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We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients
the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active
particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad
range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as
self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic
model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified
structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger
a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate
balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound
influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as
self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion
that persist over large time scales and length scales, suggesting that systems of active particles generically behave

as dynamically heterogeneous systems.
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I. INTRODUCTION

In many active materials, the relevant entities (molecules,
cells, animals, etc.) are self-propelled objects which can
borrow energy from their environment to produce their own
motion using some internal mechanism [1-3]. At the funda-
mental level, the local energy input required by self-propulsion
breaks detailed balance, which automatically drives the sys-
tem far from thermodynamic equilibrium. Self-propulsion
is therefore directly responsible for the emergence of a
number of collective phenomena that are not observed in the
absence of activity, such as, for instance, the existence of an
orientationally ordered state in two spatial dimensions [1-4],
the formation of coherently moving patterns, aggregation,
clustering, motility-induced phase separation and giant num-
ber fluctuations [1-10].

Self-propelled “particle” systems are manifold in biology,
with examples ranging from animal groups to bacterial
colonies or molecular motors in the cytoskeleton [2]. Recently,
artificial or “abiotic” physical systems of self-propelled parti-
cles have been realized in the laboratory using, for instance,
granular materials [11,12] or colloidal particles with specific
surface treatments [13—19]. These experimental developments
offer an ideal playground to investigate general features of self-
propelled particle systems since they are simpler to control and
more versatile than their biological counterparts. Because the
physics of granular and colloidal particles has been analyzed
in great detail, self-propulsion can be seen as a new physical
ingredient whose influence needs to be studied. In this work,
our central objective is to understand how deviations from
detailed balance originating from persistent self-propulsion
affects the structure and dynamics of simple fluids.

Over the past few years, the field of active matter has been
the subject of a large number of studies, striking interest from
a broad community of researchers stemming from different
fields [1-3]. Previous studies have revealed the importance
of the shape and polarity of self-propelled particles for their
collective behavior. Agent-based models of polar particles
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with an alignment interaction undergo a phase transition
towards a polar ordered state, resulting in giant number fluctu-
ations [4,6,20]. Elongated apolar self-propelled particles such
as granular rods with excluded volume interactions order in a
nematic state. Moreover, nematic particles and myxobacteria
self-organize into coherently moving patterns [5,11,21] and
display a range of emerging patterns [22—24]. Closer to simple
liquids and to our own approach, recent studies have shown that
systems made of apolar isotropic particles with no orientational
order may exhibit a motility-induced phase separation [7,9,25],
which has motivated a large number of studies [26-31].

The recent development of simple experimental systems
of self-propelled granular and colloidal particles motivates
the study of simple model systems where the influence of
self-propulsion on the equilibrium structure and dynamics of
simple fluids can be understood in detail. The hard-sphere
model is perhaps the simplest and most studied model to
study the physics of simple liquids [32], where physics
stems from the competition between hard-core repulsion and
thermal fluctuations. Hard spheres represent also an excellent
model to understand the physics of colloidal and granular
particles. Therefore, we decided to develop a simple model
of self-propelled hard particles, specializing ourselves to two
dimensions where the majority of experiments on active
particles are performed, but the model is easily generalized
to treat higher dimensions.

So far, the statistical mechanics of active particles has
been studied numerically using mainly Brownian dynamics
simulations, where self-propulsion is introduced in Langevin
descriptions of active Brownian dynamics by considering
specific couplings between translational and orientational
motion [8,9,25,33,34]. In these descriptions, more complicated
phenomena induced by additional coupling to hydrodynamic
fluctuations are neglected, but they still contain an appreciable
number of control parameters that must be simultaneously
adjusted. Here we wish to develop a minimal strategy to
capture at the most basic level how self-propulsion affects
the structure and dynamics of simple fluids, extending the
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approach successfully used to study simple fluids at thermal
equilibrium, namely, kinetic Monte Carlo simulations [35,36].
We carefully explain our modeling, justify its relevance for the
field of active matter, and compare it to alternative models in
some detail.

The principal aim of our work is therefore to develop a
“minimal” numerical model with as few control parameters
as possible. To this end, we introduce a kinetic Monte Carlo
model of self-propelled hard disks, where activity is controlled
by a single control parameter, which reduces, in the dilute
limit, to the persistence time t of a persistent random walk
motion. Equivalently, this control parameter can be seen
as a “rotational” Péclet number [37,38]. Because thermal
fluctuations only affect rotational degrees of freedom, the
“translational” Péclet number is not a convenient control
parameter in our model [9]. The second control parameter
of the model is the packing fraction ¢ of the hard disk system,
which is the unique one in equilibrium conditions. Although
our model is presumably too simple to describe the details
of any specific experimental realization, we demonstrate that
it can still capture some essential features of the interplay
between thermal fluctuations, excluded volume, and self-
propulsion.

The present work presents a detailed study of the (¢,7)
phase diagram of the model, which reduces to the known
equilibrium hard disk fluid model in the limit © — 0. The
glassy active dynamics of the model at large density is studied
elsewhere [39], and we concentrate in this work on the regime
0 < ¢ < 0.60. Our main results are summarized in Fig. 1,
which displays the emergence, at any finite density, of complex
nonequilibrium structures in the active fluid, taking the form
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FIG. 1. (Color online) Representative snapshots of a system
composed of N = 10* self-propelled hard disks at different packing
fractions ¢. The left and middle columns correspond to two different
values of the persistence time 7, showing a fluid phase at low ¢
and low 7, the emergence of clusters as 7 is increased, and a
gel-like structure at large ¢ and large . The right column shows
phase-separated systems obtained upon the addition of translational
noise of finite amplitude n across a broad range of densities.
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of finite size clusters at moderate density that percolate to form
a gel-like structure at larger density. These structural changes
are accompanied by profound changes in the dynamics of
the system, which we also analyze in detail. Surprisingly,
clustering in our model does not take the form of a macroscopic
phase separation found in previous numerical models of active
isotropic Brownian particles [7,9,25,40,41]. We elucidate the
physical origin of this qualitative difference by introducing an
additional translational noise of strength 7 in our model and
by showing that phase separation can only occur in a restricted
part of the extended (¢,7,n) phase diagram where n > 0 (see
the corresponding snapshots in Fig. 1). This demonstrates
that phase separation, in fact, results from a balance among
noise, interparticle interactions, and self-propulsion that is
more delicate and perhaps less generic than previously thought.
An interesting corollary is that clustering in our model can
be interpreted as the result of a kinetically arrested phase
separation, which adds a possible mechanism to the ongoing
debate about the origin of clustering in self-propelled particle
systems [9,17,42,43].

The paper is organized as follows. In Sec. II, we define
our kinetic Monte Carlo approach to simulate the behavior of
self-propelled hard disks and present the control parameters,
units, behavior in the dilute limit, and comparison with existing
models. In Sec. III we establish the phase diagram of the
model in steady-state conditions, showing fluid, clustered,
and percolated phases whose boundaries are carefully studied.
We construct and solve a kinetic model that reproduces the
cluster size distribution obtained in the simulations and gives
useful insights into the aggregation mechanism. In Sec. IV
we show that a finite amount of translational noise triggers a
macroscopic phase separation over a broad range of densities.
In Sec. V we analyze the dynamics of the model in steady
state and show that the relaxation of the system is highly
heterogeneous. In Sec. VI we summarize and discuss our
results.

II. KINETIC MONTE CARLO MODEL
FOR SELF-PROPELLED HARD DISKS

A. Hard disk model: Volume fraction ¢

We work with a bidimensional, monodisperse assembly of
N hard disks of diameter o enclosed in a square box of linear
size L, using periodic boundary conditions. The hard-core
interaction implies that no overlap between disks is allowed,
whereas configurations with no overlap all have the same
energy, which can be chosen to be zero, for convenience.
Therefore, by contrast with most works dealing with active
Brownian particles, the particle softness is not an independent
control parameter, and density and temperature cannot be
independently adjusted because we use an infinitely hard-core
repulsion. The system is thus uniquely characterized by the
packing (or more precisely, area) fraction,

aNo?
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B. Kinetic Monte Carlo in equilibrium

Monte Carlo simulations are traditionally viewed as an
efficient way to sample the configurational phase space with a
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given probability distribution, usually chosen as the Boltzmann
distribution [35]. However, it is well known that Monte
Carlo simulations can also be used to analyze the kinetics
of statistical models, including off-lattice complex fluids [36].

