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Short-time diffusivity of dicolloids
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The short-time diffusivity of dicolloid particles as a function of particle volume fraction φ from 0.01 � φ � 0.6
is measured using diffusing wave spectroscopy. The diffusivities of symmetric and asymmetric dicolloids are
compared with similarly sized spheres. The short-time diffusivity is independent of salt concentration and
decreases with increasing volume fraction for both spheres and asymmetric dicolloids. Symmetric dicolloids
have a higher diffusivity than spheres at similar volume fractions. This difference is accounted for by rescaling
the dicolloid volume fraction based on the ratio of the random close-packing volume fractions of spheres and
dicolloids. Finally, a useful method is provided for calculating the diffusivity of symmetric dicolloid particles
of arbitrary aspect ratio based on the calculated hydrodynamic resistance of Zabarankin [Proc. R. Soc. A 463,
2329 (2007)].
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I. INTRODUCTION

The rich equilibrium phase behavior of uniform anisotropic
particles is a source of continued interest in colloid science in
part because they offer new possibilities for self-assembled
structures [1–3]. Dicolloids, particles in the shape of two
fused spheres, are particularly interesting because they can be
assembled into a variety of structures depending on their con-
centration and the presence of applied directing fields, includ-
ing face-centered-cubic, hexagonally close-packed, triclinic,
base-centered-monoclinic, and body-centered-tetragonal crys-
tals [4,5]. In two dimensions, dicolloids in electric fields
form open, centered rectangular two-dimensional structures
belonging to the c2mm and p2 plane groups [6,7]. In addition
to these many phases, which include one of the highest packing
densities of uniform colloidal particles, crystals of dicolloid
particles have been shown to exhibit rich structural color and
photonic band-gap properties [8–10]. The annealing of defects,
mechanical properties, and melting of dicolloid crystals is also
significantly distinct from that of crystals of spherical particles
[11–14].

Despite many reports of dicolloid particle assembly,
there are comparatively few studies of their dynamics.
Such data are useful in determining the kinetics of assem-
bly [10], especially as particles are concentrated to form
ordered or disordered close-packed structures and conse-
quently experience a slowing of their dynamics. Although
the glass and gel transitions of dicolliods have been re-
cently studied by rheology [15] and mode coupling theory
[16], and Stokesian dynamics simulations have been used
to calculate the short-time translational and rotational dy-
namics of dicolloid particles [17], experimental measure-
ments of the dynamics of these anisotropic particles remain
unexplored.

Diffusing wave spectroscopy (DWS) [18–20] has been
used to measure the dynamics of concentrated suspensions of
spheres [21–24] and is used here to determine the short-time
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diffusivity of dicolloid particles as the particle volume fraction
increases. On the short length and time scales probed by
DWS, the motion of a colloidal particles is a function of
its hydrodynamic interactions only [25,26]. The suspension
structure does not relax or reconfigure appreciably. Investigat-
ing the short-time dynamics provides a method of determining
the hydrodynamic interactions of the particles independent
of thermal forces, and therefore provides insight to particle
mobility, high frequency rheology, and the kinetics of self-
assembly.

This article begins by reviewing the particle synthesis,
characterization, and preparation, followed by a descrip-
tion of the dynamic light scattering and diffusing wave
spectroscopy experimental methods. Measurements of the
diffusivity of spheres, asymmetric dicolloids, and symmetric
dicolloids are then discussed. In the Appendix, we provide a
method for determining the diffusivity of dicolloid particles
based on the calculated hydrodynamic resistance based on
a numerical interpolation of Zabarankin’s hydrodynamic
calculations [27].

II. METHODS

A. Materials

Crosslinked latex spheres and dicolloids are synthesized
using seeded emulsion polymerization [28–31]. Symmetric
and asymmetric dicolloids were synthesized from crosslinked
latex seed particles by first swelling them with monomer
and then initiating a second polymerization reaction upon
heating. As the monomer is ejected, it partially wets the seed
particle and polymerizes into a second lobe. The anisotropy
and asymmetry are controlled by the cross-linking density
and amount of monomer added. The particle dimensions were
determined using scanning electron microscopy (see Fig. 1).
The radius of the seed spheres is a = 1.44 ± 0.05 μm; the
asymmetric dicolloids have a length L = 4.4 ± 0.1 μm and
diameters of d1 = 3.3 ± 0.1 μm and d2 = 3.8 ± 0.1 μm. The
symmetric dicolloids have a length of L = 4.3 ± 0.1 μm
and diameter of d = 3.3 ± 0.1 μm. Their aspect ratios are
α = L/d̄ − 1 = 0.24 ± 0.01 and 0.33 ± 0.01 for the
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FIG. 1. SEM images of (a) spheres, (b) asymmetric dicolloids,
and (c) symmetric dicolloids. The scale bar corresponds to 5 μm.

