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Center of mass scaling in three-dimensional binary granular systems
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Using a combination of experimental results acquired through positron emission particle tracking and
simulational results obtained via the discrete particle method, we determine a scaling relationship for the center
of mass height of a vibrofluidized three-dimensional, bidisperse granular system. We find the scaling to be
dependent on the characteristic velocity with which the system is driven, the depth of the granular bed, and
the elasticities of the particles involved, as well as the degree of segregation exhibited by the system and the
ratio of masses between particle species. The scaling is observed to be robust over a significant range of system
parameters.
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I. INTRODUCTION

Vibrated granular materials are known to exhibit a plethora
of interesting phenomena, including behaviors analogous to
those observed in classical fluids, such as convection [1,2]
and surface patterns [3] as well as those without parallel
in molecular materials, such as the tendency of granular
mixtures to spontaneously separate [4,5]. Although there
exists a significant body of work concerning vibrated granular
systems, and despite their relevance to many diverse industrial
applications [6–10], much of their behavior remains poorly
understood. One manner in which researchers attempt to
address this issue is through the determination of scaling laws,
which can be used to characterize and predict the fundamental
properties of a system requiring only the knowledge of simple
input parameters.

Previous studies have investigated, for example, the scaling
of density and granular temperature fields in one [11], two
[12], and three dimensions [13]. Numerous studies have also
focused on the scaling behaviours of a granular bed’s vertical
center of mass, h, which can be used as a measure of the
potential energy of a granulate. For granular systems within
which the distribution of granular temperature T can be
considered approximately uniform, changes in the system’s
center of mass from its resting value are also proportional
to T [14], making an understanding of the behavior of h

very valuable. Theoretical and simulational work by Luding
et al. demonstrated that, both in one-dimensional [15] and two-
dimensional [16] systems, the center of mass of a granulate
scales approximately as:

h = h0 + C(A0ω)α

[Nl(1 − ε)]β
, (1)

where h0 is the center of mass of a system at rest, A0 and
ω = 2πf are, respectively, the amplitude and frequency with
which the system is driven, Nl = Nd2

LxLy
is proportional to the

number of particle layers in the system (with d the particle
diameter and Lx,y the system’s horizontal dimensions), ε is
the particles’ coefficient of restitution and C is a constant.
The exponent α was found to be equal to 2 in one dimension
and 3/2 in two dimensions. The two-dimensional scaling of h

was subsequently investigated by Warr et al. [17], who found
the scaling to be applicable also to experimental systems,
albeit with differing exponents; specifically, they found their

system to scale approximately as C(A0ω)1.3[Nl(1 − ε)]−0.3.
This departure from the scaling of Ref. [16] was attributed
largely to the presence of additional forces due to particle-wall
interactions not accounted for in the original simulational
work. Experimental NMR studies by Yang and Candela [18]
showed the scaling of Luding et al. to hold even in three
dimensions, this time with α = 1.0 ± 0.2. They also found the
center of mass to scale with the bed height as h − ho ∝ N0.5

l .
Although the general scaling relationship discussed above

has been shown to be relevant to one-, two-, and three-
dimensional granulates, until now the theory has only been
tested in monodisperse systems. Granular materials in in-
dustrial and other real-world scenarios, however, are often
composed of two or more different species of particle, and may
exhibit complex behaviors not observed in the single-species
case. The aim of this current study is to relax the constraint of
monodispersity by demonstrating that scaling similar to that of
Refs. [15,16] can be extended to bidisperse systems. Through
investigation of binary systems of equally sized particles
differing in their material densities, we modify equation (1) to
account for mass differences between particle species, as well
as the effects of density-driven segregation [19,20]. Through
a combination of simulation and experiment, we verify the
modified scaling for a range of ω,A0, and Nl .