For hard disks, the equilibrium Monte Carlo approach is
conceptually very simple and proceeds as follows. The posi-
tions of the particles are updated sequentially, and dynamics
results from the repetition of the following elementary Monte
Carlo trial step.

() Attime 7, a particle is chosen at random, say particle i.

(i1) A random displacement §;(¢) is drawn from a chosen
distribution. We use the convention

5i(1) = 80&i(1), )

where §,~ (t) is arandom vector with components independently
drawn from a flat distribution in the interval [—1,1], so that
typical displacements have a typical amplitude ~4.

(iii)) The move is accepted if it creates no overlap between
the disks. This trial Monte Carlo step can be written as

Fit + 1) = Fi(1) 4 8;(1) pace(0), 3)

where the acceptance probability p,..(¢) is unity if no overlap
is created and zero otherwise.

Conventionally, a Monte Carlo time step tyc is defined
as the succession of N such elementary moves, so that the
dynamical behavior expressed in units of yc does not depend
on the number of particles in the limit of large N [36].

Another interesting limit is when the elementary step size
8o becomes very small. If this limit is considered, it is more
convenient to use a different time unit, 7y, = SSTMC, such that
the dynamics becomes independent of §y as §o — 0. In this
limit, the above Monte Carlo dynamics becomes equivalent to
the following Brownian dynamics,

9. - .
570 = ; Fii () + (o), 4)

where f;j is the interparticle force and Zi is a Gaussian
random noise satisfying the fluctuation-dissipation theorem,
(Cia(®)Cj (1)) = 2DoBupd;ij6(t —t'). Identification with the
Monte Carlo dynamics is obtained by choosing Dy = 82, such
that the diffusion constant is equivalent in both descriptions.

C. Introduction of self-propulsion: Persistence time 7

To introduce self-propulsion in the hard disk model, we
must produce time correlations in the elementary particle
displacements. A simple way to do this is to introduce
correlations between successive displacements of the particles.
To this end, we generalize Egs. (2) and (3) to

8i(t) = 8;(t — 1) + 8, &), (5)

Filt 4+ 1) = Fi(0) + 8:(1) Pace?), (6)

where we enforce the condition that |§; (f)| < o, just as in
the original equilibrium dynamics in Eq. (2). Notice that the
models only differ through the equation evolution of &;(¢) as
Egs. (3) and (6) are the same.

The physics of the kinetic Monte Carlo model in Eqgs. (5)
and (6) is transparent, as it differs from the equilibrium Monte
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Carlo dynamics only by the fact that the random displacement
8;(t) now performs a simple random walk of average jump
length §; in a square of linear size §, (with reflective boundary
conditions).

The interesting regime is when 8; < &y, where the orienta-
tion of the elementary displacement then decorrelates slowly
in about (80/8 1)? trial moves (this scaling stems from the fact
that §; must diffuse a distance §p using independent steps of
size §1). This implies that the elementary trial moves develop
time correlations and decorrelate after a typical persistent

time 7,
80\ >
7=|—) e, )
d1

which defines the second control parameter of the model.
This time scale has sometimes been named rotational Péclet
number [37,38], as it quantifies the efficiency of the fluctua-
tions that are responsible for the rotation of the displacement,
as modeled by the term §,§; in Eq. (5). Note that it is not
convenient to define a Péclet number based on translational
degrees of freedom from Eq. (6), a situation which is also
encountered in previous models [9,22,44].

The key feature of the kinetic model defined by Egs. (5)
and (6) is that whereas the model is Markovian in the
enlarged space of positions and displacements, it becomes
non-Markovian and time irreversible in the subspace of the
positions, where detailed balance is therefore broken. As a
result, the model becomes purely “dynamical” in the sense
that the configurational space of the hard disk system is not
sampled according to the Boltzmann distribution anymore. In
short, self-propulsion pushes the system far from equilibrium,
which is only recovered in the limit t — 0, where equilibrium
sampling as in Eq. (2) is obtained. By slowly increasing
T we can then observe how the system departs from a
well-known equilibrium situation. Such a smooth connection
to equilibrium is not always possible in earlier models of active
particles [9,40].

In practice we have studied system sizes in the range N =
10310 to test against possible finite size effects, which are
discussed whenever they are relevant. We have changed the
persistence time 7 in Eq. (7) using a fixed length scale §y =
0.1 controlling the maximal size of the elementary moves
and by varying §; in Eq. (5). We have explored a regime
81 = 0.001-0.1, thereby covering a range of persistent times
of 4 orders of magnitude, T/Tyc = 1-10*.

From now on, we use the particle diameter o as the unit
length scale and the Monte Carlo time step Tyc as the unit
time scale.

D. Dilute limit: Persistent random walk

The physics of the dilute limit is straightforward. The
regime where v <« 1 is trivial since particles then perform
a simple random walk, with a jump size controlled by &, in
which case, the mean-squared displacement defined as

AX(t) = ([F:(t) — F:(0)]%) (8)

increases as A%(¢) = 4Dyt, with Dy ~ 88.
Let us consider the more interesting regime where t > 1.
Two time regimes have then to be considered. When ¢ < 7,
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FIG. 2. (Color online) Time dependence of the mean-squared
displacement, Eq. (8), in the dilute limit, ¢ — 0, for different
persistent times t, showing a crossover from ballistic to diffusive
motion, with a diffusion constant that increases with 7. (Inset) The
same data are collapsed using the scaling form in Eq. (10) with
ballistic and diffusive asymptotics indicated with dashed lines.

displacements are nearly persistent and the mean-squared
displacement increases ballistically as A%(¢) & (§o¢)*. On the
other hand, the displacements become uncorrelated for times
¢ > t, and motion becomes diffusive, A%(t) ~ 4 D¢, with

D ~ Dyt. &)

This shows that, as expected in the dilute limit where particles
do not interact, the self-propulsion mechanism enhances self-
diffusion, simply because ballistic motion is more efficient
than diffusion.

In Fig. 2, we present numerical data obtained from
simulating the kinetic Monte Carlo model [Egs. (5) and (6)]
in the dilute limit, ¢ — 0. These data confirm the above
description, with the observation of ballistic motion crossing
over to diffusive behavior at a time scale controlled by r,
therefore reducing to simple diffusion in the equilibrium limit
7 — (. Because this crossover between ballistic and diffusive
motion is uniquely controlled by the persistence time , the
mean-squared displacement takes the scaling form

A1) = T?F(t/7), (10)

where F(x) ~ x% for x <« 1 and F(x) ~ x for x > 1. This
scaling form suggests that data can be collapsed when A% /7>
is represented as a function of the rescaled time ¢/t, as
demonstrated in the inset of Fig. 2. Physically, Eq. (10) also
implies that in the dilute limit, it is equivalent to vary the
persistence time or the velocity characterizing the ballistic
motion at short time.

E. Adding fluctuations: Translational noise 5

By definition of the kinetic model in Egs. (5) and (6),
elementary particle displacements 7;(t + 1) — r;(z) are fully
controlled by the orientation of the vector §;(¢), whose time
evolution is not affected by the particle motion. Thus, in our
model, particles have only two choices: Either move in the
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direction imposed by gi(t) [when p,..(t) = 1] or stop [when
pacc(t ) = 0]

The main body of the article is devoted to studying
the behavior of the model using these simple kinetic rules.
However, to establish connections with other models proposed
for active Brownian particles [9,25,29], it is useful to introduce
an additional translational noise in our model. There are many
possible ways to do this, and we have checked that our results
do not depend crucially on the specific choice we made.

We perturb the self-propelled dynamics in Egs. (5) and (6)
by performing additional Monte Carlo moves of small am-
plitude &, that have the same Markovian properties as in
equilibrium dynamics. In practice, for each Monte Carlo trial,
we choose with probability 1/2 to use the self-propelled
dynamics in Egs. (5) and (6) or to draw a random displacement
8,6,(t) [see Eq. (2)]. This perturbation then allows particle
displacements that are not uniquely controlled by the direction
of §;(¢), and therefore it introduces noise in our kinetic Monte
Carlo model.

