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Phase-field-crystal modeling of glass-forming liquids: Spanning time scales during vitrification,
aging, and deformation
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Two essential elements required to generate a glass transition within phase-field-crystal (PFC) models are
outlined based on observed freezing behaviors in various models of this class. The central dynamic features of
glass formation in simple binary liquids are qualitatively reproduced across 12 orders of magnitude in time by
applying a physically motivated time scaling to previous PFC simulation results. New aspects of the equilibrium
phase behavior of the same binary model system are also outlined, aging behavior is explored in the moderate
and deeply supercooled regimes, and aging exponents are extracted. General features of the elastic and plastic
responses of amorphous and crystalline PFC solids under deformation are also compared and contrasted.
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I. INTRODUCTION

The study of glasses or amorphous solids and the processes
by which they form involves a number of long-standing scien-
tific challenges. Understanding the nature of the liquid-to-glass
transition from picosecond to kilosecond time scales, including
slow relaxations and aging processes, and understanding the
atomic origins of the macroscale elastic and plastic properties
of disordered solids are two of the ongoing fundamental
challenges in this field. The first is strongly linked to the
difficulty in describing long time scales with atomic-level
theories. The second is a reflection partly of the difficulties
faced in applying crystallographic theories of plastic response
to atomically disordered materials, but also of the difficulties in
accessing plastic flow processes over multiple length and time
scales within simulations. In this article, we further examine
and develop a modeling approach that aims to describe
atomic-level dynamics in glass-forming liquids and glassy
solids over multiple time scales. This aim is relevant to the two
long-term challenges noted above, thus issues concerning both
glass-forming dynamics and solid-state mechanical response
are explored.

Phase-field-crystal (PFC) models have been developed over
the past decade to describe freezing and melting transitions
in liquid-solid systems as well as various nonequilibrium
phenomena generally encountered in liquid and solid mate-
rials. The method provides atomic-level spatial resolution and
naturally incorporates elastic and plastic effects over long time
scales [1–3]. PFC free energy functionals can be viewed as a
simple class of classical density functional theory [3], which
has been widely used to study freezing and glass formation
[4–21]. Freezing in typical PFC and density functional theories
generally occurs through first-order classical or spinodal
nucleation processes [2,22], including cases in which the
resulting solid is amorphous [22–24]. Freezing behavior
consistent with established glass transition phenomenology
has been predicted for various nonlinear classes of classical
density functional theory [15–18], but these predictions have
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not been confirmed numerically because the full density
functional description is relatively inefficient and unstable
in terms of numerical, grid-based solutions. PFC models, by
comparison, are highly efficient and stable numerically and,
thus, offer an alternate means of examining the glass-forming
dynamics generated by density-functional-type models. Our
recent numerical simulations have confirmed that when strong
nonlinear terms which suppress crystallization are included in
the free energy functional [25], one such class of models does
exhibit freezing behavior consistent with a glass transition.

While these recent findings may open pathways to more
detailed studies of glass-forming dynamics in coarse-grained
atomistic models, many questions concerning the general
model features that drive glass formation, the range of
time scales that can be described, and the properties of
the low-temperature glass states remain unanswered. To our
knowledge, the mechanical response of amorphous solids
has not been examined at all with PFC models. Plastic flow
and relaxation in glasses occur across a range of length and
time scales and lead to phenomena such as shear banding,
shear-induced melting, and shear-induced order—processes
often involving behaviors unique to atomically disordered
solids. Difficulties arise in comparing, for example, molecular
dynamics simulation results of plastic deformation with
experiments due to the typically large disparity in strain rates.
Thus examination of these processes over long time scales and
at lower strain rates using the PFC approach seems a potential
route to new insights as well.

The standard monatomic PFC free energy functional has
the form

F =
∫

d�r
{

n

2
[r + (q2 + ∇2)2]n + 1

4
n4

}
, (1)

where n → n(�r,t) + n̄ is the scaled time-averaged number
density of particles, n̄ is the average number density, r is related
to the liquid bulk modulus, and q sets the equilibrium distance
between particles (see Refs. [2,3] for further discussion of how
these parameters relate to material properties).

The primary system studied in this work is a binary PFC
mixture with dimensionless Helmholtz potential given by

F =
∫

d�r[fAA + fBB + fAB], (2)
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where

fii = ni

2

[
ri + (

q2
i + ∇2)2]

ni + 1

4
n4

i + Hi

(|ni |3 − n3
i

)
(3)

and

fAB = nA

2

(
q2

AB + ∇2
)2

nB + rAB

2
n2

An2
B. (4)

In this notation i = A or B, and ni , n̄i , ri , qi are species-specific
parameters analogous to those of Eq. (1). The parameter qAB

sets the distance between A and B particles, and Hi and rAB are
additional constants. The terms multiplied by Hi discourage
ni < 0 and are the distinguishing feature of the vacancy PFC
model [26,27]. A strong ni � 0 cutoff enforces the physical
interpretation of ni as a constrained number density and, in
doing so, produces a range of highly nonlinear responses. The
resulting solutions take the form of interacting time-averaged
density peaks in both the liquid and the solid phases, with local
regions of ni � 0 representing unoccupied, or vacancy, sites.