asymmetric and symmetric dicolloids, respectively, where
d̄ = d for symmetric dicolloids and d̄ = (d1 + d2)/2 for the
asymmetric particles. The volume of the asymmetric particles
is V = 32.8 μm3 and the volume of the symmetric particles
is V = 26.8 μm3. A useful characteristic length scale, the
radius of a sphere with the same volume as the dicolloids, is
aeff = (3V/4π )1/3 = 1.99 μm for asymmetric dicolloids and
1.86 μm for symmetric dicolloids.

The colloidal particles are dispersed in a 10−3-M so-
lution of the surfactant hexaetheylene glycol monododecyl
ether (C12E6, Sigma, catalog number 52044-1G, lot number
BCBB7464V) and ultrapurified water (minimum resistivity
18.2 M� cm). The particles are then treated to remove
impurities by centrifuging and replacing the supernatant five
times with a 10−4M solution of C12E6 in ultrapurified water,
0.1 mM or 3 mM potassium chloride (KCl, Alfa Aesar
Puratronic 99.997% metals basis, Stock number 10839, Lot
28287). The Debye length in solutions with ionic strength I ,
κ−1 = (εε0kBT /2Nave

2I )1/2, is κ−1 ≈ 200 nm for solutions
without added salts, and 30 nm and 5.6 nm, for 0.1 mM
and 3 mM KCl solutions, respectively. The electrophoretic
mobilities of spheres, asymmetric dicolloids, and symmetric
dicolloids measured at a salt concentration of 0.1 mM
KCl were −1.76 ± 0.03, −3.21 ± 0.04, and −2.34 ±
0.03 (μm/s)/(V/cm), respectively (ZetaPALS, Brookhaven
Instruments Corporation). These mobilities are consistent with
surface potentials on the order of −30mV.

The target volume fraction of suspensions is prepared by
first centrifuging the particles and assuming the cake at the
bottom is at random close packing. This cake is then diluted
to the desired volume fraction. The reported concentration is
determined by drying and weighing a 200-500 μL sample of
the suspension.

B. Dynamic light scattering

Dynamic light scattering (DLS) measurements were per-
formed with a 632.8 nm vacuum wavelength laser (using
a BI-200SM goniometer version 2.0, Brookhaven Instru-
ments). Dilute sphere, asymmetric dicolloid and symmetric
dicolloid suspensions (φ ≈ 0.001%) were prepared and the
intensity autocorrelation function was measured at the scat-
tering angle θ = 20◦ using a digital correlator (Brookhaven
BI-9000AT). The intensity autocorrelation function is con-
verted to the field autocorrelation function using the Siegert
relation

〈I (t)I (t + td )〉
〈I (t)〉2

= g2(td ) = 1 + β |g1(q,td )|2 (1)

where β is the dynamical contrast factor that is an instrument-
dependent parameter. The field autocorrelation function is

g1(t) = exp[−q2D0t] (2)

where D0 is the single-particle self-diffusivity. In the ex-
periment q = 4πn

λ
sin( θ

2 ) = 4.59 μm−1. Equation 2 is fit to
experimental data to determine the infinite dilution diffusivity
of the particles.

C. Diffusing wave spectroscopy

A diffusing wave spectroscopy (DWS) apparatus operating
in a plane-wave transmission geometry was constructed fol-
lowing the standard methods [32]. A vertically polarized, argon
ion laser operating at a vacuum wavelength λ = 514.5 nm
(Coherent Innova-90C-5) is expanded and focused on a cuvette
with a path length of either 4 mm (Plastibrand semimicrocu-
vettes, cat. no. 7591 50) or 1 mm (Implen Dilucell 10, batch no.
B-230811) containing the suspended particles. The transmitted
light passes through a horizontally polarized plate to eliminate
light that has not been depolarized by multiple scattering. A
collimated fiber optic collects the scattered light, which is
split between two photomultiplier tubes (Model BI-CCDS,
Brookhaven Instruments) before the cross correlation is taken
using the digital correlator. Cross correlation reduces detector
noise caused by dark current and after pulsing.

