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Anisotropic diffusion of spherical particles in closely confining microchannels
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We present here the measurement of the diffusivity of spherical particles closely confined by narrow
microchannels. Our experiments yield a two-dimensional map of the position-dependent diffusion coefficients
parallel and perpendicular to the channel axis with a resolution down to 129 nm. The diffusivity was measured
simultaneously in the channel interior, the bulk reservoirs, as well as the channel entrance region. In the
channel interior we found strongly anisotropic diffusion. While the perpendicular diffusion coefficient close
to the confining walls decreased down to approximately 25% of the value on the channel axis, the parallel
diffusion coefficient remained constant throughout the entire channel width. In addition to the experiment, we
performed finite element simulations for the diffusivity in the channel interior and found good agreement with
the measurements. Our results reveal the distinctive influence of strong confinement on Brownian motion, which
is of significance to microfluidics as well as quantitative models of facilitated membrane transport.
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I. INTRODUCTION

Diffusion in close confinement is paramount to transport
across biological membranes, and understanding the physical
processes governing transport is of great relevance for de-
signing drugs [1]. Many molecules are transported across the
membrane by passive diffusion through proteins that form long
and narrow channels. Channel-facilitated diffusion has been
studied experimentally [2–4] as well as theoretically [5–14]
and interpreting the models requires knowledge of the spatial
dependence of diffusion coefficients inside the channel and at
the entrance regions, either explicitly in the continuous models
or implicitly in the form of diffusive hopping constants for
discrete models. Besides the relevance to biological transport,
it is also of interest in the study of physical phenomena
such as entropic particle transport in corrugated channels for
particle separation [15,16]. In the confinement of bounding
walls, the diffusion coefficients of particles are decreased by
viscous interactions with the walls as compared to the value
in an infinite fluid. This hindered diffusion has been studied
extensively for planar geometries involving spherical particles
moving either above a single wall or between two plane walls
[17–29]. However, to our knowledge, only one experimental
study investigates position-dependent hindered diffusion in the
presence of curved boundaries [30]. The authors studied the
hindered diffusion of spherical particles inside closed cylinders
that were considerably larger than the particles. Experiments
on the diffusion of particles in closely confining channels [31]
have been limited to effectively infinitely long channels and
diffusion along the channel axis. So far, measurements of the
position-dependent diffusion coefficients in closely confining,
finite length channels are lacking completely.

II. METHODS

In this article we report the measurement of a complete
two-dimensional (2D) map with 129-nm resolution of the
position-dependent diffusion coefficients of spherical parti-
cles. The polystyrene spheres [Polysciences (Warrington, PA);
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505 ± 8 nm in diameter] moved through an array of parallel,
closely confining microchannels of semielliptical cross section
(approximately 5 μm in length and 1 μm in width and
height) separating two bulk reservoirs [Fig. 1(a)]. Our data
cover the channel interior as well as the entrance regions
and the bulk reservoirs. The channels were realized in a
microfluidic chip made in polydimethylsiloxane (PDMS) via
replica molding [4,32]. Briefly, for creating the mold, an array
of platinum wires was deposited on a silicon substrate via
a focused ion beam. The wire cross section was measured
in situ by slicing the wire at one end, tilting the sample
at 63◦, and imaging with a scanning electron microscope.
Conventional photolithography, replica molding, and PDMS
bonding to a glass slide were carried out to define 16-μm-
thick reservoirs separated by a PDMS barrier and connected
by the array of channels obtained as a negative replica of
the platinum wires. The chip was filled with the particles
dispersed in a 5 mM KCl solution and continuously imaged
through an oil immersion objective (100×, 1.4 numerical
aperture; UPLSAPO, Olympus). Illumination was provided
from above by a light-emitting diode (Thorlabs MWLED). The
transmitted light was collected by the objective and coupled to
a complementary metal—oxide–semiconductor camera (with
a frame rate of 500 fps and a magnification of ∼ 8 pixels/μm).
With the objective having a depth of focus of approximately
2 μm and the focal plane close to the glass cover slide,
particles were always tracked in proximity to at least one
bounding wall. Experiments were automated using a custom-
made LabVIEW program for positioning and video acquisition
[4]. The temperature inside the chip during the experiment
was monitored using a digital thermometer (RS Components,
K-type thermocouple, 0.2% accuracy). Particle trajectories
in two dimensions were extracted from the microscopy
videos via a custom-written automated tracking algorithm
with accuracies better than 20 nm inside the channels. Local
diffusion coefficients were determined from a linear fit to
local mean squared displacement (MSD)-versus-time curves
[33] [Figs. 1(b) and 1(c)]. In short, we followed particles and
measured their displacements for time lags of one and two
frames, respectively. These displacements were assigned to
the position bin of the midpoint of the displacement vector.
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FIG. 1. (Color online) Method for measuring local diffusion co-
efficients. (a) Particles diffusing in the microfluidic chip, containing
two bulk reservoirs connected by three parallel microfluidic channels,
are imaged by bright-field video microscopy. The channel edges are
marked by the lines. We choose the coordinates such that the diffusion
coefficients parallel and perpendicular to the channel walls are Dx

