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The creation of synthetic systems that emulate the defining properties of living matter, such as motility,
gradient-sensing, signaling, and replication, is a grand challenge of biomimetics. Such imitations of life crucially
contain active components that transform chemical energy into directed motion. These artificial realizations of
motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by
manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly
promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing
of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior, and use it to construct
a framework for studying their collective behavior. We find that both the positional and the orientational degrees of
freedom of the active colloids can exhibit condensation, signaling formation of clusters and asters. The kinetics
of catalysis introduces a natural control parameter for the range of the interaction mediated by the diffusing
chemical species. For various regimes in parameter space in the long-ranged limit our system displays precise
analogs to gravitational collapse, plasma oscillations, and electrostatic screening. We present prescriptions for
how to tune the surface properties of the colloids during fabrication to achieve each type of behavior.
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I. INTRODUCTION

Dynamic self-organization of motile components can be
observed in a wide range of length scales, from bird flocks
[1] to bacterial colonies [2,3] and assemblies of motor and
structural proteins [4]. The fascination with these phenomena
has naturally inspired researchers to use a physical under-
standing of motility to engineer complex emergent behaviors
in model systems that promise revolutionary advances in
technological applications if combined with other novel
biomimetic functions, such as signal processing and decision
making [5], or replication [6].

Symmetry-based phenomenological theories, coarse-
grained or particle-based [7–13], offer a guide to the rich
possibilities immanent in self-driven systems, but designing a
system requires a bottom-up approach. Biological components
pose inevitable limitations on this task, while chemical [14],
mechanical [15], or externally actuated [16] imitations appear
more promising. In addition to motility, living organisms
have developed mechanisms that allow them to orient their
motion in response to chemical gradients, and send signals
to recruit or repel others [17]. Can inanimate matter imitate
these more complex functions? We show that it can, and
present the necessary design principles. We consider the
case of catalytic active colloids [18–22], which we now
describe in brief. Recall that a colloidal particle can be
driven “phoretically” into motion by externally imposed
chemical, electrostatic, or thermal gradients [23]. An active
colloid—a particle coated asymmetrically with catalyst and
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immersed in a uniform background of substrate1—generates
its own chemical gradient [18–22,24,25], and thus moves
autonomously in a direction determined by the polarity of
the coat (see Ref. [26] and references therein). Such self-
phoretic particles, whose individual activity and interactions
one can design, offer the opportunity to create systems with
controllable, emergent collective behavior [27–37]. To this
end it is essential to construct a description at a coarse-grained
level, with coefficients expressed in terms of single-particle
parameters.2

Our focus is on how the center of mass and orientation
vector of an active colloid are affected by an externally
imposed gradient of substrate molecules. Depending on details
of geometry, activity, and mobility [25], an active colloid will
respond to the local gradient of the substrate concentration
through four distinct mechanisms. (i) Chemotaxis: The fluid
flows set up around the particle can turn its axis of orientation
to align parallel or antiparallel to the local gradient; this
process has active contributions arising from the chemical
reaction as well as passive ones. (ii) Polar run-and-tumble
motion: The enzymatic rate depends nonlinearly on the local
concentration of the substrate with a characteristic Michaelis-
Menten form inherited from the underlying catalytic kinetics

1For consistency with the nomenclature of enzyme catalysis
literature we refer to the reactant as ‘substrate’, not to be confused
with other uses of the term.

2When this work was being prepared for submission, we learned
of unpublished results from the groups of H. Stark and J. Brady
on self-phoretic swimmers interacting through their diffusion fields.
The construction of chemotactic behavior from the patterning of the
colloid, the role of enzyme kinetics, the dynamics of orientation fields
and aster formation, the occurrence of underdamped modes and the
possibility of spontaneous oscillation are among the distinguishing
features of our work.
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FIG. 1. (Color online) A schematic summary of the four different
ways a single swimmer responds to gradients corresponding to
the different terms in Eq. (1). In each panel, three consecutive
snapshots (with equal time intervals) are sketched together with
typical connecting trajectories. In (i) and (ii) the polarity of the colloid
controls the direction of motion. In (iii) the motion will be along the
main symmetry axis of the colloid but driven by the gradient (hence
the colloid can move forward or backward instantaneously). In (iv)
the motion is independent of the polarity and symmetry axis of the
colloid. Processes (i) and (iv) represent steady angular and linear
drift while in (ii) and (iii) the gradient-seeking behavior is assisted
by noise. Each mechanism is controlled by the relevant spherical
harmonics coefficient of the material-dependent particle mobility and
activity, which can be modified by construction.

of the reactions [38]. The combination of enhanced activity
at high concentrations and randomized orientation acts to
effectively populate the colloids in “slow” regions [39]. (iii)
Apolar run-and-tumble motion: An active colloid can also
chemotax by a net motion of its center along a gradient in
a noise-averaged sense. (iv) Phoretic response: The colloid
moves along an external chemical gradient by diffusiophoresis.
A summary of the different modes is depicted in Fig. 1.