The dynamics of the coarse-grained density fields ni

are approximated either by a nonlinear stochastic diffusion
equation of the form

∂ni

∂t
= ∇2 δF

δni

+
√

Miηi (5)

or by an inertial-diffusive equation of motion that includes both
“fast” wave-like processes and “slow” dissipative processes,

∂2ni

∂t2
+ Bi

∂ni

∂t
= c2

i ∇2 δF

δni

+
√

Miηi. (6)

Here t is dimensionless time, ηi is a Gaussian stochastic noise
variable with 〈ηi(�r1,t1)ηi(�r2,t2)〉 = ∇ · ∇δ(�r1 − �r2)δ(t1 − t2),
and ci , Bi , and Mi are constants related to the sound speed,
damping rate, and temperature, respectively. An explicit Euler
finite-difference algorithm was used to solve Eq. (6) in
three dimensions with periodic boundary conditions. Dynamic
relaxations were characterized largely in terms of the interme-
diate scattering functions,

Fij (q,t) = 〈δni(q,0)δn∗
j (q,t)〉

Fij (q,0)
, (7)

where q is wave number and δni = ni(�r,t) − n̄i . Static
structural correlations were also analyzed using the struc-
ture factor of most probable atomic positions, SP

ij (q) =
〈δnP

i (q)δnP∗
j (q ′)〉, where δnP

i (r) is a binary map of the
positions of the local number density peaks.

Unless otherwise specified, all quenching simulations were
performed as follows. First, the liquid is equilibrated at a
temperature Ti until all diagnostics reach a steady state, then
the system is quenched to a final temperature T at some rate Ṫ .
The system is held at this final T until the free energy reaches
a steady state, at which point the measurement of Fij (q,t) is
initiated. Data from several such simulations are then averaged
together to obtain the final results.

Temperature enters PFC models through all coefficents in
the free energy and, if stochastic thermal noise is considered,
through the standard relation between noise amplitude and
T . Though all coefficents are, in principle, temperature
dependent, we employ the common approximation that the
second-order term in n, which has leading temperature

dependence, is the lone nonstochastic temperature variable.
Thus we define T = ri + 1. The stochastic contribution to T ,
which we consider independently of ri , should obey T ∼ Mi .
Thus we further define T = TpMi , where Tp is an arbitrary
constant. In a given simulation, we take either T = ri + 1
with Mi constant or T = TpMi with ri constant. In Sec. II the
choice of T parameter is specified for each data set, while only
the stochastic definition is employed in Secs. III and IV.

The remainder of this article is arranged as follows. In
Sec. II results from analyses of freezing dynamics in a variety
of PFC and density functional theories are summarized. By
comparing and contrasting the observed behaviors, we isolate
two essential model features sufficient for generating glass
transition dynamics consistent with known phenomenology.
In Sec. III a time scaling procedure is outlined which attempts
to optimize the PFC description toward increasingly slow time
scales as the glass transition temperature Tg is approached
from above. Qualitative agreement with known relaxation
phenomenology is obtained across 12 orders of magnitude in
time using this approach. Finally, in Sec. IV, the preliminary
results reported in Ref. [25], which demonstrate agreement
between PFC simulations and the central predictions of mode
coupling theory for liquid dynamics in the moderately super-
cooled regime, are expanded upon. New results concerning
the equilibrium phase behavior of this model, aging properties
exhibited during the intermediate and late stages of the glass
transition, and the elastic and plastic responses of the stabilized
glassy solids are presented.

II. ELEMENTS OF GLASS-FORMING DYNAMICS IN PFC
AND DENSITY FUNCTIONAL MODELS

The standard PFC formulation [2] generates a first-order
nucleation-driven freezing transition in three dimensions, the
strength of which decreases as the transition point approaches
the liquid spinodal boundary [22]. The resulting inhomo-
geneous solid phase may be crystalline, amorphous, or a
combination of both, but fundamental elements of the liquid to
amorphous solid transition dynamics and thermodynamics are
inconsistent with known properties of the glass transition. We
may therefore presume that important elements of the atomic
cage-level physics of highly nonequilibrium glass-forming
liquids are not fully captured by the simplest PFC formulations.
One modified PFC model was recently shown by us to capture
the dynamics of glass formation in considerable detail [25], but
the minimal ingredients required for such behavior and their
connections with the fundamental physics of the transition
have not yet been clarified.

We have attempted to isolate physically motivated mod-
ifications to the basic PFC description that generate the
correct glass transition dynamics. By examining the nature
of the freezing transitions in a wide range of PFC models as
nonlinearities are introduced into the original PFC functional
and as alternate equations of motion are employed, we
have concluded that two additional model elements provide
conditions sufficient for the appearance of a glass transition
in PFC-type models. The first is a source of strong local or
nonlocal nonlinearity in the free energy, such as a vacancy
PFC cutoff [the last term in Eq. (3)] or a term that suppresses
A-B overlap [the last term in Eq. (4)]. Such terms can generate
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sufficient caging to suppress crystallization and produce a
fragile glass transition with a Vogel-Fulcher divergence in
the primary structural relaxation time. The second essential
model element is an equation of motion describing two or
more time scales, such as Eq. (6). Such dynamic equations,
in combination with strongly nonlinear functionals, are able
to generate two-step relaxation functions in the supercooled
liquid phase with the basic features predicted by the mode
coupling theory of glass formation. These two sufficient
conditions do not necessarily apply to all glass-forming
systems or models thereof, but we believe that their physical
interpretation in terms of caging mechanisms and dynamic
processes with multiple characteristic time scales implies some
degree of generality beyond just the class of models considered
here.