We quantify the strength of the noise by the quantity
n = 8,/80, which compares the relative size of the Monte
Carlo moves performed without memory (of amplitude &,)
to the persistent moves (of amplitude 8y). Our original kinetic
Monte Carlo model is recovered as n — 0, while for finite 7,
the model then lives in an extended three-dimensional phase
diagram (¢,7,n).

Our primary motivation to introduce n as an additional
control parameter is to make contact with earlier numerical
results, as detailed below. In particular, we emphasize that t
and n separately control the strength of the self-propulsion and
that of the noise, which allows us to disentangle the relative
role they might play in the physics of active Brownian particles.

F. Comparison with earlier models

The kinetic rules defining our Monte Carlo model in Egs. (5)
and (6) fall in between two types of modeling that have been put
forward to understand the physics of active particle systems.

Because dynamics proceeds in discrete time steps, our
model bears similarities with approaches initiated by Vicsek
and co-workers, which analyze the dynamics of point particles
evolving under the influence of aligning interactions and
noise [2]. The several versions of the Vicsek model that have
been developed and studied in previous work do not contain
physical ingredients that are similar to the present model.

A different class of models is obtained starting from
Langevin equations governing the time evolution of the po-
sition and orientation of the self-propelled particles [9,25,29].
Because we can take the limit of small step sizes in the kinetic
Monte Carlo approach, we expect our model to also bear
strong similarities with Langevin models neglecting inertia,
hydrodynamic interactions, and particle anisotropy, as studied,
for instance, in Refs. [9,25,34,40,45]. It is therefore interesting
to compare more precisely our model to this family of earlier
studies.

To proceed we must first discuss the small step size limit
in our model, in analogy with the discussion of equilibrium
dynamics in Sec. II B. To analyze the limit §; — O, it is useful
to introduce, again, a distinct time unit, tI(;IC = §pTMmc. In these
(double-primed) units, the persistence time becomes 1”7 = §y,
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persistent motion at short times ¢’ < t” takes place with
a velocity v” = 1, while the long-time diffusion coefficient
controlling the regime t” 3> 7" in the dilute limit becomes
D" = t”. The limit §) — O can then safely be taken, the
physics remaining unaffected by the chosen & value, provided
the persistence time t” is kept fixed. In practical terms, this
implies taking the limits §) — 0 and §; — 0, while keeping
the ratio §; /87 = t” constant.

This reasoning applies as long as §y is small compared to
any other length scale in the problem. We have checked that
the numerical results presented in this paper are not affected by
the specific choice §o = 0.1 we made. This choice is dictated
by the usual trade-off between having a very small &y to get
closer to the continuous time limit, and the large jumps needed
to make simulations more efficient [46]. Of course, extremely
large jumps with 6o > o would be unphysical and would
anyway be rejected with high probability in dense systems.

Because the system is now far from equilibrium, equiv-
alence with a Langevin description is not obvious. Earlier
Langevin models typically study the dynamical equations

9 . - -
710 = voiti(0) + Y fij(0) + Gi(o), (11)
J

J _ R
591‘0) =¢ (), (12)

where vy is the “bare” self-propulsion velocity, n; =
(cos 6;, sin 6;) a unit vector whose orientation 6; independently
evolves according to Eq. (12). Note that this set of equations
introduces several control parameters, having two sources of
noise, an energy scale from the interparticle forces, and a
velocity governing self-propulsion, which typically implies
that only specific combinations of these are studied.

It is obvious that, in the dilute limit, such a Langevin
description coincides with our kinetic Monte Carlo approach,
yielding, in particular, a persistent random walk similar to the
data shown in Fig. 2, with a persistent time controlled by the
strength of the angular noise ;iR (t) in Eq. (12).

At finite density, the orientation evolves freely, and the
analogy between Eqs. (5) and (12) still holds. However, the
situation is different for Eq. (11) when interparticle forces
compete with self-propulsion and noise. While elementary
displacements in our model are fully dictated by the ori-
entation, Eq. (6), this is not the case in Eq. (11), which
allows displacements transverse to the direction imposed by
n; resulting from the competition between forces and noise.
At finite density, our model is thus not equivalent to Eq. (11).
This difference is responsible for the fact that some of our
results differ from earlier reports. This is why we introduced
the translational noise term 7, as discussed above in Sec. ITE,
in order to induce motion in the direction transverse to that
of the self-propulsion. We demonstrate below that this term is
crucially needed to trigger a macroscopic phase separation.

Recently, a noiseless version of the above Langevin
equations (11) and (12) has been studied, where ¢; = 0 [9,40].
While apparently closer to our Monte Carlo model (the
model has no translational noise term), this “athermal” model
still allows transverse displacements controlled by the force
term in Eq. (11), at least for continuous pair interactions
between the particles, showing that both random noise and
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transverse component of the forces can induce a macroscopic
phase separation. This suggests that the origin and statistical
properties of the transverse component of the displacements
are not crucial.

Finally, a model of self-propelled hard particles has recently
been put forward, which is again reminiscent of our model, in
the sense that it does not introduce any energy scale through
particle interactions [45]. However, in this model a finite
amount of translational noise is introduced as in Eq. (11),
suggesting that this model is, in fact, closer to our generalized
Monte Carlo model where a finite amount of translation noise
n is introduced.

III. NONEQUILIBRIUM STRUCTURES
AND PHASE DIAGRAM

We start our investigations with a detailed structural char-
acterization of the stationary phases of the model, exploring
in detail the phase diagram (¢,t). The effect of adding a
translational noise n > 0 is studied separately in Sec. I'V.

A. Phase diagram: Fluid, cluster, and percolated phases

From a systematic inspection of the steady states obtained
for a large range of values of the external parameters ¢ and
7, we obtained the phase diagram shown in Fig. 3. Typical
configurations of the system representative of the different
phases are shown in Fig. 1. In the low-¢, low-t region,
the system sets into a fluid phase with the structure and
dynamics of simple liquids at low density, analogous to a dilute
suspension of passive disks. This simple phase is expected,
as we explicitly constructed the model in order to smoothly
recover the equilibrium situation in the limit 7 — 0.

Increasing the persistence time at constant density induces
a strong clustering of the particles (see Fig. 1) and the system
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FIG. 3. (Color online) Phase diagram of the kinetic Monte Carlo
model of self-propelled hard disks in the volume fraction (¢) and
persistence time (7) plane. It comprises fluid, cluster, and percolated
phases. The symbols are numerical estimates of the phase boundaries.
While the percolation is uniquely defined, the fluid-cluster boundary
is not a phase transition, and we report both a dynamical (circles) and
a structural (triangles) criterion to locate this smooth crossover.
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enters a phase where finite size clusters characterized by a
broad distribution of sizes coexist in space. We call this a
cluster phase. We emphasize that this phase is obtained in
a genuine stationary state, and that the average cluster size
remains finite and independent of the time throughout the
cluster phase, with no tendency towards macroscopic phase
separation.

Clustering in our model occurs naturally as a result of
the competition between self-propulsion (particles move in
straight lines) and hard-core repulsion (particles cannot over-
lap), so that when two particles move persistently towards each
other they have to stop when they touch, until decorrelation
of the orientation of the displacement vector allows moves
that do not create overlaps. Thus, as in other models of
active Brownian particles, we expect that self-propulsion is
dramatically slowed down in regions where the particle density
islarge [7], so that active particles have a clear tendency to form
aggregates, even in systems where interparticle interactions are
purely repulsive.

The formation of clusters in our model is also strongly
reminiscent of recent experimental observations in systems of
self-propelled colloidal suspensions [17—19], where motility
was shown to produce finite size clusters, even at moder-
ate densities. Clustering is also reported for self-propelled
rods [22] and myxobacteria [24].

The two boundaries between the fluid and cluster phases
shown in the phase diagram in Fig. 3 were obtained using two
different approaches that we describe below. The results show
that these two lines differ slightly, which underlies the fact that
no genuine phase transition governs the physics of the cluster
phase. In other words, the change between fluid and cluster
regions in the phase diagram is a smooth crossover.