II. EXPERIMENTAL DETAILS

A. System details

The experimental system comprises a square-based cuboid
container of width Lx = Ly = 80 mm and height Lz =
200 mm, within which is housed a bed of 2400 � N � 6700
spherical particles of diameter d = 3 mm, corresponding to
a range of dimensionless resting bed heights 3.4 � Nl � 9.4.
The height of the container is adequate to minimize the proba-
bility of particle collisions with the system’s upper boundary,
meaning that the system can be considered effectively open,
while the dimensionless width of the container, L̃x,y =
Lx,y/d = 26.7 ensures that the system can be considered fully
three dimensional. The relatively large size of the particles
used allows interstitial air effects to be neglected [21], and the
possible influence of static electricity in the system is reduced
through the use of a conductive steel base plate [22]. The
container is affixed to an LDS V721 electrodynamic shaker,
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TABLE I. Effective elasticities, εAA, and material densities, ρ, for
the various particles used in experiment.

Particle Material ρ (kgm−3) εAA

Nylon (N) 1134 0.41
Glass (G) 2500 0.83
Steel (S) 7850 0.79
Brass (B) 8500 0.61

and subjected to sinusoidal vibrations in the vertical direction.
The system is vibrated at a fixed frequency f = 40 Hz with a
range of amplitudes A0 ∈ (0.388,1.71) mm, corresponding to
a range of dimensionless accelerations � = 4π2f 2A0

g
between

2.5 and 11. The use of a fixed dimensionless frequency
ω̄ = 2πf

√
d/g > 1 ensures that the bed maintains a fluidized

state for all data sets [18,23].
Particles of various materials, and hence material densities,

ρ, are used in experiment; specific details can be seen in
Table I. Alongside each material’s density, the table also
gives values of effective elasticity for interparticle collisions
between similar grains, εAA. Effective elasticity is a measure
of the average energy lost by a particle during a collision,
determined experimentally by taking the mean value of energy
loss over a large number of collisions in a single-component
system [24]. Several combinations of particle species are
investigated, providing a range of binary systems with a variety
density ratios. For each combination, equal numbers of each
species are used, i.e., NA = NB = N/2. 0.5 g of graphite
powder is added to each experimental system to act as a
lubricant, minimizing the influence of frictional interactions
[25]. This suppression of frictional forces allows effects due
to elasticity to be isolated, simplifying analysis and enabling
more reliable comparison with both theory and simulation.

B. Data acquisition: Positron emission particle tracking

Experimental data is acquired using positron emission
particle tracking (PEPT), a noninvasive technique capable of
imaging a granular system in three dimensions with millimeter
spatial resolution and temporal resolution of the order of
milliseconds [26]. PEPT uses a dual-headed γ camera to
track the three-dimensional motion of a single tracer particle,
which has been labeled with a β+-emitting radioisotope. The
back-to-back γ rays emanating from the tracer particle can be
used to rapidly triangulate its spatial position and hence record
its motion through a system. Aside from being radioactively
labeled, the tracers used in our experiments are physically
identical to the other particles in the bed.

For systems in a steady state, and for experiments of
adequate duration, the time-averaged behavior of a single
tracer particle can, due to the principle of ergodicity, be
considered representative of the spatially averaged behaviors
of all similar particles in the system. In the case of binary
systems, one need simply conduct two identical runs, one
with a tracer of species A and one with a tracer of species
B; information from these two runs can then be combined to
give information pertaining to the entire system. PEPT can be
used to extract various important quantities from a granular

system including, but not limited to, density, velocity and
temperature fields [27,28], mean-squared displacements and
diffusion coefficients [29], convection strengths [30,31] and,
for binary and polydisperse systems, particle concentration
distributions and segregation intensities [32]. The ability of
PEPT to probe the interior of large, dense, and/or opaque three-
dimensional systems is particularly useful as it facilitates the
analysis of particle distribution in three dimensions, meaning
that segregation can be accurately characterized even for wide
systems with high packing fractions, a feat that is difficult to
achieve with other experimental methods.

Data for each experimental system is acquired over a period
of between 3600 and 7200 s, dependent on the values of � and
Nl for a given system—particles within deeper or less strongly
vibrated systems will naturally be less mobile, meaning that it
will take longer for the tracer to explore the entire system and
hence gain adequate statistics. In all instances, it is ensured
that the system has reached its equilibrium distribution and is
in a steady state: each 3600–7200 s data set is separated into
a series of 200 s segments and the particle distributions for
each segment measured, ensuring that they remain consistent
for the duration of the run.