and Dy , respectively. (b) Displacements of tracked particles after
time lags of one and two video frames are assigned to the bin of the
midpoint of the displacement vector (marked by the box). (c) This
yields the first two points of the MSD-vs-t-curves in both x and y

directions for each bin. The slope of the linear fit yields the diffusion
coefficients in x and y, respectively.

Subsequently, in each bin the measured values were averaged
to give the first two points of local MSD-versus-time curves for
both x and y directions [Fig. 1(c)]. The slope of the linear curve
connecting these two points yields the diffusion coefficients.
For creating the 2D map we binned the xy positions into
single camera pixel bins (129 × 129 nm2). Trajectories of
particles exploring the channels and the bulk were recorded for
80 min of video, corresponding to 2.453 million frames and
5.506 million tracked particle positions. For our numerical
simulations we used COMSOL Multiphysics 4.3b with the
creeping flow module to solve the Stokes equation by the finite
element method with an adaptive mesh size. The system treated
was a spherical particle moving in an infinitely long channel
of semielliptical cross section. The particle was positioned
on different grid points in the cross-sectional yz plane and
the viscous friction tensor ν calculated for each position. We
imposed no-slip boundary conditions on the sphere surface
and the channel walls. Furthermore, we utilized a common
computational approach [34] and switched to the frame of
reference of the particle. Thereby the walls become moving,
which is mathematically treated as a slip velocity on the wall
surface (�v = v �ex or �v = v �ey , corresponding to parallel and
perpendicular diffusion). To compare the simulations with
the measured diffusion coefficients in the channel interior
we used the Stokes-Einstein relation [35], which gave the
ratios Dx(y,z)/D0 and Dy(y,z)/D0 (see Appendix A for
details). For calculating the bulk diffusivity, D0, we inserted the
temperature measured inside the chip during the experiment,
T = 301.7 K, the particle radius a = 250 nm, and the vis-
cosity of water, η(T ) [36], into the Stokes-Einstein equation,
giving D0 = 1.08 μm2/s. For arriving at the perpendicular de-
pendence of diffusivity, D(y), we averaged the values D(y,z)
over the entire z range by random sampling in order to avoid

mesh artifacts. In the experiments, our measured diffusion
coefficients represent as well values averaged over the entire
z range of 700 nm accessible to the particles. It is important
to note that the strong confinement in z direction combined
with the semielliptical cross section leads to suppressed axial
position fluctuations inside the channels. The PDMS channel
width was determined optically from the microscopy videos as
well as from considering the width over which particles were
tracked inside the channel. The widths of both measurement
methods agreed and we found values of 1.15 ± 0.13 μm for
the bottom two channels and 1.02 ± 0.13 μm for the top
channel; thus all three channels had the same width within
measurement accuracy. For the numerical simulations we used
a width of 1.2 μm and assumed that the semi elliptical cross
section of the platinum wires was preserved.

III. RESULTS

A. Dependence of the diffusion coefficient on the axial position

1. Diffusion coefficient parallel to the channel axis

We first consider diffusion parallel to the channel axis (Dx).
A two-dimensional color map of Dx is shown in Fig. 2(a). We
found a significantly reduced diffusivity inside the channels as
compared to the values measured in the bulk. To quantify
this further, we measured the dependence of the diffusion
coefficient along the channel axis, Dx(x). For this we averaged
over the three bins closest to the channel axis for each channel
and x position (but for the top channel the total number of bins
in the y direction was even so we averaged over the two closest
bins). The data for the central channel are shown in Fig. 2(b).
The diffusion coefficients showed an approximately constant
value in the bulk followed by an extended transition region in
which it decreased toward a plateau of lower diffusivity inside
the channel. We evaluated Dx(x) only for x ∈ [−4 μm,4 μm]
to avoid edge effects of the finite tracking region (see [33] for
more details).