As in DLS, the Siegert relation [Eq. (1)] is used to determine
the field autocorrelation function. In the transmission geom-
etry, the field correlation function for a plane wave incident
source is

g1(t) =
(L/l∗ + 4/3)

√
k2

0〈�r2(t)〉
sinh(L/l∗ + 4/3)

√
k2

0〈�r2(t)〉
, (3)

where the scattering wave vector is k0 = 2πn/λ in a medium
with refractive index n [24]. The concentration-dependent
mean transport path for the photons, l∗, is equal to the
mean separation of particles when their diameter is small
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FIG. 2. (Color online) (a) Inverse of the mean transport path l∗ of
spheres, symmetric dicolloids, and asymmetric dicolloids plotted as a
function of volume fraction. (b) Autocorrelation functions of spheres
and symmetric dicolloids with fits using Eq. (3).

and scattering is isotropic. However, scattering from larger
particles and interactions between particles strongly influences
the diffuse light transport [18]. We find l∗ by first measuring
the transmission intensity of a 0.989-μm diameter latex sphere
standard (Polybead polystyrene microspheres 2.63% solids,
catalog number 07310, standard deviation σ = 0.02 μm) with
known diffusivity. The reference photon transport length l∗ref
is determined from the autocorrelation function and Eq. (3).
The value for l∗ for the dicolloid samples is experimentally
determined using the equation [18]

l∗ = T l∗ref

Tref + 4l∗ref
3L

(Tref − T )
, (4)

in which Tref and l∗ref are the transmission intensity and mean
transport path of the standard and T is the transmission
intensity of the particle dispersion. The measured l∗ is plotted
in Fig. 2(a) for all particle shapes at 0.1 mM KCl. Other
salt concentrations follow the same trend. Using the Einstein
relation, 〈�r2(t)〉 = 6Dt , the diffusivity of each sample is
found by a nonlinear least-squares fit.

III. RESULTS AND DISCUSSION

A. Light transport and field autocorrelation

The DWS field autocorrelation function [Eq. (3)] describes
the light scattering data when changes in the light transport in
the samples are properly characterized as the particle volume
fraction increases. The decay of the correlation corresponds
to the characteristic time needed for the particles to diffuse
a root-mean-squared distance similar to 〈�r2〉1/2 = l∗/k0L

[32]. With increasing particle concentration, l∗ decreases as
the distance between scattering events decreases. Simultane-
ously, the relaxation time increases since the particle motion
slows. Equation (3) accounts for both changes by using the
independently measured l∗ to obtain the diffusivity D(φ) of
the suspended particles.

In Fig. 2(a), the values of l∗ for spheres, asymmetric
dicolloids, and symmetric dicolloids are shown with particle
volume fraction. For spheres, the scattering mean-free path
length ranges from l∗ ≈ 850 μm at the most dilute conditions
to l∗ ≈ 17 μm at the highest concentration. Symmetric and
asymmetric dicolloids follow this general trend, with a slightly
lower value (l∗ ≈ 25 μm) at the highest concentrations. The
value of l∗ is related to the particle scattering form factor P (q)
and scattering structure factor S(q) by

l∗ = k0
−6

(
πρ

∫ 2k0

0
P (q)S(q)q3dq

)−1

(5)

and therefore reflects differences in the scattering properties of
the anisotropic particles and their arrangement with increasing
concentration compared with spheres [24].

With the measured l∗ values, the particle root-mean-squared
displacement ranges from 〈�r2〉1/2 ≈ 13 nm for L = 4 mm
and l∗ = 850 μm to 〈�r2〉1/2 ≈ 1 nm for L = 1 mm and
l∗ = 25 μm. The small displacements relative to the particle
size 〈�r2〉1/2/a � 10−3, and average interparticle spacing,
〈�r2〉1/2/(4πa3/3φ)1/3 � 10−3, confirm that DWS probes
the short-time particle diffusivity. Examples of the the field
autocorrelation functions g1(t) for spheres and dicolloids are
shown in Fig. 2(b). The measured correlation functions are fit
well by Eq. (3) using only D0 as a fitting parameter. In the next
section we report and discuss the values of D0 with volume
fraction for the three particle types.