If the cluster phase obtained at moderate density and
large self-propulsion is now compressed at fixed persistence
time, the distance between the clusters decreases until a
density is reached where the clusters percolate throughout the
system. This is the percolated phase in Fig. 3. As discussed
below, the separation line between cluster and percolated
phases corresponds to a genuine nonequilibrium geometrical
transition, whose location can be sharply defined in the
thermodynamic limit. In the percolated region, the system has
a structure similar to the one found in physical gels, which can
be, for instance, produced in equilibrium conditions in systems
of attractive colloidal particles.

This analogy strengthens further the idea that self-
propulsion in conjunction with hard-core repulsion induces
a kind of effective attractive interaction between active
particles [7,19]. However, our results differ from most earlier
numerical studies that have reported very little clustering
at low and moderate densities, followed by a macroscopic
phase separation occurring at intermediate densities and finite
self-propulsion. We analyze below in Sec. IV the possible
reasons explaining these differences and have already alluded
many times to the key role played by the translational noise.

B. Characterization of activity-driven cluster phase

In this section, we characterize in detail the structural
properties of the cluster phase resulting from the competition
between hard-core repulsion and self-propulsion.
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The formation of particle aggregates is observed in a wide
range of physical situations [47], such as gelation, nucleation,
coagulation, polymerization, etc. Simple models for out-of-
equilibrium growth, such as diffusion-limited aggregation
(DLA) [48], give rise to structures which can be described in
the framework of fractal geometry [49]. Self-propelled disks
differ from existing models studied in classic aggregation
problems because the basic ingredients are specific to our
model. Here free particles perform a persistent random walk,
which is stopped when two or more particles collide, as
explained above. In the cluster phase, a steady state is obtained
because free particles diffuse and might aggregate to existing
clusters, but particles at the surface of these clusters can
eventually escape, when their (slowly diffusing) direction
of motion points towards the exterior of the clusters. Finite
size clusters result from a dynamic equilibrium between
aggregation and escape of the self-propelled disks. Such a
dynamic process is also observed experimentally in systems
of self-propelled colloids.

We have characterized the geometric properties of the
obtained clusters in steady-state conditions. We define a
cluster as a set of disks in contact, that is, with interparticle
distance smaller than §, the elementary jump length. We then
define the cluster mass distribution P(n) as the normalized
histogram obtained by measuring the number of clusters
containing n particles.

In Fig. 4(a) we show the evolution of P(n) obtained for
moderate density, ¢ = 0.12, and increasing the persistence
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FIG. 4. (Color online) (a) Cluster size distribution for ¢ = 0.12
and different persistence times. (b) Average cluster size (n) as a
function of the persistence time t for different packing fractions ¢.
(c) Scaling plot of the average cluster size, rescaled by the equilibrium
value (n),, while the persistence time is rescaled by the crossover
value 7*(¢). The solid red line corresponds to the analytic prediction
from the kinetic aggregation model, Eq. (27), with k = 3. (d) Scatter
plot of pairs (R,,n) for clusters obtained at two different state points
with measured fractal dimensiondi =~ 1.71 (solid lines). Dashed lines
indicate dg = 1.8 and 1.6 and provide an estimate for the statistical
error on the value of dg.
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time, using a log-log representation. The effect of increasing ©
is clear, as the distribution broadens to include larger clusters.
Regarding the functional form of the distribution, we find
that it is well described by an exponential form for moderate
persistence times, but when larger clusters are created, a better
functional form is

n

P(n) ~ n~%exp (—;), (13)

where the exponent @ & 1.7, and n* controls the exponential
cutoff of the distribution. This functional form, shown in
Fig. 4(a) has been found in many instances where clusters
are formed [44,50]. It smoothly interpolates between an
exponential form when only small clusters are present, and
a power law decay, which is found, for instance, when a
percolation of the clusters is obtained. At the percolation
transition, the cluster size distribution becomes scale free,
P(n) ~ n=%. This is detailed below in Sec. III D.
As shown in Fig. 4(b), the mean cluster mass, defined as

(n) = n P, (14)
n=1

increases for increasing 7 and ¢ in the broad range of
parameters where steady-state properties could be explored
numerically. This is in broad agreement with the images shown
in Fig. 1.

We can use these measurements to determine a crossover
line in the phase diagram delimiting the onset of clustering.
In the fluid phase, we find that very few clusters are present,
such that (n) is a slow-varying function of t and (n) < 2.
However, when the persistence time is increased, the average
cluster size starts to increase more rapidly at a persistence
time that depends on the density, because clustering becomes
more probable at large density. A simple argument in the spirit
of kinetic theory implies that this crossover persistence time
should scale as T ~ 1/¢ when ¢ < 1, in good agreement with
our numerical data at low density.

The data in Fig. 4(b) suggest the following scaling analysis,
which we rationalize below by developing a simple kinetic
model for aggregation. For a given packing fraction ¢, we
measure the average cluster size (n), for passive disks, i.e., at
equilibrium. We then normalize (n) by (n), and scale the
data obtained for different densities using the scaled variable
7/7%(¢p), where t(¢) is adjusted to produce the best possible
collapse. The result of this analysis is shown in Fig. 4(c), which
demonstrates that the scaling form

(n) = <n>ed><i) (15)

-L-*

describes the numerical results very well. We find that
®(x <« 1)~ 1, whereas ®(x > 1) ~ x!/2, suggesting that the
average cluster size increases as the square root of the
persistence time. We rationalize both Eq. (15) and the /T
dependence in the model described below in Sec. III C.

An interesting outcome of this procedure is a determination,
based on structural properties of the system, of a characteristic
persistence time t* = t¥(¢), which marks the onset of
clustering. We have reported this crossover line using blue
triangular symbols in the phase diagram shown in Fig. 3.
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To analyze further the (possibly fractal) geometry of the
clusters, we need to relate the mass of a cluster, 7, to its size.
To this end, we measured the radius of gyration R, of the
clusters, defined as

1 - o
Ri@) = -~ PG (16)

rLec
where the sum runs over all the particles which belong to
a cluster ¢ of mass n. and 7. denotes the center of mass of
the cluster. We also analyzed a different length scale, namely
the end-to-end length ¢ of the cluster, which is defined as the
maximal distance between two particles in the same cluster c:
U(c) = max |r; — 7. (17)

li.j}ec

The dependence of the cluster size, n, on these geometrical
observables allows us to explore their fractal dimension. We
define d by n ~ RY* and d; by n ~ £%, where dg and d are
the fractal dimensions associated with R, and £, respectively.
For fractal clusters, we expect to find dg #dy <d (d =2
being the space dimension), meaning that the mass grows
with a characteristic length more slowly than for compact
clusters where dg = d, = d. For instance, for DLA ind =2
dimensions, n ~ RgDLA with dpra ~ 1.71 [48].

From the measure of R, and £ as a function of the cluster
size we extract their fractal dimension. We have checked
that finite size effects do not affect these measurements.
As illustrated in Fig. 4(d) for two different state points,
we obtained the fractal dimensions dg = 1.71 £ 0.05 and
dy = 1.60 £+ 0.05, independently of both the packing fraction
¢ and the persistence time 7 in the cluster phase. These results
strongly suggest that clusters in our Monte Carlo model are
always fractal. Moreover, our simulations indicate that, despite
the important differences between our model of self-propelled
disks and the DLA model, their fractal dimension d is, within
our numerical accuracy, equal to dppa. As explained above,
such an agreement is not necessarily expected, as the physics
of both aggregation processes are not precisely the same, but
this does not seem to affect profoundly the geometry of the
clusters.

