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Structural evolution in the aging process of supercooled colloidal liquids
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When a liquid is rapidly quenched to a temperature below the glass-transition point, it is driven out of
equilibrium; it then slowly relaxes to a (quasi)equilibrium state. This slow relaxation process is called aging. By
definition, any glasses are inevitably in the process of aging and actually slowly evolving with time. Thus the
study of aging phenomena is of fundamental importance for understanding not only the nonequilibrium nature
of the glass transition, but also the stability of glassy materials. Here we consider aging after a rather shallow
quench, for which a system is still able to reach (metastable) equilibrium. By using polydisperse colloidal liquids
as a model, we show the validity of dynamical scaling that there is only one relevant length scale not only
for a quasiequilibrium supercooled state but also for a nonequilibrium process of aging, which is reminiscent
of dynamical critical phenomena. Our finding indicates that the aging toward (metastable) equilibrium may
be regarded as the growth process of critical-like fluctuations of static order associated with low-free-energy
configurations, further suggesting that this ordering is the origin of cooperative slow dynamics in the systems
studied. The generality of this statement for other glass-forming systems remains for a future study.
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I. INTRODUCTION

The glass transition is usually regarded as a dynamical
transition from an ergodic liquid to a nonergodic disordered
solid state without any discontinuity [1,2]. However, the
nonergodicity has to be defined on the basis of whether the
structural relaxation takes place within the observation time or
not. In this sense a glass-transition point is not uniquely defined
but rather dependent upon the time scale of observation.
One might argue that a glassy state should relax to a final
(quasi)equilibrium state with a very long but finite relaxation
time. For a deep quench, however, a system cannot relax to
true equilibrium, but it can undergo increasingly slow partial
relaxations, depending upon which internal degrees of freedom
remain unfrozen [3]. For a shallow quench, on the other
hand, aging can be regarded as the approach to (metastable)
thermodynamic equilibrium. Here we restrict ourselves to the
latter case. So hereafter aging means the relaxation process of
a supercooled liquid toward its (metastable) equilibrium state.

During aging, the structural relaxation time τα increases
with waiting time tw with decreasing rate. Such behavior
is observed not only in ordinary structural glasses [4–6]
but also in so-called soft glassy materials [7–12]. Aging
phenomena have also been studied intensively in spin-glass
systems [13–15]. Unlike structural glasses, spin glasses have
a well-defined phase transition of thermodynamic nature
and a scaling argument based on the droplet picture has
been developed [13–15]. On the basis of analogous behavior
between spin and structural glasses, many interesting physical
concepts such as effective temperature and an extended
fluctuation-dissipation theorem have been proposed and lively
discussed (see, e.g., [13,16]). The growth of the dynamical
correlation length during aging was also found by numerical
simulations [17,18], suggesting its connection to the slowing
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down of dynamics. However, since the very nature of the glass
transition itself has remained elusive [2], there is no clear-cut
understanding of the process of aging.

The most puzzling feature of the glass transition is that
the structural relaxation time of a supercooled liquid increases
drastically over many orders of magnitude upon cooling (or
increasing density) toward the glass transition point, but with-
out accompanying a noticeable change in the static structure
seen by a two-body density correlator [e.g., the structure
factor S(q) and the radial distribution function g(r)] [19,20].
Since the finding of dynamic heterogeneity of a supercooled
state (see [21–23] for two dimensions and [24–26] for three
dimensions), the growing dynamical correlation and its link
to slow dynamics have attracted considerable attention [27]
and an analogy to critical phenomena was suggested [28].
However, the origin of dynamical heterogeneity is still elusive:
For example, whether it is kinetic or static is a matter of
debate [27].

