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Driven surface diffusion occurs, for example, in molecular beam epitaxy when particles are deposited under an
oblique angle. Elastic phase transitions happen when normal modes in crystals become soft due to the vanishing
of certain elastic constants. We show that these seemingly entirely disparate systems fall under appropriate
conditions into the same universality class. We derive the field-theoretic Hamiltonian for this universality class,
and we use renormalized field theory to calculate critical exponents and logarithmic corrections for several
experimentally relevant quantities.
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I. INTRODUCTION

Universality is the amazing phenomenon when the critical
behavior arising in different physical systems is characterized
by a common set of universal quantities. All systems belonging
to a certain universality class share the same critical exponents,
universal amplitude ratios, and universal scaling functions.
Typically, universality classes are determined by spatial di-
mension, symmetry, and the range of interaction potentials. At
times, two systems belonging to one universality class appear
to be entirely disparate at first sight. In this paper we discuss
such a remarkable case, viz., that of driven surface diffusion
under detailed balance conditions and crystalline solids near
their shear instability. We show that these respectively two-
and three-dimensional systems are described by a common
field-theoretic Hamiltonian. We calculate the scaling behavior
of this universality class using field-theoretic renormalization
group (RG) methods.

Surface growth problems constitute an important class
of generic nonequilibrium phenomena [1–4]. Particles are
deposited on a surface and can diffuse around on it. In ballistic
deposition processes such as molecular beam epitaxy (MBE),
desorption and bulk defect formation can often be neglected.
After an initial transient, a steady state is established which
is characterized by time-independent macroscopic properties,
provided that a suitable reference frame is chosen. If one is
primarily interested in universal, large-scale, long-time char-
acteristics, the dynamical evolution can often be formulated
in terms of a Langevin equation which then can be analyzed
using the methods of renormalized field theory.

Several years ago, Schmittmann, Pruessner, and one of
us (H.K.J.) [5,6], denoted in the following as SPJ, extended
a model by Marsili, Maritan, Toigo, and Banavar (MMTB)
[7], to describe ballistic deposition processes with oblique
particle incidence. In broad terms, their approach can be
described as follows: It is assumed that there is no shadowing,
i.e., that there are no overhangs so that the growing surface
can be described in terms of a height variable h(r,t) (so-
called Monge representation). Furthermore, it is assumed that
particle desorption and bulk defect formation can be neglected,
so that the (deterministic) surface relaxation processes are
particle-number conserving. Then the time rate of change of

the surface height is formulated in an idealized continuum
description [8–13] in terms of the divergence of a current.
Since the absolute hight of the surface is irrelevant, these
currents are constructed from the slope of the height h and its
derivatives. Next, shot noise modeling the random deposition
of the particles is incorporated into the growth equation by
adding a nonconserving stochastic term which dominates
the conserving diffusional noise. Since the oblique particle
beam selects a preferred (“longitudinal”) direction in the
substrate plane, the resulting Langevin equation is necessarily
anisotropic, and the primary relaxation mechanism is driven
surface diffusion. The interplay of interatomic interactions and
kinetic effects, such as Ehrlich-Schwoebel barriers, generates
an anisotropic effective surface tension which can become
very small or even negative. Due to the anisotropy, these
mechanisms lead to a phase space with four different regimes,
and the potentially scale-invariant behaviors in these regimes
were studied by SPJ. The most interesting case turned out to
have a transversal instability which leads to the generation
of longitudinal ripples via a continuous phase transition
in contrast to a longitudinal instability which leads to the
generation of transversal ripples by a (fluctuation-induced)
first order transition. Such ripple structures are commonly
found in sandy deserts, where they are generated under the
influence of a steady wind as the driving force; see Fig. 1. It
is worth noting that MMTB and SPJ formulated their model
under the assumption of an invariance with respect to tilts of
the surface. However, in a real setup, the orientation of the
basic surface relative to the incident particle beam is generally
fixed, and hence it is useful to generalize their model to go
beyond the limiting tilt-invariant case. Here, in the present
work, we do not assume tilt invariance. We will see as we
move along that the resulting growth equation is in detailed
balance when an appropriate comoving coordinate system is
used and a certain model parameter vanishes. Note that we
do not use the term “detailed balance” in a microscopic sense
[14]. Even if the microscopic laws lack detailed balance, coarse
graining and the following neglect of irrelevant terms can
lead to detailed balance in the asymptotic semimacroscopic
equation of motion for a driven system [15,16]. Under the
assumption that this is the case, we derive a quasistatic
HamiltonianHwhich describes the stationary distribution, and

1539-3755/2014/89(6)/062145(13) 062145-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.062145


HANS-KARL JANSSEN AND OLAF STENULL PHYSICAL REVIEW E 89, 062145 (2014)

FIG. 1. (Color online) Sand ripples in the Lybyan desert (source:
Wikipedia). Steady winds drive sand particles to form longitudinal
ripples on various length scales.

whose basic ingredients are derivatives of the surface height
field h(r).