C. Determination of relevant quantities

1. Packing fractions and particle distributions

As discussed in the previous section, due to the ergodicity of
the steady-state systems under investigation, the time-averaged
behavior of a single particle may be considered equivalent to
an ensemble average for a large system of particles. Thus, the
residence time fraction, F , of a particle in a given region
of the system can be assumed proportional to the local
packing fraction within this region. In order to calculate a
one-dimensional packing profile in the vertical (z) direction,
one need simply consider a series of horizontal slices through
the experimental system, each of volume Vs . With knowledge
of the relative fraction of time spent by the tracer in each of
these segments, the height-dependent packing fraction, η(z),
can be determined as:

η(z) = πd3NF (z)

6Vs

. (2)

For bidisperse and polydisperse systems, a similar treatment
can be applied to both/all species allowing, in addition
to the bulk packing profiles, the distributions and local
concentrations of particles to be determined. Examples can
be seen in Fig. 2, demonstrating the excellent agreement
between experimentally determined and simulated particle
distributions.

2. Segregation intensity

The degree to which a system exhibits segregation can
be quantified by a segregation intensity Is analogous to that
defined in Ref. [33]. Although it is possible to calculate the
intensity of segregation in all three spatial dimensions, for
the purposes of the current study we need only consider
segregation in the vertical direction. For this case, Is can be
determined by dividing the system into a series of Ns equally
sized horizontal segments. The local number fraction or
concentration of a single species for the ith segment is denoted
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ϕA
i ; in the case of a binary system, ϕA = ηA/(ηA + ηB)

where the superscripts A and B denote particle species. By
determining the local concentration for all Ns segments, Is

can be calculated as:

Is =
[∑i=Ns

i=1

(
ϕA

i − ϕm

)2

Ns

] 1
2

, (3)

where ϕm is the system’s mean concentration. A value Is = 0
represents a perfectly mixed system. while the maximal value
of Is for a given system is indicative of complete segregation.

III. SIMULATIONS

Discrete particle simulations are conducted using the
MERCURYDPM code [34–37] developed at the University of
Twente. Values of f,A,Nl,d,ρ, and εAA are taken as the
experimental values given above. The frictional coefficient
μ is set to 0 in order to reproduce the suppression of friction in
the experimental system due to the use of graphite lubricant.
For interspecies collisions, the effective elasticity εAB is taken
as the geometric average of the relevant single-species values.
This determination of εAB arises as a natural consequence
of the spring-dashpot model of particle restitution [38–40]
and, despite its simplicity, demonstrates strong agreement with
experimental data in all cases. The simulations implement
inelastic, vertical sidewalls with coefficient of restitution
εw = 0.59, equal to the experimentally measured value for
a particle-wall collision involving a glass particle. Although
the value of εw is likely to vary slightly depending on the
dissipative properties of the particles involved, the precise
value was found not to significantly affect the sytem’s behavior
as long as it remained sufficient to ensure the suppression of
buoyancy-driven convective motion [31,41].

IV. RESULTS AND ANALYSIS

A. Variation of center of mass with density ratio

Figure 1 demonstrates how the alteration of the relative
particle masses in a binary granular bed can significantly affect
the position of the system’s center of mass, h, even when all
other parameters are held constant. The explanation for this
behavior is simple: as the ratio ρH /ρL diverges from unity,
the system becomes increasingly segregated [22]. Buoyancy
effects within the fluidized system [42], will cause heavier
particles to preferentially sink to the bottom of the container
and, conversely, lighter particles to rise toward the free
surface. The larger the density ratio, the more complete
the separation of the two species. Clearly, this increase in
segregation, combined with an increased disparity between
particle masses, will result in a decreased center of mass for the
system. An illustrative example of the variation in segregation
intensity, and hence center of mass position, with ρH/ρL can
be seen in Fig. 2. It is worth noting the strong agreement
between simulations and experimental results demonstrated in
Figs. 1 and 2.