A. Monatomic liquids

Monatomic systems are known from experiments and
computer simulations to be poor glass formers in general.
Some elements of the standard glass transition phenomenology
may be observable with very rapid quenches and/or over
relatively short time periods, but instability to crystallization
is typically manifested at later times. Simple monatomic
PFC-type models quenched using Eq. (5) or related nonlinear
diffusive equations of motion (such as that studied in Ref. [16])
can produce disordered solid structures, but generally via a
discontinuous, nucleation-driven freezing transition and with
relatively simple relaxation processes tending to persist. More
promising results in terms of continuous vitrification are
obtained for standard monatomic PFC liquids evolved using
the inertial-diffusive equation of motion, Eq. (6). Such systems
do seem to exhibit a nearly continuous transition from liquid to
glass, with signs of plateauing correlators, but they generally
suffer from rapid crystallization as in the noninertial case.
Heavily oscillating relaxation functions also tend to appear
under the conditions required for continuous monatomic glass
formation.

Stronger nonlinearities in the form of either three-body
correlations [28] or disordered external pinning potentials
(quenched disorder) further promote and stabilize glass-like
strucutres in two dimensions, where they otherwise tend
to be unstable. Both approaches nonetheless continue to
generate discontinuous freezing behaviors when Eq. (5) is
employed, unless the strength of the quenched disorder is
explicitly increased in a continuous fashion. Neither approach
is therefore satisfactory as a means of studying the dynamics
of structural glass formation.

Glass-like structures in monatomic systems are therefore
generally accessible and often quite stable at low T , but a
comprehensive monatomic glass former that does not crys-
tallize at intermediate temperatures and maintains consistent
dynamic and thermodynamic behavior does not seem readily
obtainable within the basic PFC formalism. The monatomic
vacancy PFC liquid described in Ref. [25] is relatively close
to reaching these goals but is also inherently unstable to crys-
tallization over typical simulation time scales at intermediate
temperatures. These behaviors are consistent with expectations
for monatomic liquids.

B. Binary liquids

Two-component systems with an appropriately chosen size
ratio between atomic species are often used as model systems
for glass formation. A modest size difference between the two
atom types can greatly suppress crystallization and generate a
clear glass transition in the deeply supercooled liquid regime.
As an illustration, we show here that a model containing two
diffusively relaxing fields with slightly different equilibrium
periodicities and a purely repulsive coupling is sufficent for
the appearance of a structural glass transition. This minimal
binary PFC model is composed of two standard monatomic
functionals for A and B atoms, coupled only by a local
repulsive interaction term. It is given by Eq. (2) with

fii = ni

2

[
ri + (

q2
i + ∇2

)2]
ni + 1

4
n4

i (8)

and

fAB = rAB

2
(nA + 1)2(nB + 1)2. (9)

The constant rAB sets the strength of the mutual repulsion,
which discourages peaks in either field from overlapping with
those in the other. For simulations with dynamics given by
Eq. (5), offset bcc lattices for A and B atoms are easily
nucleated upon quenching with qA = qB . When qB/qA = 4/5,
the time required to nucleate the equilibrium crystalline
structure becomes very large, and the system freezes rapidly
but continuously into a disordered solid phase. This is the case
for quenches in which T = TpMi (nonspinodal) as well as for
quenches in which T = ri + 1 (toward a spinodal boundary)
as shown in Fig. 1.

The structure factors of the resulting disordered states are
glass-like, and the relaxation times diverge smoothly rather
than with the sharp increase that indicates a nucleation-driven
freezing transition. The relaxation functions do not clearly
plateau, but become highly stretched or weakly shouldered
(Fig. 1). Thus, other than clearly plateauing correlation
functions, this simple coupling of geometrical frustration (due
to inefficient crystalline packing) with standard dissipative
evolution generates a significant range of glass-forming
behaviors. We have also performed simulations using inertial-
diffusive dynamics [Eq. (6)] and find that clear plateaus or
two-step relaxations emerge as well within this minimal binary
model, but some degree of persistent crystallization tends to
obscure the transition, as observed for monatomic liquids.
Further fine-tuning therefore seems to be required to make
this system fully consistent as a model of glass formation,
and for this reason the more robust binary vacancy PFC
model described in Ref. [25] is the main focus of our present
investigations.

