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Evolution of elastic heterogeneity during aging in metallic glasses
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The properties of glasses vary widely depending on the way they are prepared, even though their structures
appear similar. We show that the local potential energy landscape (PEL) sensitively reflects the stability differences
through simulation of local structural excitation in a model metallic glass. It is observed that the spectrum of local
structural excitation develops a pseudogap at low energies as the glass becomes more stable. We also demonstrate
that the spatial variation of the atomic level shear modulus, rather than the distribution of the magnitude of the
single atom shear modulus, is more closely related to the nature of the PEL and the stabilities of glasses. In
particular, local aggregation of atoms with low shear modulus greatly contributes to instability of the system.
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I. INTRODUCTION

When a liquid is supercooled without crystallization its
viscosity increases rapidly in many cases, ending up with
a glass. The underlying reason for this increase is the fact
that the structure of a liquid varies with temperature. The
mechanism of such a rapid increase in viscosity and structural
variation are not well understood at the atomistic level in
spite of extensive studies [1]. An effective approach to this
problem is to consider the potential energy landscape (PEL)
of a liquid [2] and its inherent structure obtained by quenching
the liquid very rapidly [3]. But whereas the PEL is a powerful
concept, it is a highly multidimensional object, and it is
not easy to calculate it or even to visualize it. Especially
for the glassy state systematic studies on PEL have been
made only recently [4–6]. In this paper through simulation
on a model metallic glass we show that the distribution of
the activation energies for structural excitation in the PEL
reflects the difference among the inherent structures more
clearly than the structure, for instance expressed by the atomic
pair-density function (PDF). On the other hand, the mechanical
properties of the amorphous system are known to be related
to elastic heterogeneities [7–11]. Nevertheless, no thorough
studies have been made on how the nature of the elastic
heterogeneity changes for the systems with different stabilities
and aging histories. In this paper, by comparing the quantitative
differences of the elastic properties at the atomic scale in two
systems with different aging histories, we demonstrate the
stabilities of metallic glasses are more strongly affected by the
manner with which atoms are organized, rather than the single
atomic properties. In particular, only the distributions of soft
atoms in the lowest 5 percentile soft atoms are significantly
related to the dynamics and stabilities of the system.

II. SYSTEMS SETUP AND SIMULATION PROCEDURES

We consider a metallic model system Zr44Cu56 containing
2000 atoms, interacting with an embedded-atom method

*Corresponding author: fany@ornl.gov

(EAM) potential [12]. The dimensions of the system are
32.43 Å × 32.43 Å × 32.43 Å, and periodic boundary
conditions are applied to all three directions. We prepared two
starting models, systems I and II. System I is the inherent
structure of a liquid at 2000 K, which is far above the
glass transition temperature (�700 K). We first equilibrate
the system at 2000 K, and then make an instant quench
through the steepest descent algorithm. System II represents
a relatively more stable glass. The system is first annealed
at 1000 K, and then quenched to zero temperature with a
cooling rate of 1012 K/s. The potential energy of system II is
about 0.015 eV per atom (�0.3%) lower than system I. All the
simulations are under fixed volume conditions. To characterize
the local structure in these systems we calculated the atomic-
level stresses [13] and atomic-level elastic moduli [14] (see
Appendix A 1 for details).

To explore the underlying PEL, including the minima and
surrounding saddle points, we mainly employ the activation-
relaxation technique (ART), which was initially proposed by
Barkema et al. [15], and further improved by Cances et al. [16].
The prepared two systems serve as the initial configurations in
ART. In order to study the local excitations of the system, the
initial perturbations in ART are introduced to a small group
of atoms with local connectivity [17]. Specifically, we select
an atom as the central atom, then randomly displace this atom
and its first nearest neighbors, defined by the cutoff between
the first and second peaks in the PDF. The magnitude of
displacement is fixed at 0.5 Å, while the direction is randomly
chosen. When the curvature of PEL is found to be less than
−0.01 eV/Å [2], the system is relaxed to the saddle point using
the Lanczos algorithm [16]. The saddle point convergence
criterion is fulfilled when the overall force of the total system
is less than 0.05 eV/Å. The corresponding activation energy
is thus the difference between the saddle point energy and
the initial state energy. For each group of atoms, we employ
10 ART searches with different random perturbation direc-
tions. Since there are 2000 such groups in our modeling
system, that overall provides 20 000 searches by ART. After
removing the failed searches and redundant saddle points, 2200
different activations, on average, are identified for each of the
prepared two systems.
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FIG. 1. (Color online) The probability distributions of the acti-
vation energies in two systems with different stabilities. Red (dark)
bars are the results for system I, the inherent structure of a liquid at
2000 K, while the green (light) bars represent system II, a glass
obtained by relatively slow cooling.