B. Diffusivity

The diffusivity of a colloidal particle is expressed as the
tensor quantity

D0 = kT R−1, (6)

where R is a hydrodynamic resistance tensor that ac-
counts for the viscous forces imparted on the undeformable
particles,

R =
(

RFU , RF�,

RLU , RL�

)
. (7)

Among the diagonal components of the matrix, RFU is a tensor
that relates the drag imposed by the translation due to an
applied force F and RL� for rotation due to an applied torque
�, while the off-diagonal contributions represent coupled
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translation rotation, and are zero for axisymmetric particles
[33].

For noninteracting spherical particles with radius a in a
medium with viscosity η, an analysis of the Stokes equation
gives

RFU = 6πaηI (8)

and

RL� = 8πa3ηI, (9)

where I is the idem tensor. Thus, a sphere has an isotropic
diffusivity, D0 = D0I, which is expressed in its scalar form as
the familiar Stokes-Einstein-Sutherland relation,

D0 = kT

6πηa
. (10)

The rotational diffusivity of uniform spheres does not con-
tribute to the dynamic light scattering.

For anisotropic particles, the resistance depends on the
motion of the particle relative to its orientation. For a uniaxially
symmetric particle such as a dicolloid, with orientation of the
major axis d, the resistance tensor for translation must have
the form

RFU = dzdd + dx(I − dd), (11)

where dz and dx are to be determined by solving the Stokes
flow problem. DWS does not distinguish motion perpendicular
or parallel to d, so the translational diffusivity is the average
of these components. For noninteracting particles

D0 = 2Dt
⊥ + Dt

‖
3

. (12)

Likewise, the resistance tensor for rotation of an anisotropic
particle has the form

RL� = tzdd + tx(I − dd). (13)

Rotation is with respect to the longitudinal and equatorial
axes, where tz and tx are constants again to be determined.
Only rotation of the particle about the equatorial axis will
factor into the scattering; however, due to the short time scales
of motion measured using DWS, the rotational diffusivity of
the dicolloid particles makes a negligible contribution to the
correlation function and is omitted in the analysis. This can be
shown by representing the dicolloid as two scattering centers
separated by the length l = L − d. Over a time t , the rotation of
the dicolloid particle about its equatorial axis sweeps the angle
given by cos θ (t) = d(t) · d(0). The squared displacement of a
scattering center �r2

c that accompanies this rotation is

�r2
c = l2

2
(1 − cos θ ). (14)

For small changes in the angle over short times, cos θ ≈
1 − θ2/2, and it follows that the effective diffusivity of the
scattering center in units of length due to rotation is

Dc,r = (l2/2)Dr. (15)

In the Appendix, Zabarankin’s solution to the Stokes flow of
a dicolloid particle [27] is used to calculate the translational
and rotational components of the diffusivity. For the sym-
metric dicolloid particle, which has the greatest anisotropy

and therefore greatest contribution of rotational motion, the
average translational diffusivity is Dt = 0.114 μm2/s, while
the rotational diffusivity is Dr = 0.022 rad2/s which gives
Dc,r = 0.0064 μm2/s. The ratio of the time scales k2

0/Dt and
k2

0/Dc,r is 18, which shows that it takes more than an order
of magnitude longer to observe a similar displacement due to
rotation compared to translational motion.

Returning to the DWS experiments, the translational
diffusivities of the three particle shapes studied, spheres,
asymmetric dicolloids, and symmetric dicolloids, are cal-
culated by fitting the transmission autocorrelation function
using Eqs. (1) and (3). The data are shown in Figs. 3–5
for the three respective shapes. In each case, the diffusivity
is normalized by the single particle self-diffusivity (the
diffusivity at infinite dilution) measured using DLS. To
highlight the trend of the diffusivity at higher particle concen-
trations, we plot the dimensionless ratio D0/D against volume
fraction.

In Fig. 3, the measured diffusivities of spheres are plotted
alongside predictions for spheres from Stokesian dynamics
simulations [35], the empirical equation by Lionberger and
Russel [34] for spheres,

D(φ)/D0 = (1 − 1.56φ)(1 − 0.27φ), (16)

as well as the translational diffusivity of spheres predicted
by a modified Stokesian Dynamics simulation [17]. Equa-
tion (16) is known to agree well with the previous diffu-
sivity measurements for spherical colloids by van Megan
and Underwood [36] and Segré et al. [37]. These are all
predictions for hard particles, however, the experimental data
in Fig. 3 are the same regardless of the salt concentration, and
hence the softness of the repulsive potential. This agreement
confirms that the short-time diffusivity is a hydrodynamic
quantity and is insensitive to the double-layer thickness for