III. SPANNING TIME SCALES IN GLASS-FORMING
LIQUIDS

As a phenomenological model, the precise physical time
scales described by a given set of PFC equations are not known
a priori. Temporal links with known systems can nonetheless
be estimated by equating some measurable dynamic property
of a PFC model with that of a known system. Here we propose
a method for setting and tuning time scales in PFC models of
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FIG. 1. (Color online) Transition behavior of the minimal mutually repulsive binary PFC glass former given by Eqs. (2), (5), (8), and (9).
(a) Free energy vs T during glass formation for both definitions of T (T = TpMi with Tp = 1, ri = −0.16 and T = ri + 1 with Mi = 0.0576).
(b) Emergence of glass-like structure factors SP

ij (q) during the T = Mi quench shown in (a) Ti = 0.09 to T = 0 in 10 000t . Curves shown were
calculated at 1250t intervals, beginning from the initial liquid state and ending with the stable glass state at 50 000t . (c) Stretched dynamic
correlation functions Fij (q∗,t), where q∗ is the wave number of the first peak maximum in Fij (q,0). For all data sets shown, T = Mi with
Ti = 0.0784 and Ṫ = 80(T − Ti). (d) Arrhenius plot of diverging relaxation times [Fij (q∗,τ ) = 1/e] for T = Mi . Unless specified otherwise,
rAB = 1/10, qA = 1, qB = 4/5, ri = −0.16, n̄A = n̄B = −1/4, and volume = 1283. Also, N = nA + nB .

glass-forming liquids which exploits the presence of rapidly
separating β and α time scales in the deeply supercooled
regime of the glass transition. These two time scales, which
are associated with cage-rattling and cage-breaking processes,
respectively, are mapped directly onto the two characteristic
times described by Eq. (6). These are associated with inertial
or wave-like oscillations (c → β) and diffusive relaxation
(B → α), respectively. An effective dynamic coarse-graining
time is then defined in proportion to the parameter B,
which sets the relative strength and separation of these two
dynamic processes when c = 1; t̄ ∼ BtPFC, where the overbar
denotes rescaled or effective coarse-grained time. One may
thus describe the normal liquid and moderately supercooled
liquid regimes in full detail (to the degree that such liquids
are well described by this type of model) by maintaining a
sufficiently small separation or strong inertial term and then
gradually eliminating the fast processes associated with this
term as Tg is approached. In this way the large separation in
time between cage-rattling and cage-breaking processes in the
deeply supercooled regime near Tg may be invoked to justify
increasing the effective coarse-graining time and neglecting
the faster processes. We show that this procedure generates
strong qualitative agreement with typical experimental data

over 12 orders of magnitude in time for one initial case
study.

A. Description of the time-scaling procedure

Relaxations in simple liquids in the high-temperature, non-
supercooled regime can be accurately described using either
purely diffusive dynamics or an inertial-diffusive equation of
motion. Provided that the quasiphonon wave processes are
not too underdamped (which leads to unphysical oscillatory
relaxations in the liquid), they are unable to propagate over
significant distances in the loosely packed liquid phase and do
not strongly alter the diffusive relaxations. Thus nearly any B

or coarse-graining parameter, appropriately rescaled, should
be sufficient in the normal liquid regime.

In the denser, moderately supercooled liquid, longer-lived
caging effects begin to appear and contribute to an emerging
slow relaxation component or α process in the dynamic
correlation functions. In this regime the fast β and slow α

processes are distinct but not widely separated in time, and
a detailed description appears to require a non-negligible
inertial component in the equation of motion. Thus the coarse-
graining parameter B should be small enough to capture both
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processes on relatively similar time scales, unless only the
slow relaxations are of interest.

As T is lowered further and the liquid becomes deeply
supercooled, a large separation between α and β time scales
emerges. This is a reflection of the increasing time over
which a given particle is locally trapped within its cage
of neighbors. The highly underdamped, small-B description
continues to capture qualitatively both the cage-rattling and
the cage-breaking processes but, at very low T , cannot be
simulated over long enough times to observe the entire slow α

process. As noted, we attempt here to circumvent this problem
by invoking a separation-of-scales argument to average out or
neglect the shorter time scale and describe only the postplateau
α processes. In this way the model dynamics can effectively
be “telescoped” across time between the bounds set by the
nominal α and β processes. The low-T , late-time results
(postplateau, large B) can be transposed onto the higher-
T , early-time results (plateau region, small B) to obtain a
description of the entire relaxation function even at very low
temperatures, near Tg (see Fig. 2).

To summarize, we define t̄ ∼ BtPFC and optimize our
description across multiple time scales by tuning B with T

as permitted by the physics of glass formation. It is interesting
to note that a linear analysis of vacancy diffusion times in
this model also generates a scaling proportional to BtPFC in
the long-time limit, supporting the idea that physical times
associated with such models are directly scaled by B.

B. Application of the time-scaling procedure

Figure 2 shows the application of these arguments to
the binary vacancy PFC glass-forming liquid examined in
Ref. [25] [Eqs. (2)–(4) and (6)]. Scaling t with B dilates
the measured F(q,Bt) curves such that they span 12 orders
of magnitude in time. The small-B results accurately capture
the normal and moderately supercooled regimes, including
the detailed two-step relaxations, while the large-B results
capture the qualitative stretching and rapid divergence of
the α relaxation processes. As discussed previously, it is
assumed that the large-B results describe only the postplateau
relaxations and can therefore be set to begin from the plateau
height measured in small-B simulations. The relaxation
functions thus rescaled [see Fig. 2(a)] capture the central
universal dynamical features of fragile glass-forming liquids
as widely observed in experiments [29], mode coupling theory
calculations [30,31], and computer simulations [31], though
across several additional orders of magnitude in time relative
to conventional simulation methods.