Finally, we also characterize the structure of the cluster
phase using a more standard indicator, namely the static

N
Z PRy
i=1

structure factor defined as
2
S(q) = ~ (18)
q) = N\ |- ,

This observable quantifies the strength of density fluctuations
on a length scale & 27 /|q|. In Fig. 5 we show the evolution of
the static structure factor S(g) for ¢ = 0.12 as the persistence
time is increased. For t =1, S(g) has the typical shape
obtained for simple fluids at thermal equilibrium, with a
maximum at ¢ &~ 2x/r,, where r, ~ o is the typical distance
between two neighboring disks. This peak reflects the sole
influence of the hard-core repulsion, which is the main
ingredient controlling the short-ranged structure of simple
liquids. When increasing the persistence time 7, S(g) strongly
increases at low ¢, together with peaks characterizing the local
structure at wave vectors multiple of 27 /r,. This emerging
density fluctuations at low g directly reveal the presence of the
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FIG. 5. (Color online) Static structure factor, Eq. (18), for ¢ =
0.12 and different values of t. The hard-core repulsion alone (small )
produces a single peak at ¢ =~ 27 /o, while increasing clustering
enhances the density fluctuations at a much lower wave vector, i.e.,
at a much larger length scale, revealing the growth of the average
cluster size.

clusters observed in real space (see Fig. 1), which produce an
inhomogeneous structure over a much larger length scale than
in simple fluids. The increase of the intensity of the peaks at
larger g reflects the fact that clusters are denser objects than
the passive fluid. Our structure factors show strong similarities
with the experimental measurements reported in Ref. [17] with
the cluster phase of self-propelled colloids.

C. Kinetic model of reversible aggregation

We now introduce a simple kinetic model to account
for the evolution of the cluster size distribution with the
persistence time, using the tools of aggregation models [51].
More complex aggregation models have been used in the
context of clustering of elongated myxobacteria [52].

We denote by ¢, (¢) the number of clusters of mass n at time
t. By computing the behavior of ¢,(¢) in the limit + — oo,
the model should give the main features of the steady-state
distribution P(n) = nc,(t — o0) obtained in our Monte Carlo
simulations. Guided by our numerical observations, we make
the following assumptions. We assume that the size of a given
cluster can only evolve by adding or losing individual particles,
as depicted in Fig. 6. Although seemingly reasonable, this
assumption implies that we neglect more complicated events
such as the aggregation of two clusters or the breaking of a
large cluster into two smaller ones. Therefore, we consider the
two following kinetic processes. (1) Aggregation of a single
self-propelled disk to an existing cluster of mass n > 1 with a
rate K;,(n). The aggregation rate is estimated by assuming that
particles move ballistically at velocity vy, so that K, o ¢uvp.
Note that Kj, does not depend on the persistence time; see
Fig. 6. (2) Evaporation of a self-propelled disk from a cluster
of mass n > 1 with a rate K, (n). The rate of evaporation is
given by K,y o 1/t: It takes about a persistence time t to
change the orientation of the direction of motion of particles
in the boundaries of the cluster in order to escape [25]; see
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FIG. 6. (Color online) Schematic representation of the kinetic
model for reversible aggregation of self-propelled hard disks. Par-
ticles form clusters because excluded volume (represented with blue
spheres) opposes self-propulsion (indicated by an arrow). Particles
outside the cluster can aggregate with rate Kj,, while particles at
boundaries can escape when the direction of motion has diffused
and points toward the exterior of the cluster, which sets the rate
Ko ~ 1/7.

Fig. 6. In the following we also assume a mass-independent
aggregation and evaporation probability.

In the mean-field approximation neglecting fluctuations,
this dynamics can be summarized as

[11+ [n] — [n + 1] with rate Kj,, (19)

[n] —> [n — 1]+ [1] with rate Kqy, (20)

where [n] denotes a cluster of mass n. With these simplifying
hypotheses, the time evolution of ¢, (¢) is then ruled by a simple
set of differential equations:

d N N—-1
7010 = Kou ;c,m — Kinc1(1) ; ), (1)

d
Ecn(t) = Kin[cl(t)cnfl(t) - Cl(t)cn(t)]
+ Kowlcnt1(t) —cu(0)], n>1. (22)

This is a mean-field model since we are neglecting the spatial
structure of the system. The shape and the location of the
clusters cannot be described by this approach. A similar
modeling has been previously proposed to describe clustering
in a suspension of elongated self-propelled rods [5].

In the context of aggregation models, it is common to
use an exponential ansatz for the solutions of the kinetic
equations [51]. Here we consider solutions of the form

@) =[1— fFOPf@)" ", (23)

where the prefactor [1 — f(t)]? is found by using the fact
that the number of particles in the system is conserved,

SN neu(r) =1,V t. Using the form (23) for c,, the kinetic
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equation (21) becomes

Lrw =11 - FOP —af@), where 7= 4)
o f@) = f f(t), where =X
Its general solution reads
_ oy — =1
£t = - 1 —exp[—(a —a™ )] 25)

—aexp[—(a —a=")t]’

witha(L) =1+ % +4/A+ *4—2. The stationary distribution can
then easily be obtained by taking the limit r — oo:
lim f)=a™!, limc,(t)=c = ra™". (26)
=00 1—>00
Note that the stationarity condition cjc, = Ac,_, is automat-
ically verified. As expected, the stationary-state distribution
is uniquely determined by the relative strength A = Ko/ Kin
of the two competing processes, whose dependence on the
persistence time of the self-propulsion is A =« /7, which
defines the constant k, used below as a free parameter.

In order to test the validity of this modeling, we compute
the mean cluster size in the stationary state which is given by
the second moment of the distribution:

ol
(n) = anc; =\ lm, (27)
n>0

As shown in Fig. 4(c), we find an excellent agreement between
this simple kinetic model and the results of the Monte Carlo
simulations of the self-propelled hard disk model, by simply
adjusting the constant « = 3. This good agreement implies that
the dependence of the average cluster size is well described by
the simple competition between aggregation and evaporation
of a single particle as sketched in Fig. 6, and this predicts, in
particular, that the average cluster grows as /T when t > 1.
Of course, our mean-field model does not provide predictions
for the spatial organization of the clusters, and cannot in
particular describe the behavior of the cluster size distribution
when the density increases towards the percolated region.

D. Percolation transition towards gel-like phase

We mentioned above that by compressing the cluster phase
above a volume fraction of about ¢ ~ 0.4, a percolation
transition emerges; see the phase diagram in Fig. 3. This
transition corresponds to a nonequilibrium version of the con-
tact percolation of hard disks [53-55] because configurational
sampling is performed far from equilibrium in the present
case. Because the cluster size increases with both ¢ and T,
there comes a point where the clusters touch each other and
eventually form a system-spanning cluster. This percolation
transition is reminiscent of the sol-gel transition observed in
colloidal suspensions with attractive interactions.

We use the tools of percolation theory to characterize this
transition [53,56]. In Fig. 7 we show the probability p for
a disk chosen at random to belong to the largest cluster of
the system, measured for t = 100 and various system sizes
N = 1000, ...,6000. In the inset of Fig. 7, we show the
probability IT that a disk belongs to a cluster which does not
fit into the simulation box, i.e., such that the end-to-end length
¢ > +/2L. These two quantities constitute two alternative
methods to determine the location of the percolation transition,
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FIG. 7. (Color online) Probability p that a particle belongs to the
largest cluster as a function of ¢ for = 100 and different system
sizes. The inset shows the probability IT that the largest clusters do
not fit into the simulation box as a function of ¢ for the same set of
parameters. Both probabilities exhibit a sharp jump from O to 1 at the
percolation transition in the large N limit.

as they should jump sharply from 0 to 1 when a percolating
cluster emerges in the thermodynamic limit, N — co. As
shown in Fig. 7, both p and IT become sharper as system
size is increased, although IT gives a slightly sharper signature
of the percolation in the vicinity of the threshold, which then
allows for a more precise determination of its location. From
the data shown in Fig. 7, we find a percolation transition at
¢.(r = 100) = 0.46 £ 0.01. In order to construct the phase
diagram we repeated the same analysis for several values
of the parameters 7 and ¢. These are shown in Fig. 3.
Our data are in agreement with the numerical estimation of
the contact percolation threshold of passive hard disks ¢, =
0.558 4+ 0.008 obtained in Ref. [55]. As expected, we find
that the percolation density ¢.(t) decreases with increasing t,
which mirrors the increase of the cluster size with 7. A similar
evolution has been reported in reversible cluster aggregation
models by varying the strength of the interaction energy
between particles [57], suggesting once more an interesting
analogy between the role played by the persistence time in our
model and the role of attractive forces in equilibrium systems.