Catalytic colloids consume a substrate and generate product
molecules, and hence act as mobile sources and sinks of these
chemicals in the solution making their concentration profile
nonuniform. In a suspension of such active colloids, each
individual responds—via the above four mechanisms—to the
gradients produced by other colloids due to their activities.
The various contributions are independent of each other and
their balance will be modified as we move in the space of
control parameters, leading to a variety of collective behaviors.
In particular, we highlight the intriguing possibility that the
positional and orientational degrees of freedom could exhibit
different and independent types of order depending on the
parameters, as shown in Figs. 2 and 3.

We consider a fluid medium containing a concentration
s(r,t) of substrate (S) molecules, which upon contact with
a catalyst are converted to a product P with concentration
p(r,t). The rate of conversion κ obeys Michaelis-Menten
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FIG. 2. (Color online) The phase diagram in the reaction-limited
regime (with abundant fuel) shows a variety of possible states in the
parameter space spanned by suitably non-dimensionalized effective
chemotactic (A) and phoretic (B) response coefficients, defined in
Eq. (9). The dashed line and the A-axes correspond to independent
changes of the fundamental and first harmonic (μp0 and μp1) of
the mobility corresponding to the reaction product, respectively.
They represent possible experimental paths that can be explored in
sequences of experiments on particles designed with suitable mobility
coats.

kinetics [40], growing linearly at small s and crossing over
to saturation for sufficiently large values of s. Our main
results are as follows: (1) for the case of a uniform gradient
of substrate, we establish the form of the angular velocity
ω induced on a single catalytic colloid as a function of the
spherical harmonic components of the activity σ and the
mobilities μs and μp corresponding to S and P. We can
therefore propose criteria for the surface patterning required
to produce chemotactic and anti-chemotactic motion. We also
find the various contributions to the translational velocity v of
the colloid, arising from self-propulsion and drift due to the
external gradient. Explicitly, we find

ω = �0(σ,μp,μs) n̂ × ∇s,
(1)

v = V0(s)n̂ − α0∇s − α1n̂n̂ · ∇s.

where the definitions of the coefficients in terms of the surface
properties of the colloids are given below. (2) We use our
results for a single particle in an external gradient to construct
the collective equations of motion for the number density and
orientation of the colloids in a uniform medium, interacting
via their effect on the substrate and product concentration
fields. The interplay between self-propulsion, phoretic drift,
and alignment, driven by and mediated via chemicals, falls into
two distinct regimes. (a) When the fuel concentration is small
enough such that the catalytic activity is diffusion-limited,
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FIG. 3. (Color online) The diffusion-limited regime (with limited
fuel supply) exhibits different types of instability in the parameter
space spanned by suitably non-dimensionalized effective chemotactic
(A) and phoretic (B) response coefficients, defined in Eq. (9). The
effective diffusivity D′ [defined in Eq. (11)] is negative in the green
region and positive in the white or yellow regions, signaling the
presence of an instability upon going from the yellow or white
to green. The dominant fluctuations on approaching the instability
signal a tendency to form modulations (across the red line) or clumps
(across the blue line) state, depending on the sign of the parameter γ

[defined in Eq. (12)]. The character of the fluctuations on the stability
boundary changes at the location shown by the black dot. The axes
corresponding to possible experimental changes of the fundamental
and first harmonic (μp0 and μp1) of the mobility corresponding to the
reaction product, respectively, are shown by two dashed lines.