A further test of the validity of the t̄ ∼ BtPFC scaling is
shown in Fig. 2(b), where the mode-coupling-theory time-
temperature superposition principle is applied to the time-
scaled data. The detailed mode-coupling-theory functional
form is relatively well obeyed by the dynamic correlators for
all T and B when time is scaled by B.

To compile the relaxation times of the various curves shown
in Figs. 2(a) and 2(b) into one Arrhenius plot with a single
effective temperature variable Teff , one must also find a scaling
relation between the model temperature T and the variables B

and Mi . This is so because of the intrinsic coupling between
time and temperature in the stochastic prefactor Mi , which
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FIG. 2. (Color online) Binary vacancy PFC glass formation in
the B-scaled time limit. (a) Dynamic correlators FNN(q∗,Bt) for
various B with time scaled by B. The lines are fits to superimposed
stretched exponentials. (b) Same as (a) except with the mode coupling
theory t → t/τ scaling, to demonstrate general adherence to the
time-temperature superposition principle. The preplateau fit for large
B is assumed from the small-B results. (c) Arrhenius plot of scaled
relaxation times for various B and the envelope Vogel-Fulcher fit
(solid line). τ ∗

NN is defined as the time at which FNN(q∗,t) = 1/e.
The full model is given by Eqs. (2), (3), (4), and (6) with the
following parameter values: n̄A = n̄B = 0.075, ri = −0.9, qA = 1,
qB = 4/5, Hi = 1500, qAB = 8/9, rAB = 100, ci = 1, Tp = 1000,
Ṫ = 40(T − Ti), �x = 1, �t = 0.025, and V = 643, 1283, or 2563

(as reported in Ref. [25]).
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implies that a definition of time scaled by B necessitates a
definition of T that is also rescaled by B in some way. Though it
is beyond the scope of this work to derive a formal T rescaling,
qualitative approximations can be made in certain limits. For
example, the simple scaling Teff = TpMi/B should be applica-
ble in the limit (M → 0, B → ∞). This form follows directly
from the time-temperature coupling in the stochastic prefactor
Mi noted above. The thermal energy input per time step should
increase in proportion to the coarse-graining time t̄ [32]; thus
if t̄ ∼ BtPFC as proposed, then this thermal energy should
also increase in proportion to B. The effective temperature
must then be Teff = TpMi/B to maintain consistency. Note
that the T values needed to induce relaxational dynamics
[values displayed in Figs. 2(a) and 2(b)] roughly follow this
scaling, with T = TpMi increasing nearly in proportion to B,
thus maintaining relatively consistent Teff = TpMi/B values.
This observed trend is therefore consistent with the proposed
t̄ ∼ BtPFC time scaling.

This simple scaling breaks down away from the (M → 0,
B → ∞) limit for two reasons. For large Mi , the funda-
mental thermodynamics are altered from those of the T = 0
weak-coupling regime, and the bare free energy must be
renormalized over the thermal noise to correctly quantify
temperature dependencies. This renormalization is difficult
to work out rigorously, but we expect that Teff tends to be
increased relative to the simple TpMi/B scaling when Mi is
large. We approximate this effect as Teff = TpMi/B

δ , where
δ � 1. As B → 0, strong waves also produce a growing T -like
contribution, causing further deviation from the simple scaling.
We choose to approximate this second contribution with
an added term 1/Teff = Bδ/(TpMi) + 1/T0(B), where the
form 1/T0(B) = a ln (B) + b is found to provide good results
when a = 1.18, b = 5.4, and δ = 0.75. We reiterate that this
approximate T rescaling is meant to capture the general
effects of large Mi and small B on Teff in a qualitative way
only. Nonetheless, all of the relaxation data are brought into
accord when this T scaling is applied, with the corresponding
τ ∗ values collapsing toward an envelope function that is
well described by a Vogel-Fulcher fit and with the large-B
simulations describing the longest times [see Fig. 2(c)]. This
too is consistent with the expectations outlined above, in which
the small-B description is valid at all T but is limited in time,
while the large-B descriptions become valid at sufficiently low
T and large times.

These results together, summarized visually in Fig. 2,
provide a degree of a posteriori justification of the proposed
time scaling. The relatively simple picture described here is
intended to demonstrate one possible basis for connecting with
physical times in systems of this type. One may expect the ac-
curacy of such a description to decrease as the coarse-graining
time grows, especially if strong dynamic heterogeneities are
present. But the large separation of time scales in these systems
ultimately makes a large coarse-graining time necessary within
an atomic-level description and, at the same time, serves
to justify such a procedure. This approach should therefore
generally be most valid for systems in which there are rapidly
varying, well-separated dynamic processes, with late-time
dynamics dominated by diffusive dissipation.