The possible presence of growing static order has attracted
considerable attention [1,2,29–38], although there are also
different types of approaches such as a purely kinetic scenario
and a mode-coupling approach (see, e.g., [1,2]). Candidates
for such static order are icosahedral order [39,40], exotic
amorphous order [41], and spatially extendable bond orien-
tational order [32–37,42]. The usefulness of order agonistic
static lengths such as a point-to-set length [43–45] is also
actively discussed in connection to the random first-order
transition scenario [1,2,41,46]. For weakly polydisperse col-
loidal liquids [33,35–37], driven granular matter [34], and
spin liquids [32], we have recently shown that spatially
extendable crystal-like bond orientational order is the origin of
dynamic heterogeneity and slow glassy dynamics. We stress
that this crystal-like bond orientational order should not be
confused with crystalline order that accompanies translational
order as well (see [33,35–37,42], particularly [37] for three
dimensions): It is completely decoupled from the density field.
We note that such orientational order arising from many-body
correlations is difficult to detect by a two-body density
correlator [47], which may be a reason why the importance
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of structural ordering in a supercooled liquid had been
overlooked [42,48]. The insufficiency of a description based
on two-body correlations was also pointed out by Berthier
and Tarjus [49] and by Coslovich [50]. We showed that such
structural ordering can be revealed by using an appropriate
structural order parameter for each type of system [35]. We also
found [35,42,48] that this order parameter exhibits Ising-like
criticality and argued that the slow dynamics may be explained
by the activation-type critical dynamics [51–53]. Compared
to ordinary critical phenomena, the range we can access is
rather limited due to the much steeper slowing down, which
makes the precise estimation of critical exponents difficult.
Yet the Ising-like exponents of the diverging correlation
length and susceptibility for two-dimensional (2D) and 3D
polydisperse colloids, 2D driven granular matter, 3D Lennard-
Jones polydisperse systems, and 2D spin liquids as well as the
Ising-like (model A) order parameter dynamics [35] may be
regarded as more than a coincidence. A theory supporting this
scenario based on Ising criticality has recently been proposed
by Langer [52,53]. In relation to the above, we note that
similar local crystal-like order was also observed for 2D
supermagnetic binary colloidal particles for both experiments
and simulations [54]. In a supercooled liquid state, a system is
widely believed to have a complex free-energy landscape with
multibasins in the configuration space [55,56]. Then aging can
be regarded as the process to seek a more stable state with
lower free energy, which was recently confirmed for colloidal
glasses [57]. According to our scenario, a state of lower free
energy is linked to higher crystal-like bond orientational order
for weakly polydisperse colloidal systems. This is natural
for hard-sphere-like systems since the breakdown of local
rotational symmetry allows for efficient local packing and
thus increases the correlational entropy [42,48], i.e., lowers
the free energy locally. This is particularly well established for
2D monodisperse hard-disk systems [58].

Here we study the slow relaxation process of polydisperse
colloidal liquids as a function of the waiting time tw (see
Sec. II for the merits of using colloidal liquids) after a density
jump [59] by means of Brownian dynamics simulations. We
reveal that the aging toward metastable equilibrium can be
regarded as the coarsening process of spatial fluctuations of
glassy structural order, which is reminiscent of the dynamical
scaling hypothesis of critical phenomena [60] that the growth
of the correlation length ξ (tw) is the only relevant process and
the whole time dependence enters only through ξ (tw) (see,
e.g., [15]).

II. MERITS OF STUDYING THE AGING OF
HARD-SPHERE-LIKE COLLOIDAL SYSTEMS

To study the dynamics of aging, we use 2D and 3D
polydisperse hard-sphere-like systems. We chose weakly
polydisperse colloidal systems because of the following two
reasons. One reason is that, as explained above, we know
relevant structural order parameters for them [35,42], which
are bond orientational order parameters. In these systems, there
is a distinct correlation between an efficient local packing
configuration around a particle and the number of its nearest
neighbors (6 for two dimensions and 12 for three dimensions),
which allows us to characterize the state of packing by a

well-defined structural order parameter. At this moment, it is
not possible to have such a simple link between the structure
and dynamics for other systems such as binary mixtures of
particle with different sizes. This is because for such binary
mixtures large fluctuations of the number of nearest-neighbor
particles make bond orientational order parameters useless
and at this moment we do not know any structural signature
responsible for slow dynamics.