the chemical concentrations will be effectively screened,
and the system could develop enhanced number fluctuations
and clumping instabilities (where all wavelengths above a
threshold are unstable) and patterns with a given length scale
(where the fastest-growing mode has finite wavelength). (b)
At sufficiently high fuel concentrations where the catalytic
activity becomes reaction-limited, the chemical fields are not
screened and can mediate long-ranged interactions that could
lead to a wider variety of instabilities. In particular, for the
case of effectively attractive phoretic interaction we observe
collapse transitions that are dissipative analogs of a Jeans
instability [42], with or without simultaneous condensation
of asters. For effectively repulsive phoretic interactions, we
observe counter-intuitively that a collapsed phase with aster
condensation is still possible, as are stable phases exhibiting
Debye-like screening, similar to electrolytes. Moreover, we
find that in this regime the system could exhibit plasma-like
oscillations in response to perturbations, or spontaneous,
self-sustained ringing. Detailed phase diagrams inferred from
our stability analysis and structure factor calculations are found
in Figs. 2 and 3. These are parametrized, via definitions in
Eq. (9) below, by coefficients A describing the chemotactic

response from panels (i) and (ii) of Fig. 1, and B the phoretic
response from panels (iii) and (iv) of that figure. We now show
how we obtained these results.

A. Background: Diffusiophoresis and self-diffusiophoresis

Diffusiophoresis3 is the force-free, torque-free propulsion
of a colloid by a solute concentration gradient [23]. In a fluid
of viscosity η at temperature T a species with concentration
c interacting through an effective potential � with a particle
surface with normal along the local z axis gives rise, via the
Stokes equation, to a surface “slip velocity” vslip = μ∇‖c, with
the phoretic mobility μ = kBT

η

∫ ∞
0 z(1 − e−�/kBT )dz that can

have either sign depending on �. We are also interested here in
self-diffusiophoresis [19] that occurs when ∇c is not imposed
externally but generated by processes on the particle itself.

B. A single chemotactic motile colloid

Consider a single swimmer, whose mobilities and catalytic
coat have the common symmetry axis n̂. When placed in a uni-
form substrate background, such a particle moves in a direction
determined by n̂ if the coatings are sufficiently asymmetric
[25]. What happens in an inhomogeneous background? Can
the flows set up by the interaction of S and P with the swimmer
surface reorient its axis n̂ with respect to the local concentration
gradient, thus imitating chemotaxis? To answer this question,
we solve for the concentrations s and p, with diffusivities Ds

and Dp, respectively. We incorporate the catalytic chemical
reaction S → P through source and sink boundary conditions
on particle fluxes normal (⊥) to the swimmer surface:

− Ds∇⊥s = −κ1sPsσ (θ,φ); −Dp∇⊥p = κ2Ppσ (θ,φ),

(2)

where Pp(θ,φ) ≡ 1 − Ps(θ,φ) is the probability that the
enzyme at (θ,φ) is bound to the substrate. Stationarity
implies κ1sPs = κ2Pp leading to the Michaelis-Menten [40]
expression κ2Pp ≡ κ(s) ≡ κ2κ1s/(κ2 + κ1s) for the reaction
velocity per molecule. Number conservation for the products
and substrates, and the assumption that s and p diffuse
rapidly compared to the colloid so that time dependencies
and advection by flow [41] can be ignored give Dpp + Dss =
Dssb, where sb is the background substrate profile. We thus
need to solve for just one of the two concentration fields.
We work in the linear regime4 sb 	 κ1/κ2, where the profile
of product p resulting from this process is sensitive to the
imposed gradient of s, and in the limit where S diffuses
rapidly so that its profile is maintained. The resulting slip
velocity, which has contributions from both the substrate
and the product, leads to the linear and angular velocities
ω = − 3

16πR

∫
r̂ × vslip(r) d� and v = − 1

4π

∫
vslip(r) d� for

spherical colloids.

3We will not discuss similar phoretic propulsion mechanisms
through gradients in temperature or electrostatic potentials.

4Results from another limit of interest, Dp 
 Ds and sb 	 κ1/κ2,
in which the chemical reaction influences significantly the local value
of s so that the coupled dynamics of orientation and translation can
lead to oscillations, will be discussed elsewhere.
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To understand the general trends in chemotactic behavior
arising from simple catalytic patterns, we work with a limited
number of non-zero spherical harmonic components of σ and
μp. For example, taking σl,μpl = 0 for l � 3 we find the
expression for the angular velocity given in Eq. (1) with

�0 = −3μs1

4R
− κ1

60Dp

(
5μp1σ0 + 2μp2σ1 − μp1σ2

)
,

(3)
where a negative (positive) value corresponds to chemotactic
(anti-chemotactic) response. The first term on the left is the
passive response to the external gradient due to a polarity in μs

alone while the second term is the active contribution involving
both σ and μp. The form of Eq. (3) serves to illustrate some
features that hold even without the truncated expansion in l:
if either σ or μp contain all odd or all even harmonics there
is no reorientation in response to the gradient, a result which
holds for spheroidal swimmers as well. The expression for the
product contribution in Eq. (3) is a sum of products of σl and
μp,l±1, which can be used to design chemotactic colloids with
a desired response. Lastly, regardless of the form of σ , ω = 0
for μp uniform over the sphere.