The elastic free energy of crystalline solids with hexagonal
or tetragonal (including cubic) symmetry shows an instability
against shear when the elastic constant C44 goes to zero. The
crystallographic unit cell undergoes an elastic deformation
with a certain linear combination of components of the strain
tensor as an order parameter. In the case that no third order
invariants of the order parameter are possible (or vanish by
chance in the cubic case), the transition to the structurally
distorted crystal is continuous, and the order parameter can
be reduced to the spatial derivatives of the displacement
field u along the crystallographic symmetry axis [17–20].
Augmenting the stretching energy with stabilizing bending
terms and then reducing it to its parts that are relevant in the
RG sense, we set up a generalized elastic energy that is of the
same form as the aforementioned quasistatic Hamiltonian H
with the displacement field u(z,r⊥) taking on the role of the
height field h(z,r⊥). Note, however, that there is one important
distinction between the two systems. Whereas in the driven
diffusion problem, both the longitudinal component z and the
transversal components r⊥ lie in the plane of the substrate, i.e.,
in the plane orthogonal to the height h, the coordinate z in the
elastic problem lies in the direction of the crystal axis and is
therefore parallel to the displacement u. Hence, the physical
dimension of r⊥ is 1 in driven surface diffusion and 2 in the
elastic transition.

The outline of the present paper is as follows: In Sec. II we
set up field-theoretic models for driven surface diffusion with
detailed balance and elastic phase transitions, respectively,
through augmenting and modifying the existing models for
these systems. We unify the two field-theoretic models by
formulating a Hamiltonian that commonly describes both
systems. In Sec. III we present our renormalized perturbation
theory. We sketch our diagrammatic calculation and discuss
the resulting renormalization group and its flow. In Sec. IV we
derive the scaling forms for several experimentally measurable
quantities. For driven surface diffusion, we calculate critical
exponents, and for elastic transitions we calculate logarithmic
corrections to the leading mean-field behavior. In Sec. V we

give concluding remarks. Appendix A contains some details on
our calculation of Feynman diagrams. Appendix B discusses
some intricacies related to the fact that the calculation of
the specific heat for the elastic transitions requires additive
renormalizations.

II. THE MODEL

A. Driven surface diffusion

Here we set up our model for driven surface diffusion
following the work of MMTB [4,7] and SPJ. As a starting
point, let us review the Langevin equation presented by SPJ.
In the Îto-interpretation, this Langevin equation describes the
hight h(r,t) of a d-dimensional growing hypersurface as

∂th = J0 + J · ∇h − ∇ · j + ζ. (2.1)

The incident particle beam has components J0 and J normal
and parallel to the substrate plane, respectively. As discussed
in detail by MMTB and SPJ, the oblique particle incidence
induces a fundamental anisotropy into the system which breaks
the full rotational symmetry within the d-dimensional space
of the substrate. To account for this anisotropy, it is useful to
choose a coordinate system in which a particular axis, say,
the z axis, is aligned with J and then to write the spatial
coordinates as r = (z,r⊥). The two uniform growth terms, the
first two terms on the right-hand side of Eq. (2.1), can be
removed by a Galilei transformation h(r,t) �→ h(r + Jt,t) +
J0t . In the following, we will work in this comoving frame.
j = (j‖,j⊥) is the surface current, and we model its longitudinal
and transversal components following SPJ by

j‖ = λ

{
∂‖(−τ‖h + κ‖∂2

‖h + κ×∇2
⊥h)

+ g‖
2

(∂‖h)2 + g⊥
2

(∇⊥h)2

}
, (2.2)

j⊥ = λ{∇⊥(−τ⊥h + κ⊥∇2
⊥h + κ×∂2

‖h) + g×(∇⊥h) (∂‖h)}.
(2.3)

Note that under the assumptions made by MMTB and SPJ,
g× = −g⊥. As we will discuss in more detail below, we will
work under different assumptions here. The Langevin noise
ζ accounts for the randomness in the particle deposition.
Because this shot noise adds particles to the surface, it is
commonly modeled as nonconserving noise with correlations
of the form

ζ (r,t)ζ (r′,t ′) = 2λ δ(r − r′)δ(t − t ′). (2.4)

In principle, conserved diffusional noise could also be incor-
porated into the model. However, it turns out to be irrelevant
compared to the nonconserved noise.

The character of the surface produced by the process
depends on the values of the critical parameters τ‖ and τ⊥.
Our model leads to qualitatively the same phase diagram
in the space spanned by τ‖ and τ⊥ as the SPJ model; see
Fig. 1 of Ref. [6]. This phase diagram contains, in particular, a
continuous transition from isotropic, Edwards-Wilkinson [21]
type behavior to a state characterized by longitudinal ripples
for τ⊥ → 0 and τ‖ > 0. In the following, we will focus on this
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transition. The other transitions in the phase diagram, which
includes a fluctuation-induced discontinuous transition to a
surface with transversal ripples for τ‖ → 0 and τ⊥ > 0 and a
multicritical point for τ‖ → 0 and τ⊥ → 0, are set aside for
future work.