Another reason is related to a fundamental importance
in the study of aging: The hard-sphere-like systems have
significant advantages in elucidating the physical mechanism
of glass aging. (i) Only for hard-sphere liquids, we can access
the experimental glass transition (φg ∼ 0.58) by simulations
because of the slow microscopic time scale. This allows us
to study the aging of a real glass at φ = 0.587 (> φg = 0.58)
numerically. This is currently impossible for other systems,
where we can access only a temperature region far above
the experimentally relevant glass transition point Tg. (ii) We
also emphasize that our previous experimental work [37]
indeed confirmed the Ising-like criticality associated with
glass transition for polydisperse poly(methyl methacrylate)
colloidal systems with a polydispersity of 6% equivalent to
our simulations reported in this paper, by confocal microscopy
observation. (iii) In aging experiments of other glass-forming
liquids such as molecular, polymeric, oxide, and metallic
glasses, which are performed under constant pressure, a
temperature quench triggering aging inevitably leads to the
change not only in the temperature of a sample, but also in its
density. Since both of these changes affect glassy dynamics
significantly and are coupled with each other, the interpre-
tation of the aging necessarily becomes quite complicated.
A pressure jump is a good way to avoid this effect, but it
causes adiabatic heating that leads to another complication.
For hard-sphere liquids such as colloidal suspensions, on the
other hand, we can change the volume fraction (or the density)
alone almost instantaneously. Thus the aging takes place
without accompanying any further density change. Using this
feature as well as a link between the free volume and the free
energy, Zargar et al. succeeded in measuring the free energy of
colloidal liquids directly by using confocal microscopy [57].
Here we follow the kinetics of aging of hard-sphere-like
liquids after the density jump by using Brownian dynamics
simulations. At tw = 0, we increase the radius of particles,
or the volume fraction φ, in a preequilibrated liquid, which
triggers the aging (see Sec. IV B). This method is similar
to recent interesting aging experiments performed by Yunker
et al. for volume-controllable soft binary colloids [59].

III. CHOICE OF THE RELEVANT ORDER PARAMETER
LINKED TO SLOW DYNAMICS

Here we consider what the relevant structural order pa-
rameters linked to glassy slow dynamics are for our 2D
and 3D polydisperse colloidal systems. We addressed this
issue in our previous studies [33–37,42,48] and showed that
when the polydispersity is rather small, the relevant order
parameter is hexatic order �6 for two dimensions and Q6

for three dimensions. We stress that bond orientational order
develops simply due to the fact that it is directly linked
to the most efficiently packed structure for hard disks and
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spheres. A region with higher order has more correlational
entropy: Despite the ability of structures with higher bond
orientational order to be compacted more efficiently, these
structures occupy the same volume as disordered structures in
a liquid state. This extra free volume allows the increase of
the local correlational (or vibrational) entropy, which is the
reason why such structures are favored [42,48]. Note that for
hard disks and spheres the free energy is determined by the
entropy alone. Since bond orientational order is directly linked
with the number of nearest-neighbor particles, it is a relevant
order parameter as far as the fluctuations of the number of
nearest neighbors due to the particle size polydispersity are
rather modest. In our previous studies [32–36], we introduced
random disorder and frustration effects to 2D and 3D colloidal
systems that have hexatic or Q6 ordering, respectively, in the
absence of such disorder: We systematically increased the
strength of the frustration against crystallization and found that
a system starts to form glass if the degree of the polydispersity
exceeds some critical value and, in a weakly disordered
regime, a system preserves the type of order in its pure state.
Furthermore, we found that the strength of the frustration
against crystallization controls the fragility of a liquid. We
confirmed the link between slow structures and the underlying
order attained in the absence of the frustration effects, not
only for 2D and 3D polydisperse colloidal systems (through
simulations [33,35,36] and experiment [37]) but also for 2D
driven granular matter [34], 3D Lennard-Jones systems [35],
and 2D spin liquids [32] in which the underlying order is
antiferromagnetic order, indicating the generality of the link
irrespective of the type of order. We also found that the length
scale extracted from the order parameter coincides with that
of the dynamical correlation in glassy dynamics [32–37].
Furthermore, we confirmed (see, e.g., Fig. 1 of Ref. [35]) that
the degree of hexatic order is almost perfectly anticorrelated
to the mobility of particles. This supports the validity of our
assignment of the structural order parameters responsible for
glassy slow dynamics. So, at least in these hard-sphere-like
systems, the slowing down of the dynamics is induced by
structural ordering linked to �6 and Q6.

We note that a bond orientational order parameter is relevant
only when fluctuations of the number of nearest-neighbor
particles are rather small. Thus, it is not so useful for systems
with large polydispersity and binary mixtures of particles
with different sizes where the fluctuation of the number of
nearest-neighbor particles is inevitably significant [42,48,61].
It is a crucial remaining issue whether or not there is static
structural signature linked to slow dynamics even in such
systems.