For the equal-elasticity simulations shown in Fig. 1, the
various combinations of ρH and ρL used to create the range
of the density ratios shown are chosen such that ρave =
1
2 (ρH + ρL) is equal to 5000 kgm−3 in all instances. Indeed,

FIG. 1. (Color online) Variation of vertical center of mass posi-
tion with density ratio ρH /ρL for systems of resting height Nl = 5.4
driven with acceleration � = 3.5. Data is shown for experiment
(black circles) and the corresponding simulations (red triangles),
which implement the experimental values of the relevant parameters.
Data is also shown for simulations in which only density differences
between particles are considered, i.e., εAA = εBB ; blue squares
and green diamonds correspond to the cases εAA = εBB = 0.83
and εAA = εBB = 0.41 respectively. The letters given in the figure
denote the combination of particle materials used in experimental
measurements, as given in Table I.

unless stated otherwise, this is the case for all data presented in
this manuscript. The decision to hold ρave constant was taken
to ensure consistency, the specific value of 5000 kgm−3 being
chosen due to the fact that it is approximately equal to the
average density of all particle materials used in experiment.
However, due to the nature of the systems under investigation,

FIG. 2. (Color online) Spatially averaged one-dimensional pack-
ing and temperature profiles for the case � = 6.5, Nl = 5.4 with
(a) ρH /ρL = 1.08 (steel and brass particles) and (b) ρH /ρL = 7.50
(nylon and brass particles). hL,hH , and h denote, respectively, the
center of mass positions of the light component of the system, the
heavy component of the system and the bed as a whole. In each
panel, the light and heavy components are represented, respectively,
by squares and diamonds for the simulated data and by upright
and diagonal crosses for experimental data. Temperature profiles
extracted from simulated data are shown, in each case, for both the
light (red dashed line) and heavy (orange dotted line) particle species.
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FIG. 3. (Color online) One-dimensional packing profiles for
bidisperse beds with Nl = 5.4, εAA = εBB = 0.83 and ρH /ρL = 4
driven with dimensionless accelerations (a) � = 3.5 and (b) � = 11.
For each value of �, the fixed density ratio of 4 is achieved using
different combinations of particle masses, resulting in particles’
average material densities ranging from 1250 kgm−3 to 10000 kgm−3.

the results discussed here may in fact be generalized to similar
systems of arbitrary average density; Fig. 3 shows systems for
which the density ratio is held constant while the average
density of the system is varied. The image clearly shows
the center of mass of the systems to be effectively mass
invariant over the range of average densities shown, which
were deliberately chosen to exceed both the maximal and
minimal values explored in experiment. This decoupling of the
system’s average density (or, equivalently, total mass) from
the center of mass height may be expected for the case of
simulations in which particles are driven by an infinitely heavy
wall. In some experimental situations, though, this decoupling
may prove less strict due to, for instance, an increased mass of
particles interfering with the driving of the system. This is not
an issue in the experiments presented here, however, due to our
use of feedback from an accelerometer to ensure consistency
in the base motion for all systems.

It is clear from Fig. 1 that particle elasticity, and differences
therein between particle species, may cause deviation from the
relatively smooth trend observed for the case in which only
density is varied. Particle elasticity can be expected to influence
a system’s center of mass in two ways: first, by creating a more
compacted bed which, clearly, will lower the system’s center
of mass, and secondly through an alteration in the system’s
segregative behaviors [43–46]. The influence of inelasticity
in our system is elucidated through the inclusion of two
simulated data sets for which εAA = εBB . The first series

of simulations sets the elasticity value to 0.83, the maximal
value used in experiment, while the second implements the
minimal value, ε = 0.41. These two curves thus represent
the absolute upper and lower boundaries between which all
data points may be expected to lie. Hence, for cases in
which the system’s average elasticity is close to that of the
highly elastic glass particles (e.g., for the GS system, where
εave = 0.81), experimental data points lie close to the upper
curve. Conversely, for particularly dissipative systems (such
as the NB system for which εave = 0.51), experimental results
approach instead the lower limit. Since the primary focus of
the current study is the case of density-driven segregation,
simulations will, unless otherwise stated, be conducted using
equal particle elasticities, such that any trends relating to
density differences will not be obscured by the competing
segregative mechanisms arising from inelasticity differences.
Nonetheless, comparisons with experimental results will still
include accurate values of inelasticity, as is the case in Figs. 1
and 2.