2. Diffusion coefficient perpendicular to the channel axis

With our data we can not only quantify the parallel diffusion
coefficient but also investigate diffusion perpendicular to
the channel axis (Dy). The 2D color map of Dy is shown
in Fig. 2(c) and the dependence along the channel axis,
Dy(x), is shown in Fig. 2(d). The data for the top and
bottom channels are shown in Fig. 3 for both parallel and
perpendicular diffusivity. Within measurement accuracy, the
average diffusivities inside the channels, Dx,ch and Dy,ch,
were the same for all three channels studied and agreed
with our simulation values for infinitely long channels. The
detailed values can be found in Table I. The length of the
transition region between bulk and channel was around
1–1.5 μm, without significant differences between channels.
For perpendicular diffusivity, however, the plateau inside the
channel was slightly shorter (≈ 0.5 μm, i.e., one particle
diameter) than that of the parallel diffusivity Dx . Indeed, in
order to reduce Dy , the particle has to be fully enveloped by the
channel. This explains the small difference in transition length
scales for Dx and Dy . Furthermore, Dy,ch was lower than Dx,ch

due to the motion perpendicular to the channel walls being
more strongly confined than that in the parallel direction.
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FIG. 2. (Color online) Local diffusion coefficients. (a) and (c)
The position-dependent diffusion coefficients presented in a color
map for diffusivity parallel (Dx) and perpendicular (Dy) to the
channel axis, respectively. The channel edges are marked by the
yellow lines. The channels appear longer and thinner in the color map
because it is based on the center position of finite size spheres. (b) and
(d) The diffusivity dependence along the channel axis calculated in the
marked box (green lines) by averaging over the three bins for each
x value for parallel [Dx(x)] and perpendicular [Dy(x)] diffusivity,
respectively. Error bars are the standard deviation in between bins.
For clarity error bars are only shown for points spaced every
650 nm.

We noticed that the diffusivity in both x and y di-
rections in our bulk reservoirs reached a value of Dxy =
0.74 ± 0.06 μm2/s rather than the Einstein-Stokes value of
D0 = 1.08 μm2/s. This can be attributed to the hydrodynamic
friction exerted by the glass slide. Using Goldman’s theory [20]
we estimated the average hydrodynamic separation z between
the particle centers and the glass surface [26]. Inverting the
theoretical relationship for the diffusivity parallel to a plane
wall, Dxy(a/z)/D0 (by using a series expansion from Happel
[34]), yielded an average distance of z = 370 ± 30 nm.

FIG. 3. (Color online) Diffusion coefficient dependence along
the channel axis [Dx,y(x)] for the top [(a) and (b)] and bottom [(c)
and (d)] channels computed as for Fig. 2. Error bars are the standard
deviation in between bins. For clarity error bars are only shown every
650 nm. The parallel diffusivity, Dx(x) is shown in (a) and (c) and
the perpendicular one, Dy(x) in (b) and (d). The straight blue lines
represent the values from the numerical simulations for infinitely long
channels.

B. Dependence of diffusivity on the distance
from the channel axis

For the channel interior, we calculated the dependence of
the diffusivity on the distance b from the channel axis, Dx(b)
and Dy(b). We averaged over all bins between x = −2 μm and
x = +2 μm for each y value up to the channel walls. The data
for Dy (triangles in Fig. 4) show that the diffusion coefficient
is at a maximum in the channel center. As the particle is
moving closer to the channel wall, Dy drops significantly, as
expected when the particle approaches the channels walls. In
stark contrast, the diffusivity parallel to the channel axis (Dx)
remained almost constant throughout the entire channel width
(circles in Fig. 4). This is contrary to expectations based on
hindered diffusion in proximity to plane walls. We observed
the same dependence for all three channels. Empirically, the
perpendicular diffusivity was reasonably well described by the

TABLE I. Average parallel and perpendicular diffusion coeffi-
cients (Dx and Dy) for all channel interiors. Experimental values
were averaged from the Dx,y(x) curves in the plateau region between
x = −2 μm and x = +2 μm. Given are the average values and the
standard deviation between the different points along the x axis.
The simulation values were averaged from the cross-sectional values
Dx,y(y,z) over the same y and z ranges as the experimental ones. The
simulation errors given are the standard errors of the mean over the
different sampling points.