Now, we review the symmetries and the physical contents
of the Langevin equation (2.1) with its ingredients (2.2)
to (2.4) in more depth. The work by MMTP and SPJ
assumed that the physics of the system is invariant under
an infinitesimal tilt of the surface by an angle ω, h(z,r⊥) �→
h(z,r⊥) + ω · r⊥. The assumption of this invariance enforces
the relation g× = −g⊥ mentioned above [22]. However, this
tilt invariance is nonphysical since the orientation of the
substrate plane is fixed by the normal component J0 of
the incident current. In the following we will refrain from
imposing this condition. Stability demands positive κ‖ and
κ⊥ as well as κ× � −2

√
κ‖κ⊥. At the transition for τ⊥ → 0

and τ‖ > 0 that we are interested in, κ‖ and κ× are irrelevant.
The positive parameters κ⊥ and τ‖ can be set equal to 1 and a
dimensionless positive parameter ρ2, respectively, via a simple
rescaling of the coordinates r = (z,r⊥) and τ⊥ = τ . Note that
after this transformation, the coordinates, the time, and the
“temperature” scale as r⊥ ∼ μ−1, z ∼ μ−2, t ∼ (λμ4)−1, and
τ ∼ μ2, respectively, where μ is an inverse external length
scale appropriate to discuss the infrared limit that will be used
in the renormalization program to follow. It thus follows from
the Langevin equations, Eqs. (2.1) and (2.4), that the shot noise
ζ and the height h scale as ζ ∼ λμ(d+5)/2 and h ∼ μ(d−3)/2.
Furthermore, the coupling constants scale as g‖ ∼ μ−(d+1)/2

and g⊥ ∼ g× ∼ μ(3−d)/2, which shows that g‖ is irrelevant and
that the upper critical dimension is dc = 3.

Returning to the tilt invariance and the fact that we do
not assume it in the present work, we note that there is a
possible contribution to j⊥ of the form f (∇2

⊥h)(∇⊥h)/6 that
was omitted by MMTB and SPJ on grounds of tilt invariance,
and we have to consider it here. Power counting reveals that
f ∼ μ3−d , i.e., this term is relevant. Even if we omitted it at
the onset, it would be generated by the RG. Here we include
it in our model at this stage.

We are interested here in driven surface diffusion with
detailed balance so that the statistical properties of the steady
state can be derived from a “free energy” or Hamiltonian
Hsurf. For this to hold true, we have to be able to express
the components of the surface current through functional
derivatives of Hsurf. Because the absolute height of the surface
should not matter, i.e., h �→ h + h0 with a constant h0 should
be a symmetry, the functional variation of Hsurf with respect
to h should be of the form

δHsurf =
∫

ddx
δHsurf

δh
δh =

∫
ddx j · ∇δh

=
∫

ddx(j‖∂‖δh + j⊥ · ∇⊥δh), (2.5)

which defines the surface current j = (j‖,j⊥) up to divergence-
free additive part. It is easy to see that this is possible if
we equalize the coupling constants g× = g⊥ = g, and in
the following we will do so. Then the Hamiltonian is given

by

Hsurf =
∫

ddx

{
ρ2

2
(∂‖h)2 + τ

2
(∇⊥h)2 + 1

2
(∇2

⊥h)2

+ g

6
(∂‖h)(∇⊥h)2 + f

24
[(∇⊥h)2]2

}
. (2.6)

For further details and background on detailed balance in the
context of driven surface diffusion, we refer to Ref. [2].

There is another symmetry present that we have not
mentioned yet, viz., the so-called up-down symmetry. This
symmetry, which physically means that mounds and valleys
have the same form, translates for MBE with oblique incidence
to a form invariance under the simultaneous inversion h �→ −h

and z �→ −z. This type of up-down symmetry was assumed
by MMTB and SPJ, and we also assume it here. However,
even though it is frequently assumed in MBE theory, up-down
symmetry has to be taken with a grain of salt because the
particle beam sets a preferred direction in space. Therefore, the
up-down symmetry is strictly speaking more appropriate for
interface than for surface models. We keep this symmetry here,
first, because we are primarily interested in the connection
between and the mutual properties of driven surface diffusion
and elastic phase transitions and, second, because the up-down
symmetry simplifies the model. In a sense, this simplified
model can be viewed as a leading order approximation for
MBE with oblique incidence that can be improved later by
including terms that break the up-down symmetry. In fact, we
plan to study the effects of breaking the up-down symmetry
in the future. Note that this symmetry has been discussed in
the literature [3] as a prerequisite for having a “free energy” in
this kind of system. However, we can add a further coupling
proportional to (∇2

⊥h)(∇⊥h)2 to the Hamiltonian (2.6) which
explicitly destroys up-down symmetry. Only in the one-
dimensional case this coupling is a total gradient and therefore
vanishes after integration over the full one-dimensional space.

The Langevin equation (2.1) now takes the form

∂th = −λ
δHsurf

δh
+ ζ (2.7)

in the comoving-frame introduced above. To generate correla-
tion and response functions of this stochastic process, it lends
itself to reformulate the Langevin equation as a dynamical
response functional Jsurf so that averages can be derived
from path integrals with the statistical weight exp(−Jsurf).
Via introducing a response field h̃(r,t), the functional Jsurf

(in Îto discretization) that we extract with standard methods
[14,23,24] from Eqs. (2.7) and (2.4) reads

Jsurf[h̃,h] =
∫

ddx

∫
dt λ

{
h̃

(
λ−1∂th + δHsurf[h]

δh

)
− h̃2

}
(2.8)

and shows that our driven surface diffusion model obeys
detailed balance [14]. The fluctuation-dissipation theorem
holds, and all stationary expectation values can be calculated
from path integrals with the statistical weight exp(−Hsurf).