In addition to the variation with z of the system’s local
solids fraction, Fig. 2 also shows one-dimensional vertical
T profiles corresponding to the partial temperatures of the
differing system components. It is notable in Fig. 2(b), where a
significant difference exists between particle masses, there
exists also a considerable disparity between the temperatures
of the different particle species. This violation of the princi-
ple of energy equipartition may be expected from the findings
of previous studies [24,28]. The approximately constant ratio
of the individual components’ temperatures throughout the
bulk of the system also agrees with the existing literature
[24,43]. We also observe, once again in agreement with
previous works [47], that the observed difference between
species’ typical temperatures becomes more pronounced with
an increasing disparity in density. Crucially, however, for
all instances discussed in this paper, both components of
the temperature (and hence, clearly, the total temperature)
remain approximately constant across the bulk of the system,
exhibiting significant gradients only in the dilute region near
the system’s free surface and in close proximity to the systems
energy source at the lower boundary.

It has been shown, for dilute systems in the tracer limit
[43,44] and, subsequently, for more general gaseous systems
[48] that temperature differences between particle species may
significantly affect the segregative behaviours of granulates
due to the presence of thermal diffusion. However, for less
dilute systems and in the absence of significant temperature
gradients, as is the case here, segregation is most likely
to be driven predominantly by buoyancy forces [49,50].
Regardless of the specific mechanism by which segregation
occurs in the current system, as long as the resultant Is

value is known, the observed temperature differences do not
seem to have any effect on the system’s center of mass
significant enough to cause substantial deviation from our
scaling predictions. Although beyond the scope of the current
study, the authors hope that future work may be able to
combine the findings of this paper with those of Refs. [43–50]
to produce a generalized and truly predictive model capable
of prognosticating both the degree of segregation and center
of mass position of a system based only on simple input
parameters.
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B. Modification of the scaling relationship

Having established the existence of a relationship connect-
ing a system’s center of mass position, h, to the density ratio
between particle species, ρH/ρL, and the degree of segregation
within the system, Is , we now attempt to modify the scaling law
of Ref. [16] to account for these extra parameters. Of course,
we must also consider the effect of extending the system into
the third dimension. Experimental and simulational analyses of
monodisperse systems suggest, for a our current setup, scaling
exponents α = 1 and β = 1. Specifically, the best linear fit
for a log-log plot of h − h0 against A0ω gives a gradient, and
hence an α value, of 0.92 ± 0.10; however, a value of 1.0 is
also found to show acceptable agreement. Thus, for the sake of
simplicity, we assume h − h0 ∝ A0ω. The line of best fit for
a logarithmic plot of h − h0 as a function of Nl(1 − e)/A0ω,
meanwhile, gives a slope of 1.04 ± 0.06, strongly indicating a
β = 1 scaling.

The obtained value of α not only makes sense phenomeno-
logically through its continuation of the trend of decreasing
α with increasing dimensionality, but also shows reasonable
agreement with the exponent previously determined for a
three-dimensional system by Yang and Candela [18]. The
value of β agrees well with the original scaling of Luding
et al. in both one and two dimensions, yet differs significantly
from that determined in Ref. [18]. There are two likely
causes of this considerable disparity. First, the experimental
system used in the current study is considerably larger than
that used in Ref. [18], with dimensionless width L̃ ≈ 26.7
as opposed to L̃ ≈ 4.4 for the earlier work. The increased
system size of the current setup will result in a considerably
decreased influence of particle-wall interactions compared to
the previous study; wall effects have previously been shown to
affect scaling behavior through the introduction of additional
frictional forces not accounted for by the original theory [17].
Similarly, the addition of graphite lubricant to our experimental
system will also result in a reduced importance of frictional
effects compared to previous experimental studies.

