable kzsτ
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FIG. 3. (Color online) Scaling of the roughness difference in
d = 2: (a) ETCH-RSOS with c = 0.42 and changes at s = 10 (red
squares), s = 100 (green triangles), and s = 1000 (blue crosses);
(b) RSOS-ETCH with c = 0.45 and changes at s = 10 (red squares),
s = 30 (green triangles), and s = 100 (blue crosses). The solid lines
in (a) and (b) have slopes −0.52.

and gives the scaling of Eq. (14) with the exponents in Eq. (15).
We also note that any other assumption for the leading order
of �GKPZ(x) would provide different exponents.

Thus, the assumption of a very simple scaling form for
�W 2 (t,s) [Eq. (18) with �GKPZ(x) ∼ x] leads to the correct
exponents for the KPZ-KPZ decay. This is not an actual
calculation for KPZ, but may motivate the development of
rigorous approaches for the subject.

V. CHANGES TO A DIFFERENT GROWTH CLASS

Now we consider a problem not addressed in previous
works, which mainly corresponds to turning in or turning off
the nonlinearity in EW-KPZ or KPZ-EW changes, respec-
tively.

Since KPZ correlations are spread faster than EW corre-
lations (e.g., zKPZ = 3/2 and zEW = 2 in d = 1 [5,6]), the
correlation length of KPZ growth at t = s � 1 is much larger
than the correlation length of EW growth. Thus, in a change
EW-KPZ, the time t − s necessary for the KPZ growth to
suppress the initial EW correlations is smaller than s. This
leads to a crossover scaling similar to the KPZ-KPZ changes
discussed in Sec. IV.

On the other hand, if the initial dynamics is KPZ, the time
necessary for the correlations at t = s to be replaced by EW
correlations will be significantly larger than s. A suitable
scaling approach has to be developed, along the same lines
of related approaches for EW-KPZ crossover of roughness
scaling [45–48]. Hereafter we refer to the scaling exponents

of the initial dynamics with subindex i (zi , αi , βi) and to those
of the final dynamics with no subindex, so that the approach
may be easily extended to other growth classes.

At time s, the correlation length of the KPZ interface is
li ∼ s1/zi and the square roughness is

Wi
2 (s) ∼ s2βi . (19)

For s � 1, the final dynamics is so that Wu
2 (s) ∼ s2β �

Wi
2 (s), given that βi > β, which is always the case in

KPZ-EW changes. Thus, the change produces a significant
decrease in the roughness.

After the change, the correlation length of EW grows
as lf ∼ (t − s)1/z. A crossover from the initial to the final
dynamics is expected as li ∼ lf , which means that initial KPZ
correlations were replaced by EW correlations. The crossover
time tc scales as

tc ∼ sz/zi , (20)

and a properly defined crossover variable is

y ≡ (t − s)/tc. (21)

This variable plays the role of the scaled time τ of Eq. (8). We
expect the difference in the square roughness to scale as

�W 2 ≈ scF (y) , (22)

where F is a scaling function.
For t ≈ s, y � 1 and using Eq. (19) we have �W 2 (t,s) ≈

Wi
2 (t,s) − Wu

2 (t,s) ≈ s2βi . Thus,

c = 2βi (23)

and F (y) → const in that limit.
At long times (t � tc), �W 2(t) is expected to decay

according to the final EW scaling. This gives

F (y) ∼ y−γ , γ = d/2 (24)

for y � 1, as in the case of first order dominant term in �GEW

[Eq. (13)].
In d = 1, using EW and KPZ exponents [5,6], this scaling

approach gives tc ∼ s4/3, c = 2/3, and γ = 1/2. It is con-
firmed in Fig. 4, in which �W 2(t)s−0.68 is plotted as a function
of (t − s) /s1.33 for the change ETCH-F1 at three different
times s. The value of c in Fig. 4 was chosen to provide the
best data collapse. Also note the trend of the scaling function
to be flat as (t − s) /s1.33 � 1, as predicted above. The change
RSOS-F1 is not analyzed here because the roughness of RSOS
for short times is smaller than that of F1, which invalidates the
assumptions of the theoretical approach.

In d = 2, z = 2 [5], zi ≈ 1.61, and β ≈ 0.24 [41,42]
give tc ∼ s1.24, c ≈ 0.48, and γ = 1/2. Figure 5 shows
�W 2(t)s−0.51 as a function of (t − s) /s1.24 for the change
ETCH-F1 at three different times s, again with the value
c = 0.51 chosen to provide the best data collapse. The trend
of the scaling function to be flat as (t − s) /s1.24 � 1 is also
noticeable in Fig. 5. These results are in good agreement with
our scaling approach, except for deviations in the estimates of
exponent c used to get data collapse, which is already expected
from the experience with (exactly solved) EW-EW changes
(Sec. III).

The hypothesis that �W 2(t) is dominated by a difference of
roughnesses increasing from zero at times 0 and tc [equivalent
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FIG. 4. (Color online) Scaling of the roughness difference in the
change ETCH-F1 in d = 1, with s = 10 (red squares), s = 100 (green
triangles), and s = 1000 (blue crosses). The solid line has slope −1/2.

to Eq. (14)] is not obvious in this case, since there may be
a significant roughness reduction in the KPZ-EW transition.
That hypothesis is

�W 2 ≈ At2β − A(t − tc)2β ∼ tct
1−2β, (25)

which gives the same decay in Eq. (24). However, it gives
c = 2α/zi = (2 − d)/zi in Eq. (22), in contrast to Eq. (23). In
d = 1, this time shift hypothesis gives the correct value of c

because the roughness exponents of EW and KPZ are the same.
However, in d = 2, it gives c = 0, in striking disagreement
with the previous approach and the numerical data in Fig. 5.