It is a well-established fact that in all dynamical field
theories that are invariant under a field shift of the type h �→
h + h0 with a constant h0, the dynamical exponent is given
by z = 4 − η, where η/2 is the anomalous scaling exponent of
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the order parameter field h. As it should, the same applies here.
This can be verified in detail by noting that in the full dynamical
field theory based on the response functional (2.8) one does not
need to introduce renormalization factors for the h̃∂th and λh̃2

terms when using minimal renormalization, i.e., dimensional
regularization in conjunction with minimal subtraction. Hence,
we can calculate all of the critical exponents of driven surface
diffusion with detailed balance from Hsurf including the
dynamical exponent.

B. Elastic phase transitions

An elastic phase transitions is a structural phase transition
in which the crystallographic unit cell undergoes an elastic
deformation when a normal mode becomes soft in response to
the vanishing of an elastic constant or combination of elastic
constants. In this section, we essentially follow the early work
of Cowley [17], and Folk, Iro, and Schwabl (FIS) [18,19].
For background information on elastic phase transitions, we
refer to these original papers as well as reviews by Bruce and
Cowley [25], Rao and Rao [26], and Schwabl and Täuber [20].

In general, the order parameter for such a transition is
a certain component of the Lagrange strain tensor or a
linear combination of its components. Depending on the
symmetry of a crystal, its Lagrange elastic energy density
can be unpleasantly complicated even at harmonic order due
to the presence of a host of different elastic constants. Here
we restrict ourselves to crystals with tetragonal or higher
symmetry, i.e., crystals whose harmonic Lagrange energy
density can be obtained from the tetragonal case by imposing
relations between certain elastic constants. As we will see
below, crystals with lower symmetry such as orthorhombic or
monoclinic symmetry have simple mean-field behavior at their
respective elastic transition and are hence less interesting from
the standpoint of critical phenomena than the higher-symmetry
crystals we focus on here. When generalized to d spatial
dimensions, the Lagrange energy density of tetragonal solids
to second order in the strains reads

fel = C11

2

∑
α

u2
αα + C33

2
u2

dd + 2C44

∑
α

u2
αd + 2C66

∑
α<β

u2
αβ

+C12

∑
α<β

uααuββ + C13

∑
α

uααudd, (2.9)

where α,β = 1, . . . ,d − 1, and d = 3 for a physical solid. The
Lagrange strain tensor (see, e.g., Refs. [27,28]) is defined via
the derivatives of the displacement field uμ with respect to the
reference space coordinates of the undeformed solid,

uμν = 1
2 (∂μuν + ∂νuμ + ∂μuλ∂νuλ), (2.10)

with μ,ν = 1, . . . ,d. If we specialize the elastic constants Cij

to C33 = C11, C66 = C44, C13 = C12, or C66 = (C11 − C12)/2,
Eq. (2.9) reduces to the harmonic energy density of a cubic
or hexagonal crystal, respectively. If all these conditions
hold, Eq. (2.9) describes an isotropic solid. Moreover, the
hexagonal case with the additional relation C11C33 = C2

13
reduces to the isotropic case after a suitable rescaling of the
coordinates.

Because of crystal anisotropy, sound velocities depend on
the direction of propagation, and modes become soft only in

certain selected directions, so-called soft sectors, which may
be one- or two-dimensional in 3d crystals. The type of the
soft modes depends on which elastic constant or combination
of elastic constants vanishes. In the following, we focus on
the shear instability that occurs when C44 goes to zero. The
accompanying elastic phase transition is continuous if there are
no third order couplings of the corresponding order parameter.
We assume that this is the case. The upper critical dimension of
the phase transition is dc = 2 + m/2, where m is the dimension
of the soft mode sector in Fourier space, as was shown by FIS.
This implies that, from the standpoint of critical phenomena,
m = d − 1 is the most interesting case since otherwise the
upper critical dimension is lower than the physical dimension
3, and the transition can simply be described by mean-field
theory. In the remainder of this paper, we focus on m = d − 1.
In this case, the (d − 1)-dimensional soft sector is orthogonal
to the polarization of the corresponding critical sound waves,
i.e., to the direction of the symmetry axis in Fourier space.
Following FIS, we radically reduce the displacement field to
the critical displacement alone:

uμ = uδμ,d . (2.11)

This step is justified if there are no third order couplings
in the critical strain. Such couplings can be ruled out on
symmetry grounds for the crystals we focus on except for
the cubic case. For cubic crystals, we assume that third order
couplings are absent for some given reason, e.g., chance.
Otherwise, the elastic transition becomes discontinuous. We
will comment on this issue and possible couplings to the
noncritical displacements uα further below.