We now turn our attention to the effects of the density
ratio and segregation intensity. We begin by considering the
extremal cases of perfect mixing and complete segregation,
ignoring for the time being bed expansion due to other
processes. In the former case, the centers of mass for both
particle species will be 0.5zmax, zmax being the height of the
system. In the latter case, the centers of mass for the light
and heavy species will be, respectively, at their maximum
and minimum values, i.e., hL = hmax

L and hH = hmin
H . The

values of hmax
L and hmin

H can, for a given system, be easily
determined from the relative number of each species, e.g., for
a 50 : 50 mixture, hmax

L = 0.75Nl and hmin
H = 0.25Nl . Clearly,

the values of hL and hH are dependent upon the segregation
intensity, Is , within the system. For a perfectly mixed system,
Is = 0, with its maximal value, Imax

s , being achieved in a fully
separated system. For binary systems in which NH = NL (as
is the case for the main results discussed within this paper),
Imax
s = 0.5. However, for systems of varying composition, this

value will differ. Thus, to ensure generality, throughout this
manuscript we will refer simply to Imax

s , without assigning
to this quantity a specific numerical value. If we assume that
the positions of the centers of mass for the heavy and light

FIG. 4. (Color online) Variation of hL and hH with segregation
intensity. Data is shown for simulations with resting bed height Nl =
5.4 driven with accelerations � = 6.5 (circles), � = 8 (squares) and
� = 9.5 (triangles). In each case, the degree of segregation is altered
through variation of the relative masses of the two particle species
whilst keeping all other parameters, including the total mass, M , of
the system, constant.

components vary linearly with Is , we can write that:

hL = zmax

[
0.5 +

(
Is

Imax
s

�hmax
L

)]
(4)

and

hH = zmax

[
0.5 −

(
Is

Imax
s

�hmin
H

)]
, (5)

where �hmax
L is the magnitude of the difference in center of

mass position of light (L) particles between the fully seg-
regated and fully mixed cases, i.e., �hmax

L = |hmax
L − h

Is=0
L |.

Similarly, for the heavier (H ) species, �hmin
H = |hmin

H − h
Is=0
H |.

Despite its simplicity, the assumption of a linear relationship
between species’ centers of mass and Is is well supported by
the data, as exemplified in Fig. 4. Using the calculated centers
of mass, it is then possible to modify the h0 term of Eq. (1) to
account for the variation of ρH/ρL and Is :

h∗
0 = hLML + hHMH

ML + MH

(6)

where ML and MH are the total masses of light and heavy
particles respectively.

The end result of our modification to the scaling law of
Luding et al. is, in essence, to account for the shift in the
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system’s center of mass due to the uneven distribution of
dissimilarly massive particles, which acts in addition to the
center of mass change due to the bed’s expansion accounted
for by the original scaling. For the case in which the system
exhibits no segregation, or for which particles are equally
massive, the scaling reduces to the same basic form of the
original with h∗

0 = h0 = 0.5zmax, as would be expected.
It is worth noting that h0 is no longer necessarily the true

resting center of mass of the system—clearly, a bidisperse
granular system at rest could be arranged to give an arbitrary
number of different centers of mass; rather, the modified h0 is
the center of mass position for a bed at rest yet possessing the
Is value of the relevant excited state.

C. Comparison with simulation and experiment

Figure 5 compares experimental and simulated data to both
the modified and unmodified scaling relations [Eq. (1)]. In

FIG. 5. (Color online) (a) Variation of a binary system’s center of
mass, h, with the density ratio between particle species, ρH /ρL, for the
case of � = 5, Nl = 5.4 and equal numbers of each particle species,
NL = NH . Diamonds represent data acquired from simulations.
Shown also is the theoretical scaling according to Eq. (1) for the case
in which density and segregation effects are considered (crosses) and
the case in which they are neglected (circles). (b) Experimental results
(squares) for fixed ρH /ρL = 3.14 corresponding to a system of glass
and steel spheres. Here, � is held at a constant value of 5, while NL is
varied. Once again, theoretical scaling according to the modified and
unmodified versions of Eq. (1) are represented by crosses and circles
respectively. In all cases, the scaling exponents α and β are set equal
to unity, as discussed in the text.