We also obtain the net translational velocity v, as in Eq. (1)
where

V0 = κ1sb

15Dp

(5σ1μp0 + 2σ2μp1 − σ1μp2),

α0 = −
(

μs0 + 1

10
μs2

)
− κ1R

10Dp

(
σ0μp2 − 2

9
σ1μp1

− 2σ2μp0 + 1

35
σ2μp2

)
,

α1 = − 1

10
μs2 − κ1R

30Dp

(
10σ0μp0 + σ0μp2 + 2σ1μp1

− 2σ2μp0 + 29

35
σ2μp2

)
. (4)

The three contributions to the translational velocity correspond
to self-propulsion (along n̂), phoretic drift (along ∇s), and an
anisotropic drift that is instantaneously along n̂, but leads to net
motion along ∇s as rotational noise decorrelates n̂. The latter
amounts to a contribution to run-and-tumble gradient-seeking
motion, which we name apolar run-and-tumble; see Fig. 1.

To demonstrate how the chemotactic response of catalytic
colloids can be designed, we have calculated �0 for an example
of swimmers with uniform spheroidal caps of catalytic and
mobility patterns as σ (θ ) ∝ �(θ − θ1) and μp ∝ 1 + �(θ −
θ2). Figure 4 shows �0 as a function of θ1 for different values of
θ2. For θ2 = π/2, �0 is antisymmetric as a function of θ1. For a
given θ2, �0 peaks near θ1 = θ2 as the slip velocity is maximum
when the position where μp is maximum coincides with the
region where p changes most rapidly, which for the given form
of σ is at θ1. This example showcases the possibility to control
the response of individual catalytic colloids, and thus their
collective behaviors, by following design rules that include
varying systematically their geometric features. We now
combine the individual responses of active colloids to construct
a theoretical description for their collective behaviors.

FIG. 4. (Color online) Angular velocity coefficient for spherical
colloids as a function of θ1 (that parametrizes the size of the catalytic
coating) for different values of θ2 (that parametrizes the mobility
pattern) quoted in the legend.

II. FROM CHEMOTAXIS TO COLLECTIVE MOTION

Catalytic swimmers of the type discussed above interact
through the S and P chemical fields as well as via hydrody-
namics [43,44]. We restrict our attention to their chemotactic
interaction, and construct the collective behavior of many
swimmers by looking at pairwise interactions. Consider,
therefore, two swimmers separated by a distance r in a uniform
medium of substrate molecules. The reaction S → P that takes
place on the surface of each swimmer modifies the s field as
seen by the others, and each is also a source for P. In the absence
of a background of other swimmers, inhomogeneities in the s

and p fields in steady state decay as 1/r . Each swimmer senses
and responds to the magnitude and the gradient of s through
the motility and chemotaxis mechanisms outlined above. In
addition, each particle responds to the p field produced by the
reactions on the surfaces of all the particles, just as it would
to any externally imposed solute gradient [23]. The resulting
equations of motion for the position rα and orientation unit
vector n̂α of the αth, to linear order in ∇s, ∇p, take the form

drα

dt
= V0(s)n̂α − α0∇s − α1n̂αn̂α · ∇s + β0∇p

+β1n̂αn̂α · ∇p +
√

2D fr
α(t),

(5)
dnα

dt
= �0(n̂α × ∇s) × n̂α + �0(n̂α × ∇p) × n̂α

+
√

2Dr n̂α × fn
α(t),

where additional coupling constants

�0 = −3μp1

4R
, β0 = −

(
μp0 + 1

10
μp2

)
, β1 = − 1

10
μp2,

(6)

are introduced to take account of the response of each colloid
to a product gradient produced by the others. In Eq. (5) thermal
as well as active fluctuations are included phenomenolog-
ically via Gaussian unit-strength white noise terms fr