Experimental Simulation
Dx Dx,ch (μm2/s) Dx,ch (μm2/s)

top channel 0.27 ± 0.05 0.293 ± 0.002

central channel 0.32 ± 0.04 0.293 ± 0.002
bottom channel 0.31 ± 0.03 0.293 ± 0.002

Experimental Simulation
Dy Dy,ch (μm2/s) Dy,ch (μm2/s)
top channel 0.24 ± 0.05 0.23 ± 0.04
central channel 0.26 ± 0.03 0.23 ± 0.04
bottom channel 0.29 ± 0.03 0.23 ± 0.04
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FIG. 4. (Color online) Diffusion coefficient dependence along
the channel width for the top (a), central (b), and bottom (c) channels.
The filled circles (•) are the measured diffusion coefficients parallel
to the channel axis (Dx) and the filled triangles (�) are the ones
in the perpendicular direction (Dy). The error bars are the standard
deviations between the different bins that were averaged over. The
lines with empty symbols are values from the numerical simulations
for Dx (◦) and Dy (�). The continuous lines show the empirical
parabolic dependence according to Eq. (1). The inset illustrates the
definition of the coordinate system.

parabolic equation

Dy(b)

Dy(0)
� 1 −

(
b

w/2 − a

)2

, (1)

where w is the width of the channel and a the particle radius.
Due to the complex geometric shape of the channel, we expect
that no closed analytical form for the dependence of Dy(b)
exists. However, the surprising agreement of the data with the
parabolic equation (1) suggests that the dependence can be
treated successfully in low orders of a perturbative expansion.
In that sense Eq. (1) represents an expansion up to second order
of the true relationship. By fitting this empirical relationship to
the data we determined the position of the channel axis (b = 0)
from the maximum of the parabola at subpixel resolution as
well as the on-axis diffusivity Dy(b = 0). This was important
since this allowed us to define the parallel on-axis diffusivity
Dx(b = 0) as the measured Dx(b) value closest to the center

for an uneven number of bins in the y direction or the average
of the two closest bins in the case of an even number of bins.

To our knowledge, the surprising behavior of Dx(b) that we
found here has not previously been observed experimentally in
microfluidic channels. Only analytical and numerical studies
on the hydrodynamic drag force experienced by spherical
particles translating in closely fitting cylindrical channels
[37,38] have predicted this kind of dependence. Thus, our
experiments allowed for the first qualitative experimental
testing of their predictions in very close confinements on the
submicron scale. Despite the lack of an analytical solution due
to the cross sections of our channels being semielliptical rather
than cylindrical we could compare our measurements to our
finite element simulations and found good agreement (with
absolute values for Dx and Dy being shown in Table I and the
b dependence in Fig. 4). This comparison shows that hindered
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FIG. 5. (Color online) Finite element simulations for the diffu-
sivity dependence across the full cross-sectional channel profile
and additional particle-channel-size ratios. (a) and (c) The 3D
landscape showing the cross-sectional profile of the parallel (a)
and perpendicular (c) diffusivity of 500-nm spheres confined by an
infinitely long semielliptical channel. The diffusivity values were
normalized by the Stokes-Einstein value D0. The coordinates refer
to the center position of the finite size spheres. The roughness of the
plots is due to random position sampling. (b) and (d) The diffusivity
dependence on the particle elevation z for parallel [Dx(z)] and
perpendicular [Dy(z)] diffusivity obtained by binning the data from
(a) and (c). (e) The 3D landscape showing the parallel diffusivity
of spheres of various sizes (radius a) confined by infinitely long
cylindrical channels (radius R) at different normalized off-axis
displacements [b∗ = b/(R − a)].
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diffusion behaves qualitatively differently in closely confining
channels as compared to more extended geometries due to
hydrodynamic interactions determined by the microchannel
geometry. We try to give an intuitive explanation of this
phenomenon in Appendix B.

C. Simulations for the full cross-sectional channel profile and
additional particle-channel size ratios

Our finite element simulations covering the entire channel
cross section of an infinitely long semielliptical channel
[Figs. 5(a) and 5(c)] show that this interesting effect is not
strongly dependent on the average elevation of the particle in
the channel but occurs across the entire channel height. The
parallel diffusivity (Dx) showed only small variations across
the cross section: from ∼0.25D0 to ∼0.28D0. The qualitative
features of our simulated Dx agree well with classical
analytical solutions of diffusion in circular channels [39]. On
the other hand, the perpendicular diffusivity (Dy) varied more
strongly: from almost zero to ∼0.32D0. Close to the walls
we observed a drop in diffusivity for both Dx and Dy due to
the expected rapid increase in friction exerted by the channel
walls. The dependence of diffusivity on elevation [Figs. 5(b)
and 5(d)] was rather flat for Dx . The perpendicular diffusivity
(Dy) on the other hand showed a nonuniform dependence on
elevation with a peak corresponding to the furthest distance
from the walls. This behavior is qualitatively similar to that
observed for lateral displacements (see Fig. 4). Furthermore,
we investigated the influence of the ratio of particle to channel
size on the diffusivity profile Dx(y). To this end we performed
finite element simulations for particles in infinitely long
cylindrical channels (a cylindrical geometry being chosen for
greater computational efficiency) [Fig. 5(e)]. Here we defined
the ratio of particle to channel radius, a/R, and the normalized
off-axis displacement of the particle relative to the channel
radius, b∗/R = b/(R − a)R, where b∗/R = 0 corresponds to
a particle at the center of the channel and b∗/R = 1 to a
particle touching the channels walls. For small size ratios a/R