FIG. 6. (Color online) Comparison of simulational and theoreti-
cal results showing the variation of h with ρH /ρL for (a) a variety
of � values at fixed Nl = 5.4 and (b) a variety of Nl values at fixed
� = 5. As with Fig. 5, the scaling predictions are determined using
exponents α = β = 1. The agreement shown between simulational
results and scaling predictions across a range of A0ω and Nl(1 − ε)
values provides strong support for the idea that the model of Luding
et al. may indeed be successfully extended to the bidisperse case.

order to isolate the effects of density and segregation intensity,
the elasticity coefficients of both species are held constant at
a value of εAA = εBB = 0.8. For experimental data sets, the
ε term in Eq. (1) is taken as the geometric average of εAA

and εBB . In all instances, the scaling exponents are taken as
α = 1 and β = 1. The considerably improved agreement for
the modified scaling clearly demonstrates the importance of
considering the effects of ρH/ρL and Is . Figure 6 compares
theoretical and simulational results for various combinations of
� and Nl , showing the theory to be robust over a considerable
range of system parameters. Specifically, simulation and
theory were found to show reasonable agreement over the
entire range of driving strengths (2.5 � � � 11, 0.1 � A0ω �
0.43 ms−1), bed heights (3.4 � Nl � 9.4) and density ratios
(1 � ρH/ρL � 15) tested. The scaling was, however, found to
break down for specific combinations of � and Nl producing
systems with particularly high densities and collision rates,
resulting in a situation for which the assumption tev/tc � 1
of the original theory [16] is no longer valid. Here, tev is the
average time between collision events and tc is the typical
duration of particle collisions. The scaling behavior was also
found to hold across the tested range of particle concentrations,
φm ∈ ( 1

4 , 3
4 ).

Although for the main results presented frictional effects
are minimized, the effect of friction was tested using both
unlubricated experimental beds and simulations with nonzero
μ values, in order to test the applicability of the theoretical
scaling to more highly frictional systems. In simulation, a
variety of systems with frictional coefficients μ = 0.1,0.5,

and 1.0 were investigated; in experiment, comparison was
drawn between various identical systems both with and
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without lubricant. The results showed that in the fluidized
systems considered, friction acts simply as an additional
source of energy loss. Thus, since an increase in friction
can be considered equivalent to a decrease in the relevant
effective elasticity values, frictional effects may be accounted
for through a simple alteration in the ε value used in the scaling;
indeed in experiment, these effects are already accounted for
during the determination of particles’ effective elasticities. It is
also perhaps worth noting that, in experiment, the differences
between the lubricated and unlubricated system were, in
general, found to be small.

Additional tests conducted outside of the parameter range of
the main experiment, using � values of up to 25 (A0ω = 0.66
ms−1) and bed heights of up to 15, strongly imply that the
scaling may be expected to hold for any system for which
tev/tc � 1 and T may be assumed approximately uniform
throughout the bulk of the bed.

It should be noted that although the scaling law pre-
sented holds across a significant range of parameter space,
it remains reliant on a lack of significant density and
temperature gradients or convective motion, as well as the
condition of fluidization, thus limiting its generality. Nonethe-
less, the strong agreement observed for systems obeying
these constraints provides support for the possibility that
theories developed for monodisperse granular systems may
successfully extended to the binary case, a matter with
potentially important implications in the field of granular
dynamics.

V. SUMMARY AND CONCLUSION

We have shown that the center of mass scaling relation first
determined by Luding et al. [15,16] for monodisperse one-
and two-dimensional granular beds may, through simple mod-
ifications, be successfully applied to fully three-dimensional,
binary granular systems. Close quantitative agreement of the
theoretical scaling with both experimental data acquired using
positron emission particle tracking and simulations produced
using the MERCURYDPM code [37] strongly implies the relation
to be valid over a considerable range of system parameters.
Although the current scaling relation only applies to systems,
which are bidisperse by density, through further modification
it should be possible to account also for differences in particle
size and elasticity, or indeed other relevant parameters. Thus,
we hope that this work may form an incremental step towards
the eventual formation of a scaling law applicable even to
complex industrial systems and other important, real-world
applications.
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