α, fn
α ,

with strengths D and Dr . �0 > 0 and �0 > 0 correspond
to swimmers that respond chemotactically to ∇s and ∇p
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respectively. α0 > 0 and β0 > 0 imply attractive contributions
to the interactions between the swimmers due to s and p,
respectively. V0(s) > 0 by definition as we choose n̂α to point
in the direction in which a solitary swimmer moves. The form
of Eq. (5) follows on the general grounds of symmetry. The
point of our calculation is that it gives explicit expressions
for the tactic and phoretic mobilities and the expressions for
αi and βi . Moreover, the substrate and product fields are
themselves determined by the distribution of colloid positions
and orientations. The substrate is consumed and the product
is generated at the rate Q(r,t) = κ(s)

∑
α

∫
|Xα |=R

δ(r − rα −
Xα)σ (Xα · n̂α), where Xα is the position coordinate on the
αth swimming sphere of radius R, and the catalytic coat σ

is expressed in laboratory-frame coordinates. We assume the
system is maintained5 in a steady state with mean substrate
concentration s0 and develop Q to leading orders in a gradient
expansion to obtain a coarse-grained description. We begin by
relating the s and p fields to the coarse-grained density and
orientation fields of the colloids, namely,

∑
α δ(r − rα) = ρ(r)

and
∑

α n̂αδ(r − rα) = w(r) (see the Supplemental Material
[45]). We find(
∂t − Ds∇2

)
s = −Nκ(s)(ρ − ε∇ · w) = −(

∂t − Dp∇2
)
p.

(7)

In Eq. (7), N = 4πR2σ0 is the total number of enzymatic sites
on the surface of the swimmer and ε = Rσ1/3σ0 measures
the degree of polarity of the catalytic coat. We work in
the limit of ∂t s = ∂tp = 0. Linearizing Eq. (7) around a
steady state with (ρ0,s0,p0), we find the following results for
the Fourier components of the concentration at wave vec-
tor q: sq = −Nκ(s0)(ρq − εiq · wq)/[Ds(q2 + ξ−2

s )], pq =
−Dssq/Dp, where we introduce the screening length

ξs = [Nρ0κ
′(s0)/Ds]

−1/2, (8)

that is a measure of the range of interactions mediated by S
and P. For s0 	 κ2/κ1, i.e., on the linear or unsaturated part
of the MM curve, ξs is finite and the interactions are therefore
short-ranged. For s0 
 κ2/κ1, i.e., on the saturated part of
the MM curve, ξs → ∞ and the product mediates an effective
long-ranged interaction amongst the colloids.

Starting from the Langevin equations in Eq. (5), we next
construct equations of motion for ρ and n(r) = w/ρ as defined
above Eq. (7). While coarse-graining, we see inevitably that
the dynamical equation for n involves higher moments of the
orientational distribution function, which must be re-expressed
in terms of lower moments [46,47] using an appropriate closure
which we discuss in the Supplemental Material [45]. The S
and P fields produced by inhomogeneities in density and the
divergence of the polar order parameter mediate interactions
between swimmers through ρ and the longitudinal component
nLq = q̂q̂ · nq . The linearized dynamics in the isotropic phase
closes in terms ρ and nLq, whose coarse-grained equations we
present in the saturated limit and for wave numbers q 	 ξ−1

s

in the unsaturated case. We will see that despite the presence

5We assume prompt replenishment of consumed substrate, and we
work on timescales long enough that the product has reached the
sample boundaries, where it is absorbed.

of a self-propelled velocity field and a density, there is an
important contrast relative to models such as Toner-Tu [7]: the
interactions considered here offer no mechanism to promote
flocking, i.e., the global parallel alignment of n.

We have calculated the mode structure and steady state
structure factors Sρ = ∫

ω
〈|ρqω|2〉 and Sn = ∫

ω
〈|nLqω|2〉 for

both the unsaturated and the saturated cases by adding
phenomenological gaussian white noise terms, conserving for
ρ and nonconserving for nL, to the equations of motion. The
equations of motion and their stability analysis which we now
present are best shown in terms of coefficients

A = Nκ(s0)

[
�0

Dp

− �0

Ds

+ V0(s0)

2Ds

d ln κ

ds
|s0

]
,

(9)

B = Nκ(s0)

[
1

Dp

(
β0 + β1

3

)
+ 1

Ds

(
α0 + α1

3

)]
,

which give the effective chemotactic and phoretic response to
gradients, respectively.