To determine which parts of the elastic energy are relevant
in the sense of the RG, it is useful to rank the different terms
according to the order at which they contribute in the long-
wavelength limit. To this end, let us introduce the smallness
parameter � and set the derivatives to

∂α → �∂α, ∂d → �2∂d. (2.12)

With the reduction (2.11), the strain tensor becomes

2uαβ → �2∂αu∂βu,

2uαd → �∂αu + �3∂αu∂du, (2.13)

2udd → 2�2∂du + �4(∂du)2,

and we obtain the free energy density (2.9)

fel → �2 C44

2
(∇⊥u)2 + �4

{
C33

2
(∂‖u)2

+ C13 + 2C44

2
(∂‖u)(∇⊥u)2 + C12 + 2C66

8
[(∇⊥u)2]2

+ C11 − C12 − 2C66

8

∑
α

(∂αu)4

}

+ �6

{
C33

2
(∂‖u)3 + C13 + 2C44

4
(∂‖u)2(∇⊥u)2

}

+ �8 C33

8
(∂‖u)4, (2.14)

062145-4



DRIVEN SURFACE DIFFUSION WITH DETAILED . . . PHYSICAL REVIEW E 89, 062145 (2014)

where we have set ∂‖ = ∂d and ∇⊥ = (∂α). Now we see that it
is appropriate to rescale the vanishing elastic constant C44 by

C44 → �2C44 (2.15)

and reduce fel to the leading terms proportional to �4:

fel,red = C44

2
(∇⊥u)2 + C33

2
(∂‖u)2 + C13

2
(∂‖u)(∇⊥u)2

+ C12 + 2C66

8
[(∇⊥u)2]2

+ C11 − C12 − 2C66

8

∑
α

(∂αu)4. (2.16)

Of course, the anisotropic last term in fel,red with hypercubic
symmetry vanishes in the hexagonal case.

At this stage a comment regarding higher than harmonic
terms in the initial Lagrange energy density (2.9) is warranted.
As long as we ignore the uncritical displacement uα , the
addition to the right-hand side of Eq. (2.9) of third and
fourth order terms in the strains leads to exactly the same
form of fel,red as given in Eq. (2.16). The only effect of
the higher order strain terms is to modify the constants
decorating the individual terms in Eq. (2.16), and hence their
omission is justified. However, if we included the noncritical
displacements which scale as uα → �uα , then the harmonic
strain terms in the Lagrange elastic energy density already
would lead to couplings of the form �4∂αuβ∂αuβ , �4∂αuβ∂βuα ,
and �4∂αuβ∂αu∂βu which contribute for � → 0 at the same
order in � as the terms retained in Eq. (2.16).

Thus far, we included stretching only in our discussion
of elastic energy densities. However, since we are interested
in the limit C44 → 0 where there is an elastic instability,
bending terms will be important as they stabilize the crystal.
The bending terms that are relevant here are

fbend,red = K1

2
(∇2

⊥u)2 + K2

2

∑
α

(
∂2
αu

)2
, (2.17)

with K2 = 0 in the hexagonal case. Adding stretching and
bending contributions, we obtain the model elastic energy or
Hamiltonian

Hel =
∫

ddx {fel,red + fbend,red}, (2.18)

which is, up to the anisotropic cubic terms which are absent
in the hexagonal case, of the same form as the Hamiltonian
(2.6) for driven surface diffusion. This is the Hamiltonian that
we will study, after suitable rescalings and renamings, in our
renormalized perturbation theory.

Form this point on, we will disregard the hypercubic
terms, i.e., the last term in the stretching energy density
(2.16) and the term proportional to K2 in the bending
energy density (2.17). As mentioned above, crystals with
cubic symmetry are expected to have anomalous scaling
behavior and are hence certainly interesting; however, the
presence of the hypercubic terms makes the diagrammatic
perturbation calculation significantly more difficult. Though
we have done this calculation, we feel that a useful discussion
of the cubic case goes beyond the scope of the present paper.
We will cover elastic transitions in cubic crystals in a future
paper [29].

Before we move on, let us make some comments on the
relation of our Hamiltonian Hel to other, prominent model
elastic energies that have been discussed in the literature. First,
for C13 = 0 (and K2 = 0),Hel reduces to one of the two models
studied by FIS (their model II). We will refer to this model as
the FIS model. Second, in the limiting case of a fully isotropic
crystal with C12 = C13, C44 = C66, C11 = C33 = C12 + 2C44,
we have

f
(iso)
el,red = C11

2
I [u]2 (2.19)

with

I [u] =
{

C44

C11
+ (∂‖u) + 1

2
(∇⊥u)2

}
(2.20)

up to a total derivative. I [u] is invariant under a type of a
Galilean transformation,

u(r) �→u(r − vz) + v · r, (2.21)

with infinitesimal transversal v. When augmented with bend-
ing the bending term proportional to K1, this isotropic elastic
energy density leads to a Hamiltonian Hel that is equivalent
to that considered by Grinstein und Pelcovits (GP) in their
seminal work on the anomalous elasticity of smectic liquid
crystals [30]. We will refer to this model as the GP model.
Jointly, we will refer to the FIS and GP models as the special
models.