IV. SIMULATION METHODS AND ANALYSES

A. Numerical simulations

Experimentally, a polydisperse colloidal system has often
been used as a model glass-forming liquid and the importance
of polydispersity in the glass-forming ability has recently been
emphasized [37,62,63]. We simulate the behavior of such
colloidal systems by using standard Brownian dynamics sim-
ulations of polydisperse colloidal particles (disks) interacting
with the Weeks-Chandler-Andersen repulsive potential [64]

Uik(r) = 4ε[(σik/r)12 − (σik/r)6 + 1/4] for r < 21/6σik , oth-
erwise Uik(r) = 0, where σjk = (σ j

2D (3D) + σ k
2D (3D))/2 and

σ
j

2D (3D) represents the size of particle j in the 2D (3D) system.
We introduce the Gaussian distribution of particle sizes. Its
standard deviation is regarded as the polydispersity:

	2D (3D) =
√

〈(σ2D (3D))2〉 − 〈σ2D (3D)〉2/〈σ2D (3D)〉,
where 〈x〉 means the average of variable xi . For all simulations,
the temperature is fixed at kBT /ε = 0.025 and the particle
number is Np = 16 384. In our previous study [33] we
described the phase behavior of this system as a function
of 	 and φ. A system of smaller polydispersity (	2D � 9%
and 	3D � 6%) (quasi-)long-range ordering emerges upon
increasing the packing fraction (φ2D for two dimensions and
φ3D for three dimensions). In our present study we introduce
the effective diameter of particle j , dj , which satisfies the rela-
tion U (d2D (3D)) = kBT . We obtain d2D (3D) = 1.0953σ2D (3D) as
the corresponding hard-sphere diameter. Using these effective
diameters, we define the packing fraction of colloids as
follows: For two dimensions, φ2D = (1/L2

2D)
∑Np

j π (dj

2D/2)2,
where L2D is the box size in two dimensions, and for three
dimensions, φ3D = (1/6L3

3D)
∑Np

j π (dj

3D)3, where L3D is the
box size in three dimensions. In a repulsive system, 1/φ2D (3D)

plays the same role as the temperature T in molecular liquids.
For larger 	2D (3D), we observe vitrification instead of such
(quasi-)long-range ordering [33,35,36]. We used a system with
	2D = 11% for two dimensions and one with 	3D = 6% for
three dimensions.

B. Method of volume quench

Next we explain how to initiate aging in our numerical
simulations. First, we prepare the initial configurations at an
equilibrium liquid state, i.e., at φ2D

ini = 0.69, which is slightly
below the hexatic ordering point φ2D

I of monodisperse disks
(	2D = 0), and at φ3D

ini = 0.48, which is slightly below the
freezing point φ3D

F = 0.494 of monodisperse hard spheres
(	3D = 0). Then we perform a volume jump, or increase the
packing fraction φ, by increasing the size of each particle with
the same ratio while avoiding overlap. For two dimensions, we
use three target volume fractions φ2D=0.756, 0.772, and 0.784,
whereas for three dimensions we use φ3D = 0.550, 0.568, and
0.587. This volume jump may apparently look similar to the
temperature quench in molecular liquids. However, we stress
that there is no slow change in the density after the quench
in our system, unlike ordinary glass-forming systems such as
molecular liquids. We set the waiting time tw = 0 to the time
when the volume quench is accomplished. We follow the aging
process as a function of tw.

C. Analysis of the dynamics

We calculate the intermediate scattering function (ISF)
at tw, F (qp,t,tw) = 1/Np

∑Np

j=1 exp {−i �qp · [�rj (t) − �rj (0)]},
where qp is the wave number that corresponds to the first
peak of the static structure factor S(q). During aging, we
make a fitting of the ISF over a rather narrow time span,
which is necessary for making a link between the relaxation
dynamics and instantaneous static order over a similar time
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FIG. 1. (Color online) Slowing down of the dynamics during aging for (a)–(c) the 2D systems (	2D = 11%) and (d)–(f) the 3D systems
(	3D = 6%). (a) Dependence of F (qp,t,tw) on tw. The solid lines represent the stretched exponential function for φ2D = 0.784. (b) Dependence
of τα on tw for φ2D = 0.756, 0.772, and 0.784. Here τE

α is the relaxation time of the ergodic state for each φ2D, τE
α = 1.4 × 103, 1.15 ×

104, and 8.2 × 105, respectively, and τ 0
α is the relaxation time of the initial equilibrium liquid state, τ 0

α = 1.2 × 102. (c) Dependence of
{[τα(tw) − τ 0

α ]/(τE
α − τ 0

α )}1/γ on tw/τα . The solid lines represent the relation {[τα(tw) − τ 0
α ]/(τE

α − τ 0
α )}1/γ = Atw/τE

α with A = 0.05. For each
φ, the relationship between τα(tw) and tw is expressed by the same functional form. The power-law exponent γ is 0.30, 0.41, and 0.59 for
φ2D = 0.756, 0.772, and 0.784, respectively. (d) Same as (a) for three dimensions (φ3D = 0.587). (e) Same as (b) for three dimensions. Here
τE
α = 7.6 × 103, 6.2 × 104, and 1.5 × 106 for φ3D = 0.550, 0.568, and 0.587, respectively, and τ 0