III. RESULTS

The histograms of the activation barriers for the two systems
are shown in Fig. 1. It can be seen that the two systems have
very different distributions of activation barrier height. For
system I, i.e., the inherent structure of a liquid at 2000 K, the
distribution almost monotonically decreases with energy and

has a large fraction of low-energy activations. For system II,
on the other hand, the overall distribution is shifted to higher
energy with a peak at 1.2 eV, and the low-energy activations
are significantly suppressed. It is worth noting that no external
loadings is involved in the present study, and Fig. 1 essentially
represents the energy spectra for thermal activations. If large
external loading is applied, the behaviors of the system would
be determined by the complicated coupling between thermal
activation and external loading [18]. Whereas such coupling
can be well described in crystalline materials [19–21], it still
remains challenging in amorphous systems [18]. The effects
of large external loading are beyond the scope of the present
study, and hence we focus our discussions below on the thermal
activation spectra.

The results in Fig. 1 indicate that the two systems have
significantly different stabilities in both aspects of thermo-
dynamics and kinetics [18]. In particular, system I is much
less stable than system II because system I has a higher
potential energy (thermodynamically unstable) and a larger
fraction of low-energy activations (kinetically unstable). This
comparison between the two systems is consistent with the
previous studies by Rodney et al. [4,18,22] albeit in different
materials and different dimensions, where they show there is
much higher fraction of low-energy activations in an unstable
(flowing) system than in a stable system. In the present study,
the cooling rate of system II, 1012 K/s, is still very high
and the system is not yet well relaxed. With lower cooling

FIG. 2. (Color online) (a) The overall pair distribution function (PDF) of two systems. (b) The PDF of a subset group of atoms with lowest
5% shear modulus in two systems. (c) The PDF of the atoms with highest 5% shear modulus. (d) The PDF for the atoms with lowest 5%–10%
shear modulus. Red (dark) curves are for system I, green (light) curves are for system II.
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FIG. 3. (Color online) The positions of the atoms with the lowest 2.5% shear modulus, in 3D display (a), and 2D projection in X-Y plane
(b). Atoms in red (dark) are for system I, and atoms in green (light) are for system II.

rates, the low-energy activations are expected to be further
suppressed [22], and eventually leads to a so-called “pseudo-
gap” predicted earlier [23]. Despite the significant difference
in dynamic properties, the two systems have similar overall
pair distribution functions (PDF), as shown in Fig. 2(a). For
the more stable system II the peaks in the PDF are slightly taller
and narrower than in system I, as observed experimentally in
the structural relaxation [24,25]. Interestingly, however, more
significant differences are found by observing the PDF through
different windows. In Fig. 2(b) we show the PDF among a
subset group of atoms in the systems, the PDF among the
atoms with the atomic-level shear modulus in the lowest 5%,
the “soft” atoms. It can be seen that the first peaks are quite
different between systems I and II. The partial PDF of system
I shows a strong first peak, which is twice as high as that of
system II. This implies that in system I soft atoms tend to have
other soft atoms as neighbors, and tend to cluster together. On
the other hand, the PDFs of the atoms with the shear modulus
in the highest 5% are similar in both systems, as shown in
Fig. 2(c). We also examined the PDFs for the atoms with
the shear modulus in the second lowest 5%–10% range in
Fig. 2(d). The two systems again show similar behavior in this
window. We also made similar analysis of the PDFs through
other windows, in terms of the atomic-level stress and bulk

modulus, and did not observe significant differences (see the
Appendix A 2 for details).