C. Field-theoretic Hamiltonian

To further emphasize that both driven surface diffusion with
detailed balance and elastic transition are described by the
same field-theoretic Hamiltonian, we rescale the coordinates
and u in Eq. (2.18). After renaming the order parameter
field and the coupling constants in the rescaled version of
Eq. (2.18) as well as renaming the order parameter field h

in Eq. (2.6), both our model systems are described by the
Hamiltonian

H =
∫

ddx

{
ρ2

2
(∂‖s)2 + τ

2
(∇⊥s)2 + 1

2
(∇2

⊥s)2

+ g

6
(∂‖s)(∇⊥s)2 + f

24
[(∇⊥s)2]2

}
, (2.22)

where s(r) is the common order parameter field.
Next, let us discuss the symmetry transformations of this

Hamiltonian and the combinations of its parameters that are
invariant under the respective transformation. Knowing these
combination will come in handy later when we analyze the
RG flow. This Hamiltonian is invariant under the longitudinal
scale transformation

z �→ α2z, s �→ α−1s,

ρ �→ α2ρ, g �→ α3g, f �→ α2f. (2.23)

The following combinations of coupling constants are invari-
ant under this transformation:

g/ρ3/2, f/ρ. (2.24)
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A further symmetry of the Hamiltonian H is the z-dependent
field shift:

s(r) �→ s(r) + az,

τ �→ τ − 1
3ag. (2.25)

The Galilean transformation with transversal v,

s(r) �→ s(r − vz) + λv · r, τ �→ τ − ρ2

2
v2, (2.26)

is a symmetry if only and only if the conditions

λ = g

f
, f = g2

3ρ2
(2.27)

hold. Of course, if g = 0, the Hamiltonian is invariant under
the inversion s(r) �→ −s(r).

III. RENORMALIZED PERTURBATION THEORY

In this section we outline our renormalized perturbation
theory. For background on the methods that we use, we refer
to the textbooks [31,32].

A. Diagrammatic perturbation calculation

The Feyman diagrams of our perturbation theory consist of
the Gaussian propagator

C(q) = 1

q4
⊥ + ρ2q2

‖ + τq2
⊥

= 1

(q2
⊥ + τ/2)2 + ρ2q2

‖ − τ 2/4
(3.1)

and two vertices; see Fig. 2. The τ 2/4 term in the denominator
of the propagator will be omitted in the following because an
expansion of any diagram in powers of this term will inevitably
lead to unnecessary contributions that are convergent in the
ultraviolet (UV). There is a three-leg vertex

igT (q1,q2,q3) = ig

3
[q1,‖(q2,⊥ · q3,⊥) + 2 perm] (3.2)

and a four-leg vertex

−f S(q1,q2,q3,q4)

= −f

3
[(q1,⊥ · q2,⊥)(q3,⊥ · q4,⊥) + 2 perm]. (3.3)

=

q
= C(q)

1 2

3 4
4,q

1 ,q
2 ,q

3
q−f S( )=

1 2

3

,q
1 ,q

2
q

3ig T( )

FIG. 2. Elements of our perturbation theory: the Gaussian prop-
agator C(q) and the vertices −f S(q1,q2,q3,q4) and igT (q1,q2,q3).

We use dimensional regularization about d = 3 − ε dimen-
sions in conjunction with minimal subtraction, i.e., we use
minimal renormalization. Our renormalization scheme reads

s �→ s̊ = Z1/2s, ρ2 �→ ρ̊2 = Z−1Zρρ
2,

τ �→ τ̊ = Z−1Zττ + τ̊c, g �→ g̊ = Z−3/2Zvg, (3.4)

f �→ f̊ = Z−2(Zuf + Yg2/ρ2),

where

A1/2
ε g = ρ3/2vμε/2, Aεf = ρuμε, Aε = �(1 + ε/2)

(4π )1−ε/2
.

(3.5)

We choose the additive renormalization Y so that Y (u,v) =
Y (v). The longitudinal tilt-transformation (2.25) leads to the
exact relation

Zτ = Zv. (3.6)

Note that formally τ̊c = 0 in minimal renormalization. In
general, i.e., beyond minimal renormalization, τ̊c is a positive
or negative constant. In a momentum shell RG, for example,
it depends on the momentum cutoff and on the coupling
constants.

We calculate the one-loop contributions to the superficially
UV-divergent vertex functions �2, �3, and �4. Some details
of this calculation can be found in Appendix A. For the
counterterms that render their respective vertex function finite
at one-loop order, we obtain

C(2) = v2

36ε

(
ρ2q2

‖ − 1

2
q4

⊥

)
+

(
u

6ε
− v2

36ε

)
τq2

⊥,

C(3) =
(

v2

36ε
− u

6ε

)
igT (q1,q2,q3), (3.7)

C(4) =
{(

3u

8ε
− 5v2

36ε

)
f + v2

72ε

g2

ρ2

}
S(q1,q2,q3,q4).

Form these counterterms, we extract the one-loop renomaliza-
tion factors

Z = 1 − v2

72ε
, Zρ = 1 + v2

36ε
,

Zv = Zτ = 1 + u

6ε
− v2

36ε
, (3.8)

Zu = 1 + 3u

8ε
− 5v2

36ε
, Y = v2

72ε
.