For the time shift hypothesis to be valid, it is necessary
that �W 2 � Wu

2, i.e., the roughness difference has to be
smaller than the roughness of the unperturbed growth. For t �

FIG. 5. (Color online) Scaling of the roughness difference in the
change ETCH-F1 in d = 2, with s = 10 (red squares), s = 20 (green
triangles), and s = 40 (blue crosses). The solid line has slope −1.

tc, Eqs. (22), (23), and (24) give �W 2 ∼ s2βi (tc/t)d/2, while
Wu

2 ∼ t1/2 in d = 1 and Wu
2 ∼ log t in d = 2 [5]. In d = 1,

�W 2 � Wu
2 require t � tc; the numerical results in Fig. 4 for

t/tc > 10 are sufficient to satisfy this condition. However, in
d = 2, that relation requires t � tcs

0.48 � tc (for s � 1 and
excluding a logarithmic correction in s); this condition is very
far from the limits of the data in Fig. 5 (instead, the data in
Fig. 5 typically have Wu

2 < �W 2). This explains the failure
of the time shift hypothesis for the KPZ-EW change in d = 2.

VI. EW SMOOTHING OF INITIALLY ROUGH SURFACES

Due to its logarithmic growth in time, the roughness of an
EW interface in d = 2 is very small at all times representative
of a thin film growth. This is the case of the maximal times
t = 103 considered in the data shown of Fig. 5. Moreover,
until t ∼ 107 (ten millions of layers), the roughness of the
Family model is smaller than two lattice units. For this reason,
it is interesting to compare the effects of an EW smoothing of
initially rough surfaces, correlated and uncorrelated.

Figure 6 compares the roughness evolution in UG-F1 and
ETCH-F1 changes occurring at s = 100. In UG-F1, the initial
roughness corresponds to the thickness of 10 layers. It relaxes
to a value near the unperturbed system after the deposition
of 100 layers or less. In ETCH-F1, the initial surface is less
rough: W ∼ 4, which corresponds to less than 1 nm in a metal
or semiconductor surface and possibly some nanometers for
larger molecules. However, the roughness relaxes to a value
close to the unperturbed value only after the deposition of ∼104

layers. The predicted relaxation exponent for UG-EW is γ =
−2 (second order in �G (kzs)) and the relaxation exponent for
KPZ-EW is γ = −1, which suggest a faster decay of �W 2 in
the former. An additional reason for the delay in the latter is
the larger crossover time tc ∼ s1.24 ≈ 300.

These results may be very important for the growth of thin
films in rough substrates, particularly when there is some initial

FIG. 6. (Color online) Roughness evolution in F1 (Wu, red full
line), UG-F1 and ETCH-F1 (Wc, green dashed and blue dotted lines,
respectively) changes at s = 100.
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pattern or correlated roughness. An investigation of these
features in diffusion dominated growth is certainly desirable.

VII. CONCLUSION

The relaxation of the roughness of an interface after a
sudden change in the dynamics involving EW and KPZ growth
was studied numerically with lattice models and via scaling
arguments. All changes were considered in the growth regimes
of those models, so that power law relaxation is observed in
the square roughness difference �W 2 between the changed
and the unperturbed systems.

The previous analytical solutions for the EW-EW changes
are reviewed, and this leads to a definition of a function
�G (kzs) that contains the basic information on the type of
change of the parameters of the EW equation. Changes in
the noise amplitude, with constant interface tension, give a
leading term �G (x) ∼ x (first order), while changes only
in the interface tension give a second order dominant term
in �G (x). The first scaling is also realized when the initial
roughness is very small compared to the unperturbed growth.
A hypothesis that �W 2 is dominated by a time shift of the
final dynamics is introduced and matches that scaling.

The general form of �W 2 in EW-EW changes is extended
to KPZ-KPZ changes, which implies the assumption that
�W 2 is not dominated by coupling of different modes.

The corresponding function �G (kzs) is also assumed to
be of first order. The predicted relaxation exponents are in
good agreement with simulation results in d = 1 and d = 2.
Comparison with the recently calculated aging properties of
local response functions show significant differences from the
present global response in d = 2.

KPZ-EW changes are cases in which a faster dynamics
is changed to a slower one, corresponding to an increase in
the dynamic exponent. Thus, the time of crossover to the
final dynamics is much larger than the time s of growth with
the initial dynamics. We introduce a scaling approach for the
relaxation in those changes, which is also in good agreement
with numerical results in d = 1 and d = 2. The hypothesis of
�W 2 dominated by a time shift of the final dynamics fails in
d = 2 due to the very small EW roughness.

We also compared EW smoothing of initially correlated
(KPZ) and uncorrelated surfaces to illustrate the much slower
relaxation in the former. This may be relevant for thin film
growth in rough substrates and may motivate future studies
of the same type of sudden change in growth dominated by
surface diffusion.
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