we recover the well-known monotonic decrease of diffusivity
toward the walls resembling Faxén’s law. Indeed, for small
particle sizes, the colloid “effectively sees” a flat wall. At larger
ratios the confinement of the channel and the curved boundary
become important and the diffusivity profile flattens out to
approximately constant diffusivity across the entire channel.
This is the case relevant to our experimental study. At even
larger ratios the profile expected from Faxén’s law even gets
reversed and the diffusivity increases in proximity to the walls.

IV. CONCLUSIONS

In summary, we presented the detailed measurement of the
position-dependent diffusion coefficients of spherical particles
closely confined by finite length channels in directions parallel
and perpendicular to the channel axis. Of particular interest to
models of channel-facilitated diffusion is the determination of
the dependence along the channel axis, Dx(x), showing that
diffusion in the channel interior behaves as if the channels were
infinitely long with an almost constant diffusivity throughout
the entire channel length. Furthermore, we observed the paral-
lel diffusivity to remain approximately constant throughout
the entire channel width, in contrast to the perpendicular

diffusivity that decreased toward the channel walls. We expect
that our findings will stimulate further studies of the special
features of Brownian motion arising in strong confinement,
which is commonplace in cellular environments. Besides this
potential for exciting new insights into biophysics, the physical
process of confined Brownian motion is strongly linked to
low-Reynolds-number hydrodynamics in closely confining
environments as governing flow in the thriving fields of micro-
and nanofluidics. Our results could be of interest to efficiently
control particle transport in technological applications such as,
e.g., the construction of drift ratchets for particle sorting.
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APPENDIX A: STOKES-EINSTEIN RELATION

The Stokes-Einstein relation [35] is given by D = kBT ν−1,
with the Boltzmann constant kB , absolute temperature T ,
and the viscous friction tensor ν. The viscous friction tensor
relates the hydrodynamic drag force �F to the velocity �v of a
particle translating in a quiescent fluid: �F = ν�v. For a sphere
suspended in an infinite fluid of (temperature-dependent)
viscosity η(T ) this is ν0 = ν01,ν0 = 6πaη(T ), leading to the
Stokes-Einstein diffusivity

D = D01, D0 = kBT /ν0 = kBT /6πaη(T ). (A1)

In hindered diffusion, the friction and diffusion coefficients
are no longer the same for the different axial directions and
they become position dependent [23,34]. In two dimensions
we have

ν = ν(�r) =
(

νx(�r) 0
0 νy(�r)

)
, (A2)

D = D(�r) =
(

Dx(�r) 0
0 Dy(�r)

)

= D0

(
ν0/νx(�r) 0

0 ν0/νy(�r)

)
, (A3)

which connects position-dependent viscous friction to hin-
dered diffusion coefficients. The friction coefficients were then

FIG. 6. (Color online) Tentative explanation for constant parallel
diffusivity across the channel width. Drag increase (+ signs) and
decrease (− signs) on opposite sides of the spherical particles balance
each other due to the close confinement.
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calculated by numerically solving the Stokes equation with the
finite element method (COMSOL Multiphysics 4.3b with creep-
ing flow module). We thus arrived at the ratios of friction coeffi-
cients ν0/νx(y,z) and ν0/νy(y,z), which, by Eq. (A3), together
with D0, give the diffusion coefficients Dx(y,z) and Dx(y,z).

APPENDIX B: TENTATIVE EXPLANATION OF
CONSTANT PARALLEL DIFFUSIVITY ACROSS THE

CHANNEL WIDTH

A graphical illustration of the tentative explanation of
the constant parallel diffusivity across the channel width

is presented in Fig. 6. While there is an increased drag
force on the side of the sphere approaching the channel
wall, due to the close confinement, the opposite side of the
sphere moves away from the other wall and experiences a
decreased drag. We assume that the increase in drag at a
single point will be greater than the decrease on the other
side but this gets balanced by a larger surface area opposite
to the approaching side. For the diffusivity perpendicular to
the channel walls, the drag increase is a lot steeper than for
the parallel diffusivity, as is regularly observed in proximity
to close walls. Therefore the larger surface area can no
longer balance the drag increase and the total diffusivity
decreases.
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