α = 2.0 × 102. (f) Same as (c) for three
dimensions. Here γ = 0.75, 0.77, and 0.80 for φ3D = 0.550, 0.568, and 0.587, respectively, and A = 1. We include the error bars for a part of
the aging data to show possible errors due to the limited range of the time span used for the analysis of the ISF data.

duration. We fit the ISF by the two-step stretched exponen-
tial function (the so-called Kohlrausch-Williams-Watts func-
tion) F (qp,t,tw) = (1 − a) exp [−(t/τβ)] + a exp [−(t/τα)β],
where a is the Debye-Waller factor, τβ is the fast β relaxation
time, τα is the α relaxation time, and β is the stretching
parameter. In this study we fix the value of β as β = 0.5 for
two dimensions and β = 0.7 for three dimensions to reduce
the number of fitting parameters. These values are chosen on
the basis of the analysis of quasiequilibrium results. However,
a recent experimental study indicates the increase of β in the
early stage of aging [65]. In other words, the scaling of the ISF
does not work during aging. Thus, the rather narrow time
span and the fixing of β may result in rather large errors. We
estimate the amplitude of the errors from fitting the ISFs with
the ambiguity of β in the range of ±0.2: 0.3 � β � 0.7 for
two dimensions and 0.5 � β � 0.9 for three dimensions. The
error bars are shown for a part of the aging data in Figs. 1
and 3.

D. Analysis of two-body density correlation

We characterize the structure of a liquid by the radial
distribution function g(r) = 1/ρN〈ρ(�r)ρ(�0)〉, where ρ is the
average density and ρ(�r) is the local density at �r .

E. Characterization of bond orientational order

For 2D polydisperse hard disks, we measured a sixfold
hexatic bond orientational order parameter [33,34,66] to

characterize the local structural order �
j

6 = | 1
nj

∑nj

m=1 ei6θ
j
m |,

where nj is the number of nearest neighbors of particle j ,
i = √−1, and θ

j
m is the angle between �rm − �rj and the x

axis, where particle m is a neighbor of particle j . Note
that �

j

6 = 1 means the perfect hexagonal arrangement of six
nearest-neighbor particles around particle j and �

j

6 = 0 means
a random arrangement.

We calculate the spatial correlation function of ψ6 as
g6(r)/g(r) = 〈ψ6(�r)ψ∗

6 (�r)〉/g(r), where

ψ6(�r) = 1

Np

Np∑
j=1

1

nb

nb∑
m=1

ei6θ
j
mδ(�r − �rj )

(nb being the number of nearest neighbors). We can estimate
the correlation length ξ6 by fitting to the envelope of the cor-
relation function g6(r)/g(r) the 2D Ornstein-Zernike function
r−1/4 exp[−(r/ξ6)] [see Fig. 4(a)].

For 3D polydisperse colloids, we used the sixth-order bond
orientational order parameter for particle k: Q

j

6. The lth-order
bond orientational order parameter of particle k is calculated
as

Qk
l = 4π

2l + 1

(
l∑

m=−l

|Qk
lm|2

)1/2

.

Here Qk
lm = 1/Nk

b

∑Nk
b

j=1 qlm(�rkj ), Nk
b is the number of the

nearest neighbors of particle k including particle k itself,
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and qk
lm = 1/nk

b

∑nk
b

j=1 Ylm(�rkj ), where Ylm(�rkj ) is a spherical
harmonic function of degree l and order m and nk

b is the
number of bonds of particle k. The time average is taken for a
period of τα . The spatial coarse graining added to the standard
Steinhardt bond orientational order parameter [39,67] leads to
a significant improvement in detecting the structural order [68].

The correlation function of this structural order can be
calculated as

g3D
6 (r)/g(r) = 4π

13

〈
6∑

m=−6

Q6m(�r)Q∗
6m(�0)

〉 /
g(r).

Then we can obtain the correlation length by fitting the the
following 3D Ornstein-Zernike function to the envelope of
this correlation function: g3D

6 (r)/g(r) ∝ r−1 exp (−r/ξ6) [see
Fig. 4(d)].