By comparing Figs. 2(b)–2(d), it is evident that the
structural differences between the two systems are mainly in
the distribution of the soft atoms with the shear modulus in the
lowest 5%. For system I, the very tall first peak indicates clus-
tering, while the smaller and more normal magnitude in system
II represents a more homogenous distribution. To see this clus-
tering more directly, we show the positions of the soft atoms in
Figs. 3(a) and 3(b). To help guide the eyes we only display the
atoms with the shear modulus in the lowest 2.5%. Figure 3(a)
is the 3D illustration, whereas Fig. 3(b) is the 2D projection in
the X-Y plane. It can be seen that the distribution is strongly
heterogeneous for system I. Evidently the atoms are clustered,
which produces the high peak in the PDF in Fig. 2(b). On
the other hand, the soft atom distribution in system II is more
homogenous, and therefore results in a smaller peak in the PDF.

In Fig. 4(a) we show the histograms of the atomic-level
shear modulus for both systems. The average values and
standard deviations are 39.62 ± 8.65GPa (system I), and
40.24 ± 8.32 GPa (system II), respectively. The more stable
system gives a higher average shear modulus (by 1.6%), and
a smaller deviation (by 4.0%) as expected. However, the
differences are quite small and the two systems overall show

FIG. 4. (Color online) (a) The distributions of the single atomic shear modulus in both systems. (b) The distribution of the first nearest
neighbor coarse-grained (CG) shear modulus, in both systems. Black (dark) bars are for system I, and red (light) bars represent system II.
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similar distributions of single atomic properties. As mentioned
earlier in this paper, during the activation process in ART we
selected an atom as the central atom, and then introduced a
random perturbation to it and its first nearest neighbors. We
can thus define a local coarse-grained (CG) shear modulus
as an average value of the shear moduli for this atom and its
first nearest neighbors. In Fig. 4(b) we show the histograms
of the local CG shear modulus. Compared to the single-atom
distributions in Fig. 4(a), the distributions are narrower as a
consequence of coarse graining. At the same time, in contrast
to the single-atomic shear modulus distributions in Fig. 4(a),
the local CG shear modulus distributions show significant
difference between the two systems. The average values
and standard deviations for the local CG shear modulus are
40.37 ± 2.79 GPa (system I) and 41.03 ± 2.34 GPa (system
II), respectively. While the difference in the average value
remains small (the difference is only around 1.6%), the local
CG shear modulus distribution is much narrower, by 16.1%,
in system II than in system I. The narrowness of distribution
indicates system II has a reduced degree of elastic heterogene-
ity. In particular, as seen in Fig. 4(b), the CG shear modulus
distribution at the low end is significantly suppressed in system
II, whereas the distributions of the CG shear modulus at the
high end do not show much difference. This interesting result
is exactly the reflection of different distributions of soft atoms
between the two systems, as shown in Figs. 2(b), 2(c), 3(a),
and 3(b). In system I, because there are clustering of soft atoms,
the CG shear modulus distribution is extended to low values
and shows a long tail. In system II soft atoms are distributed
more homogenously, which leads to the suppression of the
low CG shear modulus distributions and stabilization of the
system. Such results are in accordance with the idea that
the mechanical properties of metallic glass are determined
by the tail of the structural spectrum [26]. On the other hand,
the hard atom distributions are similar in both systems, as seen
in Fig. 2(c), so that there are no significant differences in the
CG shear modulus distributions at the high end.

By comparing Figs. 4(a) and 4(b) it can be seen that the
stability of amorphous material is more strongly affected by
the manner with which atoms are organized, rather than the
single atomic properties. In other words, even if the single
atomic properties are similar, the overall properties of the
systems can be quite distinct from each other when the atoms
are arranged differently. Particularly in the current study,
the spatial distribution of low atomic shear modulus is more
heterogeneous in system I than in a more stable system II.
Elastic heterogeneity in glasses is well documented [7–11].
For example, the recent study on a 2D Lennard-Jones
glass by Tsamados et al. [7] shows strong heterogeneity
of local shear modulus distribution in the flowing states
driven by shear deformation, although their definition of
local modulus is not exactly the same as ours. However,
the difference in the spatial correlations among the soft
atoms and the elastic heterogeneity evolutions between
the stable and less stable system has not been observed
until the present study. We demonstrate that the spatial
distribution of the atoms with the lowest 5% atomic shear
modulus directly reflects the difference in the stability, even
though the statistical distribution of the single atomic level
shear modulus is rather insensitive. In particular, these atoms
become more spatially homogeneous for a more stable system.