III. UNSATURATED

In the unsaturated case ξs < ∞, for wave numbers q 	
ξ−1
s , coarse grained equations read[

∂t + 2Dr −
(

D + v2
1s

2
0

30Dr

)
∇2 +

(
ερ0ξ

2
s A − v2

1s
2
0

90Dr

)

×∇∇ ·
]

nL +
(
v1s0 − ρ0ξ

2
s A

)
3ρ0

∇ρ = 0, (10a)

[
∂t − (

D − ρ0ξ
2
s B

)∇2
]
ρ−1

0 δρ + (
v1s0 − ερ0ξ

2
s B∇2

)
×∇ · nL = 0, (10b)

where we use V0(s0) ≡ v1s0 as the self-phoretic velocity scales
linearly with the substrate concentration.

Several features of Eq. (10) are noteworthy. From Eq. (7),
P is abundantly available or S is depleted where the density
ρ is high. Phoretic movement up (down) the gradient of
p (s) can thus lead to a propensity of swimmers to swim
up their concentration gradients and hence a change in the
sign of the diffusivity in Eq. (10b) through ρ0ξ

2
s B. Since

the swimmer preferentially moves along its polar axis, n
can be viewed as a velocity field, and the ∇ρ term as a
pressure gradient. We see that for large enough ερ0ξ

2
s A, the

signs of coefficients that are analogous to bulk viscosity, and
squared sound speed can change signaling an instability and
possible novel condensation phenomena whose nature will be
revealed only by a nonlinear treatment with appropriate noise
terms. Note that A contains two contributions: (i) chemotactic
alignment with the local gradient in s and p and (ii) slowing
down of swimmers due to increased substrate consumption
as a result of a local excess of ρ that depletes s locally. This
provides a realization of the density-dependent self-propulsion
velocity of [48]. In the overdamped limit, for large A and B,
one eigenmode with relaxation

−iω= − D′q2 ≡ −
(

D + v2
1s

2
0

6Dr

− ρ0ξ
2
s B − v1s0ρ0ξ

2
s A

6Dr

)
q2

(11)
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goes unstable with growth rate ∼ q2 at small q. Competition
with stabilizing effects at larger q will lead to a modulated
growth morphology with a length scale determined by the
wave number of peak growth ∼ |D′|1/2. The other mode,
controlled by Dr , remains stable for q → 0, i.e., interactions
do not promote flocking. Working at large Dr also justifies the
overdamped limit.

In the parameter range where these modes are stable, the
steady-state static small-q structure factor takes the form Sρ ∝
1/(D′ + γ q2), where

γ = 2ξ 2
s Dr

[
ρ0ξ

2
s B + ρ0ξ

2
s Av1s0

6Dr

+1

3
ερ0ξ

2
s B

(
v1s0−ρ0ξ

2
s A

)

+ (
D − ερ0ξ

2
s A

)(
D + 2v2

1s
2
0

45Dr

− ρ0ξ
2
s B

)

+D′(ρ0ξ
2
s B + ερ0ξ

2
s A − 2D

)]
. (12)

For γ > 0, as D′ → 0+, Sρ displays fluctuations with a
correlation length

√
γ /D′ that diverges as D′ → 0, presaging

the onset of clumping (see Fig. 3). Still in the linearly stable
regime but with γ < 0, an analysis to order q4 shows that the
system has a tendency towards patterning with a characteristic
length scale ∼ |γ |−1/2, whose origin involves a competition
between the chemotactic (A) and phoretic (B) response to
gradients.

IV. SATURATED

Next we consider the saturated limit ξs → ∞, realized
by working at saturation concentrations on the MM curve.
It is useful to define E(r) = −∇ ∫

r′ ρ(r′)/|r − r′|, which plays
the role of an electric field in Eq. (13a) below. Equation
(7) then implies ∇s = Nκ2(E − ερ0nL)/Ds . In this limit the
orientation and density fields satisfy6[

∂t −
(

D + v2
0

30Dr

)
∇2

]
nL + v0

3ρ0
∇ρ + A

3
E

−
[

v2
0

90Dr

− 2εNκ2v0ρ0

135Dr

(
β1

Dp

+ α1

Ds

)]
∇∇ · nL

+
[

2ε2A2ρ2
0

15Dr

n2
L − εA

3
ρ0 + 2Dr

]
nL = 0, (13a)