V. RESULTS AND DISCUSSION

A. Aging in 2D polydisperse colloids

1. Dynamical slowing down during aging

First we focus on the aging dynamics in 2D systems. To
see the slowing down of the structural relaxation during aging,

we calculate the intermediate scattering function F (qp,t,tw)
as a function of tw. The results are shown in Fig. 1(a). We
take a rather narrow time span of the ISF for making a
link between the relaxation dynamics and instantaneous static
order over a similar time duration, although this causes errors
in the estimation of τα . By fitting the stretched exponential
function for a time regime of t � tw, we estimate the structural
relaxation time τα as a function of tw, whose results are
shown in Fig. 1(b). We confirm that τα monotonically increases
with tw and eventually saturates around tw = 30τE

α toward its
ergodic value τE

α , which was determined by (quasi)equilibrium
simulations. Here we note that the relaxation of a glass toward
its quasiequilibrium supercooled state was also suggested by
experiments [69]. In each system of different φ2D, the rela-
tionship between τα and tw can be commonly described by the
function form [τα(tw) − τ 0

α ]/(τE
α − τ 0

α ) = A(tw/τE
α )γ , where

A and γ are the adjustable parameters [see Fig. 1(c)]. Such
a power-law behavior has been known to describe well aging
dynamics in spin-glass models [13] and colloidal systems [12].

2. Structural evolution during aging

Next we seek a structural signature of aging. First we show
the temporal change of the radial distribution function g(r),

6 0.6 1.00.8

0.25 0.3Q6

2D
(r

)

r

106
tw

0
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4
106

D
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(a)
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(d)
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FIG. 2. (Color online) (a) Temporal change in g(r) for the 2D system. (b) Same as (a) but for the 3D system. (c) Structural order in the 2D
system (φ2D = 0.784) at tw=0, 10, 103, and 106. The colors of the particles represent the values of �

j

6 (see the color bar). (d) Structural order
in the 3D system (φ3D = 0.587) at tw = 102, 103, 104, and 106. Only particles of Q

j

6 > 0.25 are displayed. The colors of the particles represent
the values of Q

j

6 (see the color bar).
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which is a two-body density correlation, during aging. As
can be seen in Fig. 2(a), there is little temporal change in
g(r), indicating the absence of translational ordering during
aging, i.e., the absence of crystallization in our systems.
The exponential decay of g(r) clearly indicates the absence
of translational ordering. However, this does not necessarily
imply the absence of any structural change. Figure 2(c) shows
the structural evolution of hexatic order during aging. We can
clearly see that the characteristic size of clusters of particles
with high hexatic order (more precisely, the correlation length
of hexatic order parameter �6) ξ6 grows with an increase
in tw, suggestive of an important role of the growing static
correlation in the dynamical slowing down during aging shown
in Fig. 1. From our previous study [33–36] we know that
for small φ2D, almost all particles are in a disordered state,
whereas with an increase in φ2D the system exhibits slower
dynamics, accompanying the increase in both the degree of
hexatic order �6 and its spatial coherence length ξ6: Long-lived
clusters of particles with larger �6 grow in size and particles in
larger clusters are slower in their dynamics. Thus, the process
of aging looks like the equilibration process of critical-like
fluctuations of hexatic order after a quench. We stress that the
process is not like droplet coarsening below the critical point
but growth of temporally fluctuating static order above it and
thus no noticeable fractionation takes place during aging.

Structural evolution during aging can also be revealed
by the temporal change in the number of geometric de-
fects. Geometric defects, or voids, are detected by ap-
plying Delaunay triangulation [35], as shown in Fig. 3.
Defects are defined as follows [35,70]. If the distance
between two neighboring particles j and m satisfies
rjm < c × (dj

2D + dm
2D)/2 with c = 1.4, we regard them

as being connected; otherwise we cut the bond. When a bond is
cut, the two triangles sharing it become a square. Any polygons
besides triangles are regarded as voids, which appear as holes
in Fig. 3(a).

In the initial stage (at tw = 102), there are many geometric
defects that are mostly squares (N = 4) (N being the number
of the sides of a polygon). In the late stage (at tw = 106), on
the other hand, the number of geometric defects decreases,
accompanying the development of hexatic order characterized
by triangular tiling. This trend can be more quantitatively
seen in the temporal change in the distribution function of
N , P (N ) [see Fig. 3(b)]. We confirm that with an increase in
tw, P (3) increases as a consequence of the decrease of P (4)
[note that P (3) + P (4) is almost constant with time]. This
clearly indicates that aging accompanies structural ordering,
or the decrease in the number density of defects or voids, which
lowers particle mobility.