Another signature of the percolation transition is the
algebraic decay of the cluster size distribution, discussed
above in the context of the cluster phase. When percolation
is approached from the cluster phase, the exponential cutoff of
the distribution becomes larger, and exactly at percolation, we
find a purely algebraic cluster size distribution P(n) ~n=%
with ¢ = 1.70 & 0.05. We note that this value of « is far
from both the value obtained from random bond percolation
(o +1~2.055) [53] and continuum percolation (¢ + 1 ~2.0)
[58], which indicates that our cluster size distribution at
percolation has a different nature from the one found in
standard percolation models. We see below that the effect
of adding noise is to simultaneously make the clusters more
compact and to bury the percolation transition inside a phase-
separated region.
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A physically relevant consequence of the percolation
transition is the existence of a large area in the (¢,7) phase
diagram where the structure of the system is very similar to
the one of a “physical gel,” characterized by a percolated
open structure such as the one shown in Fig. 1 for ¢ = 0.49
and v =900. It is interesting to note that physical gels
are obtained in equilibrium colloidal systems with a careful
tuning of interparticle forces, typically using particles with
both a strong hard-core repulsion and a very short-ranged
attraction [50,59,60]. It is therefore remarkable that similar
gel-like structures might spontaneously emerge using purely
hard-sphere interactions in conjunction with self-propulsion.

Interestingly, experiments performed with self-propelled
colloidal particles have reported the existence of dense phases
with large “holes,” with a structure that is in fact strongly
reminiscent of our findings, but this phase has not been
characterized in any detail yet [61]. We hope our results will
motivate further experimental studies of the phase behavior of
self-propelled particles in dense regimes.

IV. EFFECT OF TRANSLATIONAL NOISE:
MACROSCOPIC PHASE SEPARATION

We now study the effect of adding a translational noise of
strength n in our kinetic Monte Carlo model, as described in
Sec. ITE.

A first important result is the existence of a finite noise
strength 1, = n.(¢,7) > 0 below which the phase diagram
obtained for n =0 remains qualitatively unaffected. This
implies that our findings are robust against the addition of
a finite amount of translational noise; see Fig. 8. In particular,
this means that adding translational noise does not prevent
self-propelled disks from aggregating into clusters, nor does
the noise necessarily induce a macroscopic phase separation,
showing that our results are not an “artifact” of our model
where particle displacements are fully controlled by the
dynamics of the orientation vector.

However, for n > 1., we find that the system undergoes
a macroscopic phase separation reminiscent of liquid-gas
demixing (see the rightmost snapshot in Fig. 8). For finite
system sizes, we find that the system always reaches a steady
state comprising a single dense domain surrounded by a dilute
gas of active disks. Some representative snapshots of this
situation are shown in Fig. 1 for n = 1/2. We checked that this
conclusion is robust if the system size is increased, although it

n=0.01 <n.

n=0.1~=n, n=0.5>n.
FIG. 8. (Color online) Snapshots of the steady state obtained for
¢ = 0.31, T = 900, and different noise strength 7. The translational
noise favors the formation of more compact clusters and eventu-
ally yields a macroscopic phase separation above a critical value

Ne = T)c(d’sf)-
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FIG. 9. (Color online) Phase boundaries between cluster and PhS
phases with a finite noise 7. (a) Evolution of 1. with volume fraction
¢ for fixed T = 900 in linear scale showing that a macroscopic phase
separation can be obtained down to very low densities. (b) Evolution
of 1. with persistence time 7 for fixed ¢ = 0.31 in log-log scale. No
phase separation is found for t < 100. The dotted lines are guides
for the eye.

takes an increasing simulation time to obtain a single domain
in larger systems. We call this region of the three-dimensional
phase diagram (¢, t,7n) the phase-separated region (PhS).

It is not straightforward to determine quantitatively the
transition noise 7n.(¢,7) by direct visualization; see Fig. 8.
Therefore, we numerically determine 7, by studying the
evolution of the cluster size distribution P(n). For n < .,
the distribution is dominated by small clusters and has an
exponentially decaying form. Above 7, the size distribution
is dominated by a macroscopic cluster, so that the shape of
P(n) changes dramatically from unimodal to bimodal. We
define 7, by the emergence of a second peak in P(n) at large
cluster sizes. From a systematic inspection of P(n) and direct
visualization of the steady-state configurations we obtained
the value of 7, for a broad combination of ¢ and t. A similar
method based on the shape of P(n) was employed in Ref. [22]
to detect phase separation in self-propelled rods.

In Fig. 9 we show representative phase boundaries 1.(¢,7)
between the PhS region and the cluster phase for fixed t = 900
over the range 0 < ¢ < 0.4 [Fig. 9(a)] and for fixed value
of ¢ =0.31 over the range 1 < t < 2500 [Fig. 9(b)]. For
small persistence times, T < 100, we find that macroscopic
phase separation never occurs. When 7 > 100, we find that
n. decreases when either 7 or ¢ is increased; see Fig. 9.
Moreover, we observe that n. depends relatively weakly on
density, while it is changing quite rapidly with the persistence
time t. Finally, note that when phase separation occurs, it
exists down to extremely low densities, in contrast with earlier
reports that phase separation only exists at relatively large
volume fractions in active Brownian particles [9,19,25,40].

From the snapshots in Fig. 8, one can expect the geometry of
the macroscopic cluster in the PhS region to be different from
the one in the cluster phase. We have measured the fractal
dimension of the macroscopic cluster at n > 7, for several
systems of different size containing up to N = 6000 disks.
We found fractal dimensions dg =~ d; ~ 2 in the PhS region.
When the system phase separates the resulting macroscopic
cluster becomes compact, with n ~ R2. This is illustrated by
the snapshots in Figs. 1 and 8. Interestingly, in the region
n < 7., the fractal dimensions dg and d; appear to increase
continuously from their value at n = 0,dg =~ 1.7and d, ~ 1.6.
For a given ¢ and t, clusters at = 0 are more ramified than
at finite n. These results are reminiscent of the variation of the
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fractal dimension of the clusters obtained by reversible cluster
aggregation models with finite bond energy [57]. Moreover,
note that the dense phase at n > 5. appears to be highly
ordered, contrarily to the fractal clusters obtained at n = 0
that are characterized by a very disordered structure.

Our central result in this section is that specific combi-
nations of self-propulsion, hard-core repulsion, and a finite
amount of translational noise induce a macroscopic demixing
as in equilibrium particle systems with attractive forces. This
conclusion is in broad agreement with the phenomenon of
motility-induced phase separation that has been thoroughly
discussed in the literature [7-9,25-31]. Although the in-
teractions between particles are short-ranged and repulsive,
the self-propelled disks behave as if there were an effective
attraction between them controlled by the persistence time 7.
A large amount of work has also been devoted to the kinetics
of the phase separation, finding again strong connections with
the equilibrium liquid-gas demixing [25,27,29].

However, our results shed new light on this nonequilibrium
phenomenon. First, we find that translational noise is an
essential ingredient to trigger the phase separation. Physically,
our interpretation is that the interplay between self-propulsion
and hard-core repulsion is the primary cause explaining
the emergence of clustering: two hard particles moving in
persistent motion towards one another cannot cross, and then
they have to stop (or at least slow down) when they approach,
which results in enhanced clustering.

However, our model with n = 0 shows that this ingredient
is not sufficient to trigger phase separation. Indeed, we find
that fluctuations of particle displacements with respect to the
direction of motion imposed by the self-propulsion is a second
crucial ingredient, as it allows internal relaxation inside the
clusters. A consequence of these small intracluster motions
is that clusters become denser and more compact objects. As
a result, it becomes more difficult for particles to escape the
clusters, while aggregation remains as easy. This argument
suggests that the dynamic balance between aggregation and
evaporation, which is responsible for the existence of the
cluster phase, can be destabilized by the addition of noise,
to the point that a macroscopic phase separation might occur
when aggregation becomes easier than escape. Therefore, we
can view the cluster phase in the original model with = 0 as
resulting from a kinetically arrested phase separation.