(∂t − D∇2)ρ + ρ0(v0 + ερ0B)∇ · nL − ρ0B∇ · E = 0,

(13b)

where v0 ≡ lims0
κ2/κ1 V0(s0). The electric-field character of E
is evident in Eq. (13a) through the alignment term ∝ A and the
Ohmic current ∝ B in Eq. (13b). Note that a large and positive
ερ0A/3 can destabilize the nL = 0 state leading—once higher
order terms are taken into account—to a state of nonzero nL,
i.e., a condensation of asters. The phenomenon is related to
that reported in [49], with the important difference in our case

6In Eq. (10) we have displayed only those nonlinear terms required
to stabilized a state of nonzero nL. The complete equations may be
seen in the Supplemental Material [45].

of long-range interactions mediated by E, as in [50], with a
resemblance to gravitational collapse [42].

In the overdamped limit, i.e., for sufficiently large Dr , the
relaxation rates of the eigenmodes are

− iω =
{

G
2D′

r
− [

2D + v0(v0+ερ0B)
3D′

r

]
q2,

−2D′
r+O(q2),

(14)

where D′
r = Dr − ερ0A/6 represents a modified rotational

diffusion, and G = 2ρ0BDr + 1
3ρ0Av0 is an effective control

parameter for the nature of interaction between the swimmers.
Equation (13) shows that in the saturated limit the effective
long-ranged interaction between colloids (as mediated by S
and P) leads to non-vanishing relaxation rates at q = 0 for both
modes, notwithstanding the conservation law governing ρ.

For G < 0, the swimmers interact with long-ranged re-
pulsive interactions. The structure factor Sρ(q → 0) = 0, as
it is a ratio of the strength of fluctuations and the wave
number independent relaxation rate, which is reminiscent
of suppression of charge density fluctuations in electrolytes.
Including terms of higher order in q yields a density structure
factor with a peak at q ∼ G1/4, which is characteristic of
microphase separation (white region in Fig. 2). We see from
Eq. (13) that for G > 0 and large D′

r the isotropic state with
uniform density is linearly unstable for small wave number
q, including q = 0. This effect is a dissipative analog of
the gravitational Jeans instability [42], and is a consequence
of the long-ranged attractive interaction (yellow). Related
behavior has been predicted for thermophoretic colloids [50].
Letting D′

r → 0 by increasing A and keeping G > 0 brings
the system out of the overdamped region where the relaxation
of n slows down and it behaves like a velocity field. This
behavior where the system resembles a gravitational system
conserving momentum and displays an instability formally
equivalent to the standard hydrodynamic Jeans instability [42]
(magenta). Modes with wave numbers larger than a crossover
scale given by a competition between the interaction strength
G and a squared sound speed equivalent v0(v0 + ερ0B) for
our system are oscillatory, whereas modes with smaller wave
numbers are too “massive” and collapse. On further tuning
the parameters to approach D′

r < 0, notwithstanding the value
of G, one anticipates an instability towards a spontaneously
oscillating state (green). Restricting our attention to the stable
case, we find a structure factor for nL with a correlation length
∼ (D/D′

r )1/2 that grows as D′
r decreases, indicating strong

fluctuations towards aster formation. For small D′
r and G < 0

the response shows “plasma oscillations” [51] with frequency
∼ √|G|. For D′

r < 0 (dark green), the system can also develop
spontaneous oscillations, or ringing.

V. SUMMARY

A colloid patterned with catalyst and immersed in a
maintained reactant medium is a minimal nonequilibrium
particle, displaying directed motion and related behaviors
ruled out at thermal equilibrium. We have determined theo-
retically the nature of patterning that will cause such an active
colloid to reorient along and move up or down a gradient
of chemical reactant, thus delineating the principles for the
design of chemotactic self-phoretic particles. Coarse-graining
the resulting Langevin equations for the position and polar
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axis of one particle, we discover the dynamics of the density
and polar order parameter of a collection. The interplay of
chemotaxis and phoresis leads to clumping and patterning at
low reactant concentration; at high concentration, the slow
decay of diffusing reactants and products yields analogues of
electrostatic and gravitational phenomena—Debye screening,
microphase separation, plasma oscillations and gravitational
collapse. The interactions promote aster formation, not a
flocking transition, and the instabilities mediated by the
long-range diffusion fields have a character distinct from those

the generic instability driven by the velocity field in Stokesian
active liquid crystals. We look forward to experimental tests
and, eventually, practical application of our predictions.
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