Next we characterize the spatial correlation length of
glassy structural order to make its link to the dynamics
more quantitative. Figure 4(a) shows the temporal change in
g2D

6 (r)/g(r) during aging for φ2D = 0.784. The envelope of
the correlation function g2D

6 (r)/g(r) is fitted well by the
Ornstein-Zernike function, as shown in Fig. 4(a). We show
the temporal change in the correlation length ξ6 in Fig. 4(b),
clearly indicating the monotonic increase of ξ6 with an increase
in tw. We emphasize that such a structural change cannot be
seen by two-body correlations [see Fig. 2(a)] and we need
many-body correlations to detect it [47].
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FIG. 3. (Color online) Nature of structural change during aging.
(a) Bond patterns at tw = 102 and 106. Bonds are connected when the
interparticle distance rjk satisfies rjk < c(dj

2D + dk
2D)/2. The colors of

the particles represent the values of the �
j

6 (see the color bar). We can
see that voids (black vacancies) are located specifically in less ordered
regions. With an increase in tw, the characteristic size of clusters of red
particles monotonically increases. (b) Dependence of the distribution
function of the number of sides of polygons N , P (N ), on tw. We can
see geometric defects, or voids, which are characterized as polygons
with N � 4. (c) Dependence of P (3), P (4), and P (3) + P (4) on
tw. We confirm that as tw increases, P (4) deceases whereas P (3)
increases [note that P (3) + P (4) is almost equal to 1 and constant
with time]. This indicates that the number of triangles P (3) increases
at the expense of geometric defects of square type P (4), leading to
the growth of hexatic order with the aging time, which can clearly be
seen in (a) and (b).

3. Structure-dynamics correlation during aging

Now we seek a relationship between ξ6 and τα during aging.
For an ergodic supercooled liquid state of the same system, we
found the following phenomenological relations [33]:

τα = τ0 exp[D(ξ6/ξ60)d/2], (1)

ξ6 = ξ60[(φ0 − φ)/φ]−ν, (2)

where d is the spatial dimensionality, τ0 is the microscopic
time scale, D is the fragility index (the larger D means
that a liquid is less fragile, or stronger [4]), ξ60 is the
bare correlation length, and ν is the Ising exponent for the
correlation length (ν ∼= 2/d) [60]. Equation (1) implies that
the slowing down is a consequence of the growth of the
correlation length upon densification. This relation may be
characteristic of critical phenomena of a system suffering from
frustration [35,42,51–53]. In our systems, the frustration is
due to the size polydispersity of particles 	, which induces
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FIG. 4. (Color online) Growing correlation length during aging and its link to the slowing down of the dynamics. (a) Dependence of
g2D

6 (r)/g(r) on tw for φ2D = 0.784. The solid lines are the Ornstein-Zernike function g2D
6 (r)/g(r) ∝ r−1/4 exp[−(r/ξ6)]. (b) Growth of ξ6 with

tw for φ2D = 0.756, 0.772, and 0.784. Here ξE
6 is the correlation length of the final ergodic state, ξE

6 =3.95, 5.02, and 8.05 for φ2D = 0.756,
0.772, and 0.784, respectively, and ξ 0

6 is the correlation length at the initial state and common to the different final values of φ2D. (c) Relationship
of τα to ξ6 during the aging process of the 2D systems (	2D = 11%) for φ2D = 0.756, 0.772, and 0.756. The relation for the ergodic system
is also shown for the same system of 	 = 11% [33] (here the particle number Np = 16 384). The solid line represents τα = τ0 exp(Dξ6/ξ60),
which is confirmed for an ergodic system [33] with D = 0.35, ξ60 = 0.25, and τ0 = 14.1. (d) Same as (a) for three dimensions (φ3D = 0.587).
(e) Same as (b) for three dimensions. Here ξE

6 = 1.65, 2.12, and 2.85 for φ3D = 0.550, 0.568, and 0.587, respectively, and ξ 0
6 = 0.85. (f)

Relationship of τα to ξ6 during the aging process of the 3D systems (	3D = 6%) for φ3D = 0.550, 0.568, and 0.587. The parameters are
D = 0.72, ξ60 = 0.51, and τ0 = 107.2, which are determined for the ergodic liquid [35]. We include the error bar for a part of the aging data
(see the caption of Fig. 1).

frustration effects on crystallization [42,48]. The results shown
in Fig. 4(c) suggest that the same relation between the
two quantities [Eq. (1)] holds for both quasiequilibrium and
nonequilibrium states with the common parameters (τ0, ξ60,
D, φ0, and ν), which is remarkable.