The preceding discussion is limited to the equations of mo-
tion, but one can consider similar coarse-graining arguments

for the free energy functionals as well. For example, since
the vacancy PFC approach at least partially builds the explicit
vacancy diffusion mechanism back into the model description,
its functional must correspond to a smaller coarse-graining
time than that of the standard PFC functional. It may therefore
be appropriate to employ a highly underdamped vacancy
PFC model in the normal and moderately supercooled liquid
regimes and not only to increase the dynamic coarse-graining
time B in the deeply supercooled regime, but also to employ
a standard PFC functional. We have not yet attempted such a
procedure.

IV. PROPERTIES OF THE VACANCY PFC MODEL CLASS

Initial results concerning the dynamics of freezing and glass
formation in monatomic and binary supercooled vacancy PFC
liquids were presented in Ref. [25] and were further rescaled
in the previous section. Here we expand on those initial
results by presenting new findings related to phase behavior,
aging properties, and dynamic mechanical response to applied
strains. Both monatomic and binary systems are described by
Eqs. (2)–(4) and (6), where fAB = fBB = 0 in the monatomic
case.

A. Phase behavior

The normal liquid state in vacancy PFC models is a collec-
tion of mobile, relatively long-lived density peaks separated by
regions of approximately zero density. Additionally, solid va-
cancy PFC states generally assume density configurations with
geometrical features that are not accurately described by the
standard sinusoidal one-mode expressions normally applied to
PFC solids. For these reasons, analytic calculations of phase
diagrams are somewhat more difficult than for standard PFC
models, and the three-dimensional case is most readily and
accurately treated with numerical simulations. Archer et al.
[33] have studied the phase behavior of similar models in one
and two dimensions. In this study, three-dimensional simula-
tions were initialized with a modified one-mode description
of the density field and the free energy was computed after
the system reached a steady-state configuration. The modified
one-mode description proposed here is given by

n(�r) = [n1m(0 → 1)]g(n̄), (10)

where n1m(0 → 1) is the one-mode density expression for a
given symmetry, shifted and scaled to span n = [0,1], and
g(n̄) is the constant power required to achieve a given average
density n̄. For example, an fcc lattice with n̄ = 9/32 in this
approximation is given by

n(�r) = [
1
2 cos (qx) cos (qy) cos (qz) + 1

2

]2
, (11)

where q is the equilibrium fcc wave number at a given T .
A comparison of the standard one-mode, modified one-mode,
and numerically obtained vacancy PFC fcc lattices is shown
in Fig. 3(a). Monatomic lattices considered in this study were
fcc, bcc, simple cubic, and hexagonally packed rods.

For n̄ = 3/20, the monatomic liquid state has the lowest
observed free energy above T � 1.32, while crystalline struc-
tures minimize F at lower T . At T = 4/5, for example, the fcc
lattice has the lowest free energy of those considered. For the
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FIG. 3. (Color online) (a) A comparison of standard one-mode,
modified one-mode, and numerically obtained fcc lattices for the
monatomic vacancy PFC model [Eqs. (2)–(4) and (6) with fAB =
fBB = 0] at n̄ = 3/20, T = 4/5. One-dimensional cross sections
shown at y = z = 0. (b) The binary L12 (Cu3Au) lattice, from a
simulation of the binary vacancy PFC model [Eqs. (2)–(4) and (6)]
at n̄i = 3/40, T = 1/10. nA is displayed using a black-orange color
scheme (grayscale; larger “atoms”), with nB in grayscale (smaller
“atoms”).

case of a conserved number density, the liquid-fcc coexistence
region spans some range within 4/5 < T < 7/5, though the
precise bounds have not yet been determined. It is sufficient
for the present purposes to know that bulk freezing is expected
near T = 33/25.

Binary vacancy PFC lattices were initialized and evolved
in the same manner. Lattices considered in this study are B1
(NaCl), B2 (CsCl), B3 (zincblende), L10 fcc (CuAu), L12 fcc
(Cu3Au) and fully phase separated fcc lattices of A and B

atoms. The L12 lattice, for example, with the larger-B atoms
located at the unit cell corners, can be written

nA(�r) =
∑

k=x,y,z

[
1

2
+ 1

6

∑
j=x,y,z

cos [qj + π (δjk − 1)]

]gA(n̄)

,

nB(�r) =
[

1

2
+ 1

6
( cos (qx) + cos (qy) + cos (qz))

]gB (n̄)

,

(12)

where, for example, gA(9/16) = 3 and gB(3/16) = 3 [see
Fig. 3(b)].

For n̄i = 3/40, the liquid state has the lowest measured
free energy for T � 3/4, while the L12 lattice has the lowest
free energy of all lattices considered for 1/10 � T � 3/4. The
observed variation in stability of the L12 crystal suggests that
its solidus lies near T = 3/5 and its liquidus near T = 7/10.
The L12 lattice is the only of those examined with an average
free energy lower than that of a typical disordered solid. An
L12 crystal will ideally contain three A atoms for each B

atom if no vacancies are present, while the present system
contains equal numbers of A and B atoms. If we assume that
every B site is always occupied, this would imply that only
one of three A sites can be occupied at any instant to realize
this nonstoichiometric structure. This inconsistency can be
corrected by independently varying the n4

i coefficients in fii

to adjust the amplitudes of A and B density peaks such that a
stiochiometric configuration minimizes the free energy.