Note that if the system is invariant under the Galilean
transformation (2.26), which implies v2 = 3u, the conditions
(2.27) lead to the following two exact relations between the
renormalization factors:

Zρ = Zv = Zu + 3Y. (3.9)

B. Renormalization group and fixed points

Now, we set up our RG equations and discuss the RG flow.
To simplify the involved equations, we use in the following
the shorthands

x := v2

18
, y := 3u − v2

18
(3.10)
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for the renormalized versions of the invariant combination of
coupling constants given in Eq. (2.24). In terms of x and y,
the RG γ functions are defined as

γ··· = μ∂μ ln Z···|0 = −(x∂x + y∂y)Z(1)
··· ,

α = (x∂x + y∂y)Y (1), (3.11)

where Z(1)
.. and Y (1) denote the ε residues of the respective

renormalization factors. To one-loop order, we obtain

γ = x

4
, γρ = −x

2
, γτ = γv = −x

2
− y,

γu = x − 9y

4
, α = x

4
. (3.12)

Inspecting the relations (3.9), in particular for y = 0, we note
that it is useful to define

σ = (3α − γu + 2γv − γρ)/y. (3.13)

This quantity has a perturbation expansion in x and y which
to lowest order is given by

σ = 1
4 . (3.14)

From the RG γ functions, we get the Wilson and Gell-Mann–
Low functions

ζ = μ∂μ ln ρ|0 = γ − γρ

2
,

κ = μ∂μ ln τ |0 = γ − γτ ,

βx = μ∂μx|0 = (−ε + 3
2γ + 3

2γρ − 2γv

)
x,

βy = μ∂μy|0 = (−ε + 3
2γ + 1

2γρ − γu + σx
)
y. (3.15)

Note that for y = 0, which corresponds to the GP model where
the Ward identities (3.9) do hold, we have

γρ = γv (3.16)

to arbitrary order in perturbation theory. Our one-loop results
are consistent with these relations and hence satisfy an
important check. Having these RG functions, we can write
down the RG differential operator. Applying μ∂μ · · · |0 to
cumulants (Green functions) amounts to to RG equation (RGE)

Dμs(r) = −γ

2
s(r), (3.17)

with the RG differential operator

Dμ := μ∂μ + ζρ∂ρ + κτ∂τ + βx∂x + βy∂y. (3.18)

Now, we are in position to discuss the fixed points of the
RG. After setting μ → μ�, the flow of x and y is given by the
ordinary differential equations

�
dx̄(�)

d�
= βx(x̄(�),ȳ(�)), �

dȳ(�)

d�
= βy(x̄(�),ȳ(�))

(3.19)
with x̄(1) = x and ȳ(1) = y. These fixed points, which are
approached asymptotically for � → 0, follow from the zeros
of the Gell-Mann–Low functions,

βx |∗ = βy |∗ = 0, (3.20)

with these functions given to one-loop order by

βx = (−ε + 5
8x + 2y

)
x,

βy = (−ε + 1
8x + 9

4y
)
y. (3.21)

1. ε > 0

In addition to the unstable trivial fixed point x(0)
∗ = y

(0)
∗ = 0,

there are three more fixed points for ε > 0. (1) The Galilean-
invariant fixed point:

x(1)
∗ = 8

5ε + O(ε2), y(1)
∗ = 0, (3.22)

which corresponds to the GP model, y = 0. We will refer to this
fixed point as the GP fixed point. (2) The inversion-invariant
fixed point:

x(2)
∗ = 0, y(2)

∗ = 4
9ε + O(ε2), (3.23)

which corresponds to the FIS model. We will refer to this fixed
point as the FIS fixed point. (3) The new fixed point:

x(3)
∗ = 8

37ε + O(ε2), y(3)
∗ = 16

37ε + O(ε2). (3.24)

We will see below that this is the only stable fixed point.
Next, we discuss the stability of the fixed points, which is

determined by the stability matrix whose components are given
by the partial derivatives with respect to x and y, respectively:

β =
(

−ε + 5
4x + 2y, 2x

1
8y, −ε + 1

8x + 9
2y

)
. (3.25)

Its eigenvalues (the Wegner correction exponents) and the
corresponding right eigenvectors which indicate the flow near
the respective fixed points are as follows: (1) for the GP fixed
point, we have ω

(1)
1 = ε with e

(1)
1 = (1,0) and ω

(1)
2 = −4ε/5

with e
(1)
2 = (−1,9/16). Thus, this fixed point is stable only in

one direction. (2) For the FIS fixed point, we have ω
(2)
1 = ε

with e
(2)
1 = (0,1) and ω

(2)
2 = −ε/9 with e

(2)
2 = (1, − 1/20).