FIG. 3. (Color online) Diffusivity for spheres normalized by
the measured diffusivity at infinite dilution. Also plotted is the
Lionberger-Russel empirical correction for spheres [34], Stokesian
Dynamics simulations for spheres by Sierou and Brady [35], and the
translation component of the diffusivity of spheres from a modified
Stokesian Dynamics simulation by Kumar and Higdon [17].
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FIG. 4. (Color online) Diffusivity for asymmetric dicolloids us-
ing the radius of a sphere with the same volume and normalized using
the measured diffusivity at infinite dilution from DLS. Also plotted is
the Lionberger-Russel empirical prediction for spheres [34] and the
translational diffusivity data from Stokesian dynamics simulations by
Kumar and Higdon [17].

the salt concentrations studied, as shown previously [38,39].
The measured diffusivities are in excellent agreement with
Eq. (16) and the values calculated by the Stokesian dynamics
simulations of Sierou and Brady. The diffusivities calculated
by the method of Kumar and Higdon are lower (and hence,
the value D0/D is higher) than the consensus values of
prior experiments and simulations. As explained by Kumar
and Higdon [17], this issue arises from the fact that the
lubrication interactions used in their simulations are stronger
than those used classically such as the simulations from
Sierou and Brady.

The normalized short-time diffusivity for dicolloid particles
are presented in Figs. 4 and 5 for asymmetric and symmetric
particles, respectively. As for spheres, the diffusivity for each

FIG. 5. (Color online) Diffusivity for symmetric dicolloids using
the radius of a sphere with the same volume and and normalized using
the measured diffusivity at infinite dilution from DLS.

dicolloid particle shape decreases with increasing volume
fraction φ. Equation (16) is plotted as a reference in both
figures.

The asymmetric particles have a lower aspect ratio (and
a greater contrast in lobe diameters) than the symmetric
dicolloids and therefore more closely resemble the shape
of spherical particles. As shown in Fig. 4, the values of
D0/D closely follow the Lionberger-Russel equation for
spheres. The diffusivities measured for asymmetric dicolloids
are compared with the averaged translational and rotational
diffusivity of a “bump” particles predicted by Kumar and
Higdon in Fig. 4. The “bump” particle simulated has an
aspect ratio α = L/d̄ − 1 = 0.22 and lobe size difference of
�d/d̄ = 0.22. This compares to α = 0.24 and �d/d̄ = 0.14
for the asymmetric dicolloids used in this work. Similar to our
experimental results, the simulations exhibit little difference
between the comparable asymmetric dicolloids and spheres,
despite the systematic deviation for all volume fractions noted
previously.

For a given volume fraction, the diffusivity of symmetric
dicolloids is higher than spheres, as seen in Fig. 5. Still, the dif-
fusivity decreases significantly as the concentration increases.
This trend is consistent with the theoretical prediction that
dicolloids exhibit a glass transition at higher concentrations
than spheres [40].

An explanation for the higher diffusivity of symmetric
dicolloid particles is simply that they pack more efficiently than
spheres or asymmetric dicolloids. The close-packed volume
fraction of symmetric dicolloids with α = 0.33 is φD

CP =
0.783 [41], which is greater than the close-packed volume frac-
tion of spheres, φS

CP = 0.740. The greater distance between
particles for symmetric dicolloids as compared to spheres
at the same volume fraction leads to lower hydrodynamic
resistance to motion for the dicolloids. An analogous argument
can be made by comparing the random-close packing of
spheres versus symmetric dicolloids, which better represents

FIG. 6. (Color online) The volume fraction is normalized by the
ratio of the φRCP for spheres and dicolloids. Also plotted is
the Lionberger-Russel empirical prediction for spheres [34] and
the translational diffusivity data from Stokesian dynamics simulations
by Kumar and Higdon [17].
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the structure expected in these experiments as the volume
fraction increases. The random close packing for dicolloids
with α = 0.33 is φD

RCP ≈ 0.69 [10], compared to the value for
spheres, φS

RCP = 0.64.
The idea that the close packing or random close packing

volume fractions can account for differences in the short-
time diffusivity leads to the following surprising rescaling
of the experimental data for symmetric dicolloids: simply
multiplying the symmetric dicolloid volume fraction by the
ratio φS

RCP/φ
D
RCP = 0.64/0.69 = 0.93 collapses the diffusivity

of the anisotropic particles onto the empirical expression for
spheres. Figure 6 shows the resulting normalized data are in
excellent agreement with theory, simulation, and experiment
(by comparison with Fig. 3) for the diffusivity of spheres.