B. Aging properties

Glasses, and systems out of equilibrium in general, are
known to display aging behaviors. Their physical properties
vary with time as the system evolves irreversibly through phase
space toward lower energy configurations. The intermediate
scattering function can be generalized to include a waiting
time tw, which becomes important out of equilibrium:

F(q,tw + t,tw) = 〈exp {iq[n(tw + t) − n(tw)]}〉. (13)

Such relaxation functions can often be separated into two
components,

F(q,tw + t,tw) = Ffast(q,t) + Faging
(
q,t/tμw

)
, (14)

where Ffast contains rapid processes, which do not depend on
tw, and Faging contains the slower processes, which do depend
on tw and often obey a simple t/tμw scaling, where μ � 1 is
called the aging exponent.

The observed effect of waiting time tw on the supercooled
PFC liquid relaxations is shown in Fig. 4. Equilibrated
samples were quenched instantaneously from T = 9/10 to the
indicated T , and Fij (q,tw + t,tw) measured for tw=100 to 106
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FIG. 4. (Color online) Aging behavior in the underdamped bi-
nary vacancy PFC supercooled liquid given by Eqs. (2)–(4) and
(6). Samples quenched from T = 9/10 and monitored after various
waiting times tw . (a) FNN(q∗,tw + t,tw) for various tw , T , and system
sizes. Inset: Data for T = 1/5 glass. (b) Measured relaxation time
vs tw showing the various scalings with tw . Parameter values are the
same as those in Fig. 2 with B = 0.01 and Ti = 1.225.
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by powers of 10. The normal liquid at T = 0.729 exhibits only
very minor signs of aging, even for values of tw much smaller
than the equilibrium relaxation time. This suggests that the free
energy landscape in the normal liquid state is relatively flat,
such that any initial liquid-like state will already be close to
equilibrium and will very rapidly lose any small initial history
dependence.

At T = 2/5, well into the glass-like regime, clear aging
effects emerge for all values of tw smaller than the structural
relaxation time. The general behavior is very similar to
that observed in molecular dynamics simulations [34] and
colloidal experiments [35]. There is an initial range of small
tw values for which the relaxation functions show little or
no tw dependence. Above this T -dependent lower cutoff, a
systematic tw dependence becomes apparent, with very good
adherence to the predicted Ffast + Faging decomposition. Short
time scales remain independent of tw, while slow relaxations
scale quite well with t/tμw . The measured values of μ are in
the range of 0.6 to 1.0, with possible modest dependences on
system size and T .

The tw scalings break down at large tw as the steady
metastable relaxation function is eventually obtained and
aging ceases. For system sizes smaller than the dynamic
correlation length, the steady metastable relaxation function
is size dependent, while no size dependence is observed for
systems larger than ξD at a given T . Thus finite-size effects
are present in the T = 2/5 and T = 1/5 data for all accessible
system sizes. Another interesting feature of the low-T data is
the long-time tail that appears for small tw. This seems to be
a reflection of the sudden introduction of slow processes and
significant local trapping. The slow time scale is immediately
evident in the relaxations for all tw but takes some finite amount
of time to reach a steady state as the system settles into the
new, more restrictive free energy landscape.

C. Elastic and plastic responses of glasses and crystals

Another potential application for models of this type
is investigation of glassy structures under low-strain-rate
deformation where complex dynamic processes spanning a
range of length and time scales often emerge. Our present
aim is simply to demonstrate that fundamental differences in
mechanical response between crystals and glasses are naturally
captured by the PFC description due to the atomistic nature
of n(�r).

Figure 5 shows a comparison of glass and crystal energies
under various constant applied shear rates. The crystalline
systems deform elastically and linearly until a yield point
is approached and a transition to relatively steady plastic
flow occurs. The crystal, which initially contains no defects,
exhibits two types of yielding behavior. At high shear rates,
stress relief occurs through slipping of atomic layers near
the surfaces at which shear is applied. At lower shear
rates, stress relief occurs through rapid disordering of some
portion of the system (see Fig. 5), followed by a steady-state
flow regime in which crystalline regions remain elastic and
amorphous regions flow plastically. The volume fraction of
the amorphous region first increases as the shear rate is
lowered and layer slipping becomes less preferable. Eventually
this trend reverses at very low shear rates. If the crystal is
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FIG. 5. (Color online) Top: Average free energy vs shear strain
for perfect L12 crystals (thick solid lines) and glassy systems (dotted
lines) in the underdamped binary vacancy PFC model [Eqs. (2)–(4)
and (6)]. Results for various constant shear rates are shown. Bottom:
Cross sections of an L12 crystal at 10.74% and 19.85% applied
strain, under shear rate 0.00002/t . Parameters are the same as those
used in Ref. [25] (n̄i = 3/40, etc.), with Bi = 0.01, T = 1/5, and
volume = 2563. nA is displayed using a black-orange color scheme
(grayscale; larger “atoms”), and nB is in grayscale (darker; smaller
“atoms”).

given some initial defect density, the tendency toward bulk
disordering is reduced and a jerkier regime of plastic flow is
observed, as defect motion alone is able to relieve much of the
applied stress.