IV. DISCUSSION AND CONCLUSION

It is also worth discussing the connection between the
current study and other concepts which have been developed
for a glass system. Cheng et al. showed that the stability of
metallic glasses is strongly related to the fractions of different
local topologies [27–29], i.e., less symmetric topologies are
more frequently found in the inherent structures of liquids
than those of glasses. Maeda et al. [30] demonstrated the
less symmetric topologies mainly come from the regions with
low shear modulus, therefore the current study is consistent
with the results by Cheng et al. In addition, because the
definition of atomic elastic moduli [14] is quite general, it
can be developed into generalized quantitative models more
easily, comparing with the discrete nature of topological
classification [26]. On the other hand, Widmer-Cooper et al.
showed in a 2D glass-forming liquid system, there exist causal
correlations between the localized “soft modes” and system’s
dynamics [31]. It would therefore be of interest to study the
relation between the localized soft modes and atomic modulus
distribution in the future.

To conclude, we have compared the structures between
two metallic glass systems with different stabilities. Although
the overall structures are quite similar, the differences in the
spatial distributions of atoms with shear modulus in the lowest
5% make the entire systems significantly different in terms
of stability and dynamics. These results suggest an alternative
way to unravel the mysterious structure-property relation in
amorphous materials, by selecting appropriate windows.
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APPENDIX

1. Derivations of atomic level stress and modulus

a. Pair potential case

For pair interaction case, the potential energy of the system
can be written as

Epair({⇀

r
3N }) = 1

2

∑
i,j

φij (rij ). (A1)

Assume the system undergoes a homogeneous strain εab,
then the length change for each atom pair would be

�rij = 1

rij

∑
a,b

ra
ij r

b
ij ε

ab

+ 1

2rij

∑
a,b,c,d

(
rb
ij r

d
ij δac − 1

r2
ij

ra
ij r

b
ij r

c
ij r

d
ij

)
εabεcd

+O(ε3). (A2)
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Therefore the potential energy of the system can be
expanded as

�Epair = 1

2

∑
i,j

∑
a,b

fij

rij

ra
ij r

b
ij ε

ab

+ 1

4

∑
i,j

∑
a,b,c,d

[(
1

r2
ij

∂fij

∂rij

− fij

r3
ij

)
ra
ij r

b
ij r

c
ij r

d
ij

+ fij

rij

rb
ij r

d
ij δac

]
εabεcd + O(ε3), (A3)

where fij = ∂φij (rij )
∂rij

.
Now assume the energy expansion can be written as

�Epair =
∑

i

∑
a,b

viσ
ab
i εab+1

2

∑
i

∑
a,b,c,d

viC
abcd
i εabεcd

+O(ε3), (A4)

where σab
i is atomic level stress, Cabcd

i is atomic level elastic
constant, and vi is atomic volume. By comparing Eqs. (A3)
and (A4), the expression of atomic level stress and modulus
for the pair potential case can thus be given as [13,14]

σab
i = 1

2vi

∑
j

fij

rij

ra
ij r

b
ij , (A5)

Cabcd
i = 1

2vi

∑
j

[(
1

r2
ij

∂fij

∂rij

− fij

r3
ij

)
ra
ij r

b
ij r

c
ij r

d
ij + fij

rij

rb
ij r

d
ij δac

]
.

(A6)

b. EAM potential case

In metal system, many-body interactions are widely con-
sidered, e.g., in embedded atom method (EAM) potential. In
the present work we employ an EAM potential developed by
Sheng et al. [12], which has the following formalism:

E({⇀

r
3N }) =

∑
i

F (ρ̄i) + 1

2

∑
i,j

φij (rij ),

(A7)
ρ̄i =

∑
j

ρj (rij ),

where F (ρ̄i) = F [
∑

j ρj (rij )] represents the many-body in-
teractions.

Similarly as above, Eq. (A7) can be expanded with respect
to a homogeneous strain εab. Since the pair interaction con-
tributions have been given above in Appendix A 1 a already,
the following derivations are only focused on the many-body
interactions term EM.B. = ∑

i F (ρ̄i).
The density change �ρ̄i can be expanded as a function of

�rij ,

�ρ̄i =
∑

j

∂ρj

∂rij

�rij + 1

2

∑
j

∂2ρj

∂r2
ij

�r2
ij + O

(
�r3

ij

)
,

(A8)

�ρ̄2
i =

∑
j,k

∂ρj

∂rij

∂ρk

∂rik

�rij�rik + O
(
�r3

ij

)
.