IV. CONCLUSIONS

In this work, DWS was used to measure the short-time
dynamics of dicolloid particles in solution. The method was
verified by comparing the dynamics measured for spheres to
theoretical predictions. The short-time behavior was indepen-
dent of salt concentration within the range of ionic strengths
studied. The short-time self-diffusivity of “bump” asymmetric
dicolloids was indistinguishable from spheres. Symmetric
dicolloids were less hindered by hydrodynamic interactions
than spheres at comparable φ, which can be rationalized
by the effects of particle shape on maximum packing. The
short-time diffusivity of symmetric dicolloids can therefore be
directly compared to spherical particles if the volume fractions
are normalized by ratio of volume fractions at random close
packing.
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APPENDIX: DICOLLOID PARTICLE SELF-DIFFUSIVITY

For symmetric dicolloids, the diffusivity at infinite dilution
can be calculated based on the hydrodynamic resistance
matrices reported by Zabarankin [27]. Zabarankin analyzed the
Stokes flow equations by representing the velocity in the form
of Dean and O’Neill [42] and solving the resulting integral
equations for several particle aspect ratios, α. Here, we provide
a numerical method using these resistance values to calculate
the symmetric dicolloid short-time diffusivity for any dicolloid
aspect ratio.

First, tables of the dimensionless resistance coefficients
provided by Zabarankin are fit to quadratic functions with
respect to the aspect ratio, as shown in Fig. 7. The fits are
within 0.41% of their tabulated values, and give

d ′
x = d ′

y = −0.105α2 + 0.554α + 1.0005,

d ′
z = −0.067α2 + 0.356α + 1.0002,

(A1)
t ′x = t ′y = 1.13α2 + 1.60α + 1.003,

t ′z = −0.368α2 + 1.174α + 0.999.

FIG. 7. (Color online) Plot of the four resistance coefficients
calculated by Zabarankin [27] and their corresponding quadratic fits
from Eq. (A1).

The resistance parameters calculated in Eq. (A1) can be
used to determine the diffusivities due to translation

Dt
⊥ = kT

6πηad ′
x

, (A2)

Dt
‖ = kT

6πηad ′
z

, (A3)

and rotation

Dr
⊥ = kT

8πηa3t ′x
, (A4)

Dr
‖ = kT

8πηa3t ′z
, (A5)

where 2a is the diameter of the spherical lobes. Notably,
Dr

‖, the rotation along the axis of symmetry, is not de-
tected in light scattering experiments. Weighing and aver-
aging the relevant diffusive moments from the light scat-
tering experiment, the infinite dilution diffusivity is given
by Eq. (12).

The single particle diffusivity can be calculated both by
using the diffusivity of an equivalent volume sphere (DV

0 ),
as well as from Eqs. (A1), (A5), and (12) for the symmetric
dicolloids (DZab

0 ). The error here is propagated from the error
in the measured particle size. It can also be measured using
DLS (DDLS

0 ). A comparison of the diffusivities at infinite
dilution at 20 ◦C are presented in Table I. The measured and
calculated values for the diffusivity are within error of the
measurements for the spheres and the asymmetric dicolloids;
however, there is a slightly larger difference for the symmetric
dicolloids. This is understandable since (DV

0 ) should only
be viewed as an approximation for anisotropic particles and
using the method above yields much better agreement with the
experimental diffusivity data. The percentages in parentheses
correspond to the difference of the calculated diffusivity to
the measured diffusivity. Given the small difference between
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TABLE I. Diffusivities at infinite dilution calculated using the radius of an equivalent volume
sphere, measured using DLS and calculated using Eqs. (A1), (A5), and (12). Deviations of the
calculated values from the measured values using DLS are shown in parentheses.

Particle DV
0 (μm2/s) DDLS

0 (μm2/s) DZab
0 (μm2/s)

Sphere 0.149 ± 0.005 (−1.9%) 0.152 ± 0.002
A-Dicolloid 0.108 ± 0.003 (−0.2%) 0.108 ± 0.003
S-Dicolloid 0.116 ± 0.003 (10.3%) 0.105 ± 0.009 0.114 ± 0.003 (9.2%)

the measured and calculated values, there is little qualitative
difference between the choice of the infinite dilution diffusivity

D0, although there can be a quantitative difference up to 10%
in the case of the symmetric dicolloids.
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