B. Aging in 3D polydisperse colloids

We also examine whether the above findings are also rel-
evant to a 3D polydisperse hard-sphere-like colloidal system,
which is one of the ideal glass formers [71]. Figures 1(d)–1(f)
show the dynamical slowing down during aging and the basic
features are the same as those of the 2D system. Although
there is little change in g(r) as shown in Fig. 2(b), we
can clearly see the temporal evolution of crystal-like bond
order parameter in Fig. 2(d), similarly to the case of the 2D
system. The quantitative analysis of the spatial correlation
of the bond order parameter tells us that the correlation
length ξ6(tw) monotonically increases with an increase in tw
[see Fig. 4(e)]. We also confirm that the relation between
ξ6 and τα [Eq. (1) with d = 3] also holds not only for the
quasiequilibrium ergodic supercooled liquid but also for the
aging process [see Fig. 4(f)]. These results strongly suggest
the generality of this connection between the static correlation
length and the dynamics at least for polydisperse colloidal

systems, irrespective of the spatial dimensionality (d = 2
and 3).

VI. SUMMARY

This link between the correlation length of the static
structural order and the dynamics has a remarkable message
that the slow dynamics of both supercooled liquids (in
metastable equilibrium) and aging glasses (out of equilibrium)
can be described on the same ground and is controlled solely
by the degree of critical-like fluctuations of a glassy structural
order parameter, which may have a one-to-one connection to
the free energy of the system. This looks consistent with the
argument that the aging dynamics follows the statistics of the
system in equilibrium [6]. The state of supercooled liquids
and glasses may thus be characterized by a single quantity,
the correlation length of glassy structural order, which can be
regarded as a measure of the age of a glass. Furthermore, this
scenario implies that aging effects are more significant in a
more fragile glass former, which exhibits a steeper increase in
the correlation length with increasing φ.

We emphasize that the volume fraction φ is kept constant
(see Sec. II) and the two-body density correlator exhibits little
change throughout the process of aging for our systems. For
example, the latter suggests that the behavior is difficult to
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explain by the mode-coupling theory (see also [49] for a similar
conclusion for an equilibrium case). We argue that the slowing
down of the dynamics is primarily induced by the growth
of critical-like fluctuations of crystal-like bond orientational
order. Here we stress that crystal-like bond orientational order
should not be confused with crystal order accompanying
translational order. A region of high orientational order still
has large fluctuations of interparticle distance and thus no
translational order, which is supported by the behavior of g(r)
in Figs. 2(a) and 2(b) (see also [37,48]). On noting that particles
with higher order are statistically slower [33–37], the glassy
slow dynamics in our systems is thought to be the consequence
of the growing structural correlation. This is reminiscent of the
dynamical scaling in critical phenomena [42]: The growth of
glassy structural ordering during aging may be regarded as
an analog of the time evolution of critical fluctuations in the
Ising magnets after a temperature jump toward the critical
point within the paramagnetic region, yet frustration leads to
the activation-type critical dynamics [35,42,48,51–53], which
may be responsible for the extremely slow growth kinetics of
order parameter fluctuations. Thus, this implies not only the
validity of the dynamical scaling in glass aging but also an inti-
mate link between the glass transition and critical phenomena.
It is remarkable that the link between the glass transition and
critical phenomena is supported not only by the equilibrium
static aspect [35] but also by the out-of-equilibrium dynamical
aspect. We also note that both the length and time scale of
aging can be scaled by their final equilibrium values ξE

6 and τE
α ,

respectively, as in the case of the dynamical scaling in critical
phenomena.

Aging of glasses progresses through a sequence of
quasiequilibrium thermalization of the configurational degrees
of freedom, which are characterized by bond orientational
order in our systems. This implies that in our systems the
effective temperature of an out-of-equilibrium state [13,16]
has a direct link to the correlation length of bond orientational
order fluctuations. However, bond orientational order is valid
only for quasi-one-component systems (see Sec. III) such
as polydisperse hard spheres studied here, but not, e.g.,
for binary systems [42,45,48,61]. Thus, the generality of
the above statement needs to be checked carefully in the
future. We speculate that bond orientational order may be
rephrased as low-free-energy configurations in a more general
perspective [42]. In relation to this, a link of our scenario to a
more general scenario such as the Adam-Gibbs theory [72–74]
is an interesting issue, since our structural order is correlated
with the local configurational entropy.
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