There is then

�F (ρ̄i) = ∂F

∂ρ̄i

�ρ̄i + 1

2

∂2F

∂ρ̄2
i

�ρ̄2
i + O

(
�ρ̄3

i

)

=
∑

j

∂F

∂ρ̄i

∂ρj

∂rij

�rij + 1

2

∑
j

∂F

∂ρ̄i

∂2ρj

∂r2
ij

�r2
ij

+ 1

2

∑
j,k

∂2F

∂ρ̄2
i

∂ρj

∂rij

∂ρk

∂rik

�rij�rik + O
(
�r3

ij

)
.

(A9)

Put Eq. (A2) into Eq. (A9), the many-body energy change
�EMB = ∑

i �F (ρ̄i) can thus be written as strain εab.
The first order expansion is given by

�E
(1)
MB =

∑
i,j

∑
a,b

∂F

∂ρ̄i

∂ρj

∂rij

ra
ij r

b
ij

rij

εab. (A10a)

Following such an expression, Nishimura et al. [32] and
Cheng et al. [33] defined the atomic level stress as

σab
i = 1

vi

∑
j

∂F

∂ρ̄i

∂ρj

∂rij

ra
ij r

b
ij

rij

. (A11a)

On the other hand, Eq. (A10a) can be written in a more
symmetric expression as

�E
(1)
MB =

∑
i,j

∑
a,b

∂F

∂ρ̄i

∂ρj

∂rij

ra
ij r

b
ij

rij

εab

= 1

2

∑
i,j

∑
a,b

(
∂F

∂ρ̄i

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂ρi

∂rij

)
ra
ij r

b
ij

rij

εab.

(A10b)

Transferring Eq. (A10a) to (A10b) is not only mathemati-
cally symmetric, but more importantly, Eq. (A10b) has a much
clearer physical meaning. With EAM potential, the force on
atom i due to atom j (only consider the many-body term) is

fij = ∂F

∂ρ̄i

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂ρi

∂rij

.

Therefore the term inside the parentheses in Eq. (A10b) is
essentially fij . Following Eq. (A10b), the atomic level stress
can thus be defined as

σab
i = 1

2vi

∑
j

(
∂F

∂ρ̄i

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂ρi

∂rij

)
ra
ij r

b
ij

rij

= 1

2vi

∑
j

fij

ra
ij r

b
ij

rij

. (A11b)

It can be easily seen that the definition of Eq. (A11b) has
a very clear physical meaning, and is consistent with the
expression in pair potential case, as Eq. (A5). It is worth
stressing that this definition is different from a previous
expression.
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Now proceed with second order expansion, there is

�E
(2)
MB = 1

2

∑
i,j

∑
a,b,c,d

∂F

∂ρ̄i

∂ρj

∂rij

rb
ij r

d
ij

rij

δacεabεcd

+ 1

2

∑
i,j

∑
a,b,c,d

(
∂F

∂ρ̄i

∂2ρj

∂r2
ij

− ∂F

∂ρ̄i

∂ρj

∂rij

1

rij

)

× ra
ij r

b
ij r

c
ij r

d
ij

r2
ij

εabεcd

+ 1

2

∑
i,j,k

∑
a,b,c,d

∂2F

∂ρ̄2
i

∂ρj

∂rij

∂ρk

∂rik

ra
ij r

b
ij r

c
ikr

d
ik

rij rik

εabεcd .