Another interesting outcome of our study is that phase
separation might occur over a broad range of densities
and persistence times, including very low volume fractions.
Alternative models in the literature devised to study this
phase separation typically do not find a macroscopic demixing
below ¢ =~ 0.3, a lower bound which is not present in our ap-
proach [40]. Overall, these findings suggest that macroscopic
phase separation is not necessarily present in self-propelled
particle systems, but, in fact, result from a delicate balance
between activity, hard-core repulsion, and translational noise.
Asexplained in Sec. IT F, previous modeling has indeed studied
specific combinations of these three ingredients, by using for
instance specific rules for the coupling between translational
and rotational motions [9,25]. However, our results show that
this balance can be tailored with a greater variety than has been
hitherto achieved. We notice that the appearance of clustering
or macroscopic phase separation was similarly shown to result
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from specific microscopic details (such as the fractal nature of
the clusters) in the context of self-propelled rods [52].

Because the details of the self-propulsion mechanism
seem to matter even in the context of very simple models,
it should come as no surprise that specific experimental
realizations of self-propelled colloidal systems find in some
cases a macroscopic phase separation [19] or, in some other
instances, the existence of clustered phases without a phase
separation [17,18].

V. MICROSCOPIC DYNAMICS
OF SELF-PROPELLED DISKS

In this section, we turn our attention to the microscopic
dynamics in the various phases described above, exploring the
evolution of dynamic properties as ¢ and t are varied over a
broad range, in the original version of the model, i.e., without
translational noise (n = 0).

A. Nonmonotonic evolution of the diffusion constant

We have described in Sec. II D the microscopic dynamics
of the system of self-propelled hard disks in the dilute limit,
¢ — 0. The behavior is that of a persistent random walk with a
long-time diffusion constant that increases with the persistence
time as D ~ t, so that dynamics becomes faster when t
increases.

We now investigate the dynamical behavior at finite
density, ¢ > 0, when interparticle interactions play a role.
In Fig. 10, we show the evolution of the mean-squared
displacement, Eq. (8), for a finite density ¢ = 0.12, and
increasing persistence times. As expected for the fluid phase,
the behavior remains purely diffusive, just as in equilibrium.
More interesting is the behavior when 7 becomes larger, since
we find a dynamics similar to that of the dilute limit, with a
nearly ballistic regime at short times crossing over to diffusive
behavior at long times that is enhanced with respect to the
equilibrium case.

10° 10°

10° 10

FIG. 10. (Color online) Mean-squared displacement, Eq. (8), for
¢ = 0.12 and different persistence times t. Dashed lines indicate
ballistic (A% ~ ¢2) and diffusive (A% ~ ¢) regimes. Note the reentrant
behavior of the dynamics that is initially enhanced by increasing ©
up to T ~ 100, but slows down when t increases further.
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FIG. 11. (Color online) Diffusion coefficient as a function of the
persistence time t for different values of the packing fraction ¢. The
dashed lines describe the behavior in the dilute limit D ~ t which
holds when ¢ and t are small, while the D ~ 1/t describes the
large-t limit at any finite density, as a consequence of clustering. The
crossover between these two regimes defines an optimal persistence
time 7,4(¢) where diffusivity is maximized.

The influence of the interparticle interactions is, however,
very striking. As shown in Fig. 10, we find that particle dis-
placements are initially enhanced by increasing the persistence
time of the self-propulsion, as in the dilute limit. However,
a reentrant behavior is observed when increasing 7 further,
and long-time dynamics becomes slower with increasing 7.
Therefore, we conclude that increasing self-propulsion might
actually slow the dynamics down, which is not a very intuitive
result at first sight since it does not happen in the dilute system.

To quantify this effect further, we measure the diffusion
constant defined as

A
D(¢,7) = lim . (28)
t—oo 4t

We present results for the evolution of the diffusion constant
with the persistence time at various volume fractions in Fig. 11.
The dilute limit behavior D ~ t is recovered for small packing
fractions and persistence times. However, for any finite density
the diffusion constant exhibits a maximum, and it decreases
at large 7, with the asymptotic behavior given by D ~ 1/t as
7 — 00. The maximum of the diffusion constant suggests that
there exists an “optimal” value of the persistence time 7; =
74(¢p) which maximizes the diffusivity for a given packing
fraction ¢. The data in Fig. 11 suggest that 7; decreases with
increasing the density.

The interpretation of the maximum of diffusivity is quite
straightforward, because it is a direct consequence of the
emergence of the clustered structures described in Sec. III.
At small t and ¢, when small clusters start to form, the
spatial structure becomes heterogeneous. This opens large
voids where self-propelled particles can move almost freely,
i.e., as in the dilute limit. Accordingly, the diffusion constant
increases with the persistence time in this regime. However,
when 7 increases further, the clusters may become large. The
key point is that particles deeply buried inside the clusters
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can be trapped there for long periods of time. In this regime,
increasing t can have two opposite effects. Particles in the
dilute phase move faster, but particles inside the clusters
are arrested for increasing periods of time. Our simulations
indicate that when 7 becomes very large, most particles are
arrested inside clusters, and the second effect dominates,
which explains why D eventually decreases with increasing
the self-propulsion. A similar effect has been recently reported
for the mobility of active particles driven through a disordered
medium [62].

This optimal persistence time t; corresponds therefore to
a delicate balance between two competing effects: Increasing
T accelerates the dynamics of individual particles, but also
produces clustered structures where particles are kinetically
trapped. Because clusters form more easily at higher packing
fractions, the optimal persistence value 7,(¢) decreases when
¢ increases.

The optimal value t; offers an alternative definition for the
location of the crossover between fluid and cluster phases, as
it provides a dynamical signature of the emergence of clusters.
We report the measured values of 7,;(¢) obtained from the
maximal diffusivity for different packing fractions in the phase
diagram in Fig. 3, which gives a crossover line that is in good
agreement with the one obtained from directly studying the
structure and already discussed in Sec. III B.

The last piece of information we need to discuss in Fig. 11 is
the observed large-t behavior of the diffusion constant, namely
D(t > t;) ~ 1/7. In this regime, particles alternate between
few periods of fast ballistic motion and long periods of kinetic
trapping within clusters. As usual, the diffusive dynamics is
dominated by the fastest particles, which are the ones sitting
on the surface of the clusters, which can escape with a rate
proportional to 1/7, as in the sketch of Fig. 6. This limiting
rate for cluster escape directly accounts for the scaling of the
diffusion constant, D ~ 1/t.

B. Non-Fickian diffusion and decoupling

To further characterize the microscopic dynamics, we com-
pute additional time correlation functions. A natural quantity,
which is particularly relevant for scattering experiments, is the
self-intermediate scattering function,

N
1 e
Fv(q,t) = N <Z elq-[rf(t)ri(0)1> , (29)

i=1

which quantifies particle motion over a typical length scale
~2m/q. In Fig. 12, we show the evolution of F(g,t) from
the fluid phase to the cluster phase at fixed packing fraction
¢ = 0.12. As expected for the fluid, the relaxation is fast and
exponential in the near-equilibrium case, T = 1. Increasing t,
we observe a first relaxation towards a plateau which emerges
atintermediate times (which is not very pronounced), followed
by a second slower relaxation. The height of this plateau
strongly depends on the value of t, while its duration does
not (and remains relatively short). Increasing t further, the
dynamics slows down very rapidly, but the time dependence
of Fy(q,t) does not evolve qualitatively. This behavior is
strongly reminiscent of the viscoelastic relaxation observed
in reversible physical gels [50,63].
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FIG. 12. (Color online) (Top) Self-intermediate scattering func-
tion, Eq. (29), for ¢ = 1.20 for ¢ = 0.12 and different values of the
persistence time. (Bottom) Relaxation time #,(¢) for the same density,
with Fickian behavior ¢, ~ 1/ indicated with a dashed line.

Here the intermediate time plateau emerges as a result
of the formation of a heterogeneous structure due to the
aggregation of particles. Because both clusters (percolating or
not) and a dilute phase coexist, there naturally exist two distinct
dynamical families of particles relaxing on two different time
scales, and the plateau height reflects their relative weight.
Thus, our dynamical study adds one more element to support
the physical idea that nonequilibrium persistent motion of
repulsive particles produces a physical behavior reminiscent
of equilibrium particles with attractive forces.