In glassy systems, reversible elastic deformation at small
applied strains is followed by a gradual crossover to irre-
versible plastic deformation at larger strains, toward a strain
threshold above which unbounded steady-state plastic flow
occurs. Generally, no pronounced yield point is observed.
These behaviors are consistent with general expectations for
plasticity in amorphous materials, as are the intermittent
fluctuations in the steady-state regime, which seem suggestive
of avalanche-type plastic events.

The apparent shear moduli of the aging glasses are smaller
than those of the perfect crystal and also exhibit a greater rate
dependence. A strong dependence of the state of the system
on the history of past deformations is also apparent. Unlike
the crystal, the aging glass systems exhibit a crossover from
viscous to elastic response as the shear rate is increased. If the
structural relaxation time of the glass is shorter than the time
required to translate the sheared surface of the sample some
meaningful distance, say 1 a.u., then the mechanical energy
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FIG. 6. (Color online) Constant stress mechanical response of
standard PFC glasses and fcc crystals [Eqs. (1) and (5)]. Linear stress-
strain behavior eventually gives way to nonlinear elastic behavior and
then plastic flow at high stresses and strains. Inset: Measured Poisson
ratios of glass and crystal systems vs applied stress. Parameters are
the same as those used in Ref. [37]: n0 = −0.48, r = −0.63, Mi = 0,
�x = 0.092 685 = afcc/20. The system sizes in terms of number of
atoms are roughly 864, 6912, and 55 296 for volume = 11.12223,
22.24443, and 44.48883, respectively.

input is dissipated rather than stored as elastic energy. Thus
the response is viscous, and in contrast to the crystal, the peak
free energy change appears to approach 0 along with the shear
rate, as shown in Fig. 5. If the structural relaxation time is
longer than the characteristic shear time, then the mechanical
energy input can be stored as elastic energy, and the response
is elastic.

The mechanical response of glasses in standard, nonva-
cancy PFC models [1,2] is somewhat different. The rapid
cage-rattling process is absent and the structural relaxation
time of the glassy state becomes extremely large (unless
Mi is large). The response to a slow, small deformation is
therefore always elastic, in contrast to the viscous response
of the moderate-T -vacancy PFC glass. Standard PFC crystals
and glasses exhibit similar linear elastic behavior for stresses
�Cii/20 and similar Poisson ratios of ∼1/3, as shown in Fig. 6.
The elastic moduli and the yield stresses of the glasses are
generally smaller than those of the perfect crystal, as shown
in Fig. 6, though the glass moduli become somewhat larger as
the system size is increased.

The general features of the mechanical response observed
in these simulations of perfect crystals and glasses suggest
that many elements of plasticity in amorphous materials can
be captured by PFC-type descriptions. The detailed nature
of these elements will require closer analysis to determine
whether the mechanisms at work and the local correlated
dynamics that emerge are consistent with those observed in
other atomistic simulations. Though amorphous plasticity and
defect-mediated crystal plasticity exhibit a mix of differences

and similarities, it will be interesting to see whether PFC
studies of the mechanics of amorphous materials keep pace
with progress already made in terms of crystal plasticity
[36–38].

V. CONCLUSIONS

The dynamics of glass-forming PFC liquids have been
examined across a large range of time scales and shown to
exhibit the same central features observed in many simple
glass-forming systems. Two essential model components have
been identified as sufficient for generation of a glass transition
within PFC-type descriptions. The first is a source of strong
nonlinearity in the free energy that generates sufficient caging
to suppress crystallization and produce a fragile glass transition
with a Vogel-Fulcher divergence in the primary structural
relaxation time. The second is an equation of motion describing
two or more time scales, which will generate two-step
relaxation functions in the supercooled liquid phase with the
basic features predicted by the mode-coupling theory of glass
formation.

These central dynamic features are qualitatively reproduced
across 12 orders of magnitude in time after a physically
motivated time scaling is applied to our previously reported
simulation results. Other new aspects of the equilibrium
phase behavior of the simple binary model system have
also been outlined. Aging behavior has been explored in the
moderate and deeply supercooled regimes, and the extracted
aging exponents are consistent with those observed in other
glass-forming systems. General features of the elastic and
plastic responses of amorphous and crystalline PFC solids
under deformation have been compared and contrasted as well.
Amorphous systems exhibit lower elastic moduli and less
pronounced yield behavior than perfect crystalline systems,
with an initial elastic response crossing over smoothly into
a regime of globally steady but locally heterogeneous plastic
flow. The overall mechanical response is viscoelastic, with
a crossover from viscous to elastic behavior at frequencies
above roughly the inverse structural relaxation time of the
glassy state. We hope that these findings will prove useful
both as a general guide to constructing efficient PFC models
with realistic glass-forming properties and as an illustration of
the range of time scales and processes that can be accessed by
such models.
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[6] H. Löwen, Phys. Rep. 237, 249 (1994).
[7] D. Oxtoby, Annu. Rev. Mater. Res. 32, 39 (2002).
[8] M. Haataja, L. Gránásy, and H. Löwen, J. Phys.: Condens.
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