(A12a)

Following such an expression, the atomic level elastic
constant can be defined as [32,33]

Cabcd
i = 1

vi

∑
j

[(
∂F

∂ρ̄i

∂2ρj

∂r2
ij

1

r2
ij

− ∂F

∂ρ̄i

∂ρj

∂rij

1

r3
ij

)
ra
ij r

b
ij r

c
ij r

d
ij

+ ∂F

∂ρ̄i

∂ρj

∂rij

rb
ij r

d
ij

rij

δac

]

+ 1

vi

∑
j,k

∂2F

∂ρ̄2
i

∂ρj

∂rij

∂ρk

∂rik

ra
ij r

b
ij r

c
ikr

d
ik

rij rik

. (A13a)

Similarly as mentioned above, there is still no clear physical
meaning in the definition of Eq. (A13a). On the other hand,
Eq. (A12a) can also be rewritten in a more symmetric and

physical way as

�E
(2)
MB = 1

4

∑
i,j

∑
a,b,c,d

(
∂F

∂ρ̄i

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂ρi

∂rij

)
rb
ij r

d
ij

rij

δacεabεcd

+ 1

4

∑
i,j

∑
a,b,c,d

{[(
∂F

∂ρ̄i

∂2ρj

∂r2
ij

+ ∂2F

∂ρ̄2
i

∂ρj

∂rij

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂2ρi

∂r2
ij

+ ∂2F

∂ρ̄2
j

∂ρi

∂rij

∂ρi

∂rij

)

−
(

∂F

∂ρ̄i

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂ρi

∂rij

)
1

rij

]
ra
ij r

b
ij r

c
ij r

d
ij

r2
ij

εabεcd

}

+ 1

2

j �=k∑
i,j,k

∑
a,b,c,d

∂2F

∂ρ̄2
i

∂ρj

∂rij

∂ρk

∂rik

ra
ij r

b
ij r

c
ikr

d
ik

rij rik

εabεcd .

(A12b)

Because with EAM potential, as mentioned above, there
are

fij = ∂F

∂ρ̄i

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂ρi

∂rij

and

∂fij

∂rij

= ∂F

∂ρ̄i

∂2ρj

∂r2
ij

+ ∂2F

∂ρ̄2
i

∂ρj

∂rij

∂ρj

∂rij

+ ∂F

∂ρ̄j

∂2ρi

∂r2
ij

+ ∂2F

∂ρ̄2
j

∂ρi

∂rij

∂ρi

∂rij

,

Eq. (A12b) therefore has a much clearer physical meaning
than Eq. (A12a). Following Eq. (A12b), the atomic level elastic

FIG. 5. (Color online) (a) and (b) The PDFs of two subsets of atoms with lowest 5% and highest 5% atomic pressure, respectively. (c) and
(d) The PDFs of two subsets of atoms with lowest 5% and highest 5% atomic von Mises stress, respectively. (e) and (f) The PDFs of two
subsets of atoms with lowest 5% and highest 5% bulk modulus, respectively.
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constant can be then defined as

Cabcd
i = 1

2vi

∑
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)
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ij r

c
ikr

d
ik

rij rik

. (A13b)

It can be seen that, in such definition, the atomic level elastic
constant can be divided into a two-body term and a three-body
term. The two-body term has a very clear physical meaning
and is in the identical formalism as the pair potential case in
Eq. (A6). But such physical meaning is missing in the previous
definition Eq. (A13a).

In Eqs. (A11b) and (A13b) the atomic volume vi can be
calculated either by Voronoi cells [26] or pair distances [34].
Or alternatively, following Levashov et al.’s recent work [35],
one can redefine the atomic level stress and elastic constant
elements by

σ̂ ab
i = σab

i vi

V /N
, (A14a)

Ĉabcd
i = Cabcd

i vi

V /N
, (A14b)

where V is the total volume of the simulation cell, and N is
the total number of atoms.

In the present work, all relevant calculations are
based on Eqs. (A14a) and (A14b), and the contributions
from both pair potential part [Eqs. (A5) and (A6)] and
many-body part [Eqs. (A11b) and (A13b)] have been
considered.

2. Pair distribution functions (PDF) through different windows

In the main text we showed the PDF of different subsets
of atoms with different atomic shear modulus. We also did
similar analysis through the windows, in terms of atomic
stress (including the pressure and von Mises stress) and bulk
modulus, as shown below. In Fig. 5 we show the PDFs of
subsets of atoms with the lowest 5% and highest 5% atomic
pressure [Figs. 5(a) and 5(b)], von Mises stress [Figs. 5(c)
and 5(d)], and bulk modulus [Figs. 5(e) and 5(f)], respectively.
It can be seen that there are no remarkable differences between
the PDFs, which implies insignificant correlations between
the distributions of these properties and the stabilities of the
systems.
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