The long-time decay of F(q,t) corresponds to the structural
relaxation of the system. From this decay, one can extract a re-
laxation time scale ¢.(q), which we define as F;[q,t,(g)] =0.2
(the precise value 0.2 is irrelevant). It is interesting to study the
wave vector dependence of the relaxation time, as displayed
in Fig. 12. Whereas purely diffusive behavior, t, ~¢g~2,
is observed for near-equilibrium dynamics at small 7, the
structural relaxation time displays a crossover between two
different regimes when 1 increases. Diffusive behavior is still
observed but only when ¢ is very low, whereas the behavior
at larger ¢ is very strongly non-Fickian with 7,.(g) being only
weakly dependent on wave vector.
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Deviations from Fickian behavior are generically expected
in systems exhibiting strong dynamic heterogeneity [64—66].
In particular, systems characterized by the existence of distinct
dynamic populations (e.g., fast and slow particles) with
kinetic exchanges between the two populations [63,67] all
exhibit two-step decay in intermediate scattering functions
and non-Fickian dynamics at short scale of the type shown
in Fig. 12.

The g dependence of the relaxation is easily explained in
this dynamically heterogeneous scenario [68]. In a system
with fast and slow particles, it is the slow population which
controls the long-time decay of the self-intermediate scattering
function at large g, which basically quantifies how long it
takes for initially trapped particles to start moving. On the
other hand, the low-g behavior is controlled by the long-time
diffusion constant, D, which does not necessarily quantify
the same dynamic process. In the two-population scenario,
for instance, D is essentially controlled by the exchange rate
between the two families, whereas 7, (g) at large ¢ is controlled
by the relaxation time of the slow one [69]. These two distinct
measures of the relaxation time only become equivalent when
dynamics is homogeneous and purely Fickian, in which case
one has t,(q) ~ 1/(Dg?). Our results suggest instead that ¢,
increases much faster than 1/D with increasing t. The data
in Fig. 12 suggest, for instance, a growth of about 3 orders
of magnitude of the product D x t.(q) (for ¢ = 0.12 and
g = 1.2) and 7 increasing by about 4 orders of magnitude.
The independent evolution of #,(¢) and 1/D is called a
“decoupling” phenomenon in the context of dynamically
heterogeneous materials [68,70-73].

Non-Fickian diffusion and decoupling phenomena have
been reported in a large number of physical systems [68,73],
from supercooled liquids approaching a glass transition
to dense granular, colloidal suspensions, and colloidal
gels [63,74]. For the latter type of systems, dynamic hetero-
geneity is a direct (and physically unsurprising) consequence
of a heterogeneous structure [63,75], as is the case for the
present model where the structure in cluster and percolated
phases is directly responsible for the peculiar dynamic features
reported in this section.

C. Dynamic heterogeneity

The decoupling of the evolution of the diffusion constant
and the relaxation time together with the strongly non-
Fickian wave vector dependence discussed above suggest that
microscopic dynamics is spatially heterogeneous in our model
of self-propelled hard disks.

A simple way to observe this dynamic heterogeneity more
directly is to focus on distributions of particle displacements.
We have measured the self-part of the van Hove function,
defined as

1 N
Gyx,)) = <Z 8lx — |xi(t) — xi<0>|]>. (30)
i=1

Because the system is isotropic, we can average the above
function along both space directions. This function is akin
to a (normalized) histogram of single particle displacements
measured over a fixed time delay, which takes a simple
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FIG. 13. (Color online) Distribution of particle displacements, Eq. (30), for ¢ = 0.12, and v = 100 (left) and 7 = 900 (right). The
distributions are composed of a superposition of immobile (near x ~ 0) and very mobile (in the nearly exponential tails) particles and

converge to Gaussian form at long times.

Gaussian form for purely Fickian dynamics. Note that G(x,?)
is also related to F(q,t) by a Fourier transform.

In Fig. 13, we show the time evolution of Gg(x,t) for
¢ = 0.12 and two values of the persistence time, T = 100
and 7 = 900. To better appreciate the time evolution of the
shape of these distributions, it is convenient to use a rescaled
unit x /+/7, as dictated by the long-time diffusive limit. While
the distributions eventually converge to the expected Gaussian
distribution, quite strong deviations from Gaussian behavior
are observed at finite times. In particular, the coexistence
of nearly arrested and fast-moving particles is obvious at
short times, since the van Hove function displays both a
very narrow peak at the origin stemming from immobile
particles and broad tails (i.e., broader than the corresponding
Gaussian distribution) stemming from fast particles. The
distinction between mobile and immobile particles becomes
more pronounced as the persistent time is increased. Such
broad tails are observed in a large number of dynamically
heterogeneous materials [68], where they are usually found to
be described by an exponential decay [76], as is also found in
the data shown in Fig. 13, especially at large t.

As time increases, the height of the central peak decreases
because the population of immobile particles naturally de-
creases with time (eventually at long times all particles become
mobile). As expected, this arrested structure stays immobile
over a longer period when 7 increases. When all particles have
finally moved, the tails of the distribution become closer and
closer to the corresponding Gaussian distribution, and dynamic
heterogeneity is washed out.

These distributions confirm that the microscopic dynamics
is heterogeneous due to the coexistence of arrested particles
inside clustered regions, and free particles diffusing rapidly in
dilute regions. This accounts for both non-Fickian diffusion
and decoupling of diffusion constant and structural relaxation
time. This physical behavior is reminiscent of the dynamic het-
erogeneity discussed in the context of colloidal gels [63,75,77].
It seems clear that the simple kinetic models developed in the
context of colloidal gels to describe analytically the shape of

the van Hove distributions [63,67] would be directly applicable
to the present model. We suggest that such models would
also be useful in the context of experimental investigations of
dynamic heterogeneity in self-propelled particle systems, but
this line of investigation has been little explored.

VI. SUMMARY AND CONCLUSION

To summarize, we have introduced and studied in great
detail a kinetic Monte Carlo model for self-propelled hard
disks, which contains a minimal amount of free parameters.
As a result, the model is quite crude, but it still captures
essential features of the competition among thermal fluctu-
ations, self-propulsion, and hard-core repulsion between the
disks. Although seemingly simpler than alternative models in
the literature, we have demonstrated that it is also somewhat
more flexible, in the sense that it allows us to disentangle
more clearly the specific roles played by each ingredient in the
model, but also to study combinations of parameters that have
not been explored in earlier models.

Our main findings are the emergence of nontrivial nonequi-
librium structures at finite density, which take the form of a
cluster phase at moderate density, eventually percolating into
a gel-like phase at larger density. Adding a controlled amount
of translational noise to the model allows us to connect our
results to earlier studies of a motility-induced macroscopic
phase separation. While similar findings were reported in
more complex classes of active particle systems [22,23], it
is intriguing that these phenomena can also be observed in the
present model of spherical particles in the absence of aligning
interactions.

We have compared our results to experimental model
systems of self-propelled colloidal suspensions for which
both a cluster phase and a PhS state have been observed as
well [17-19]. We note that the gel-like phase we obtain at
large density has not been studied experimentally in any detail
yet. Our investigations of the microscopic dynamics of this
phase suggest that it is potentially a very interesting regime,
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characterized in particular by strong dynamic heterogeneities,
similar to the ones found in colloidal gels formed with
attractive particles.

In future work, we aim at investigating more closely
the striking analogies underlined in this work between
the nonequilibrium physics of self-propelled disks and the
equilibrium behavior of systems with short-range attractive
forces. Additionally, we believe the present kinetic Monte
Carlo model is particularly well-suited to study the effect
of self-propulsion at large densities, since it captures the
essential elements of the competition between slow dynamics
emerging because of crowding at large density, and the activity

PHYSICAL REVIEW E 89, 062301 (2014)

of the particles that provides the fuel needed to move them
faster. While few numerical [39,40,45] and theoretical [78,79]
studies of this competition have appeared, we also encourage
experimental work in that direction.
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