Hence, this fixed point is also stable in only one direction. (3)
For the new fixed point, we have ω

(3)
1 = ε with e

(3)
1 = (1/2,1)

and ω
(3)
2 = 4ε/37 with e

(3)
2 = (1, − 1/16). Therefore, the new

fixed point is stable in any direction.
The picture of the RG flow that emerges from the three

invariant lines x = 0, y = 0, and y = 2x, as well as from the
fixed points and their respective stability is sketched in Fig. 3
and can be described as follows: The domain of attraction of
the stable fixed point is given by the positive quadrant x � 0,
y � 0, that is bounded by the lines y = 0 (GP model) and
x = 0 (FIS model). The unstable fixed points that correspond
to the GP and FIS models, respectively, are located on these
lines. For negative y, the RG flow runs off to infinity. This
suggests that we are dealing with a fluctuation-induced first
order transition in the case v2 > u.

2. ε � 0

Of course, the trivial fixed point x
(0)
∗ = y

(0)
∗ = 0 is stable

for ε � 0. Thus, for dimensions d > 3, we find mean-field
behavior. Right at the critical dimension, the mean-field power
laws have logarithmic corrections. This case is of particular
importance here because for the elastic phase transitions
the upper critical dimension and the physical dimension
are the same. In the next section, we will discuss these
logarithmic corrections in detail. As a prelude, we study here
the asymptotic flow of x and y to zero for ε = 0.

For ε = 0, the flow equations (3.19) in conjunction with
Gell-Mann–Low functions (3.21) lead to the differential
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FP

x

y

y=2x

1. order region

FIG. 3. (Color online) Renormalization group flow for ε > 0.
The (black) dot in the origin indicates the unstable Gaussian fixed
point. The (green) dot on the abscissa marks the unstable GP fixed
point, and the (green) dot on the ordinate marks the unstable FIS
fixed point. The (red) dot on the line y = 2x represents the stable
fixed point of our model. Arrows indicate the direction of the
RG flow.

equations

�
dx̄(�)

d�
=

[
5

8
x̄(�) + 2ȳ(�)

]
x̄(�),

�
dȳ(�)

d�
=

[
1

8
x̄(�) + 9

4
ȳ(�)

]
ȳ(�). (3.26)

Solving these equations for � � 1, we obtain

x̄(�) = a

| ln �| + O(| ln �|−2),

ȳ(�) = b

| ln �| + O(| ln �|−2). (3.27)

The amplitudes are given in general by

a = 8
37 , b = 16

37 . (3.28)

The special models lead to

GP: b = 0, a = 8
5 ,

FIS: a = 0, b = 4
9 . (3.29)

IV. SCALING AND CRITICAL EXPONENTS

In this section we first study the scaling behavior of the
cumulants of our theory. Then, we extract from this general
result the critical behavior of several experimentally relevant
quantities for driven surface diffusion and elastic transitions,
respectively.

A. General scaling behavior

Now we determine scaling properties of the cumulants
Gn,m({r},τ ). Besides the order-parameter field s and its spatial
derivatives, we consider the “energy” field e = (∇⊥s)2/2. This
field is a composite field in the language of renormalization
theory with its own scaling behavior. This scaling behavior

can be studied via so-called insertions that are generated by
variations δ · · · /δτ (r) of the cumulants with respect to the
local “temperature” τ (r). In other words, the objects of our
study here are the expectation values

Gn,m({r},τ ) = 〈[s]n[e]m〉(cum) =
[
− δ

δτ

]m

Gn,0, (4.1)

which we have written here in a somewhat compressed yet
evident form.

To extract the scaling properties of the Green functions, we
first note that simple dimensional analysis gives

Gn,m({z,r⊥},τ ; x,y; ρ,μ)

= ρ−n/2−mGn,m({ρ−1z,r⊥},τ ; x,y; 1,μ)

= μn(d−3)/2+m(d−1)Gn,m({μ2z,μr⊥},μ−2τ ; x,y; ρ,1) (4.2)

for the leading, mean-field behavior. Next, we solve the RGE
for the Green functions to get the anomalous contributions to
scaling. For n � 1, this RGE reads(

μ∂μ + ζρ∂ρ + κτ∂τ + βx∂x + βy∂y + n

2
γ + mκ

)
Gn,m

= 0. (4.3)

As usual, this partial differential equation can be solved by the
method of characteristics. The characteristics read μ̄(�) = μ�,
ρ̄(�) = Xρ(�)ρ, and τ̄ (�) = Xτ (�)τ , where the X factors are
the solutions of the ordinary differential equations

�
d ln X(�)

d�
= γ (x̄(�),ȳ(�)), X(1) = 1,

�
d ln Xρ(�)

d�
= ζ (x̄(�),ȳ(�)), Xρ(1) = 1, (4.4)

�
d ln Xτ (�)

d�
= κ(x̄(�),ȳ(�)), Xτ (1) = 1.

Collecting the solutions of these equations, the flowing
couplings x̄(�),ȳ(�) that solve Eq. (3.19) and the mean-field
scaling as given in Eq. (4.2), we obtain the scalings forms

Gn,m({z,r⊥},τ ; x,y; ρ,μ)

= [�d−3Xρ(�)−1X(�)]n/2[�d−1Xρ(�)−1Xτ (�)]m

×Gn,m({�2Xρ(�)−1z,�r⊥},�−2Xτ (�)τ ; x̄(�),ȳ(�); ρ,μ).

(4.5)

This result is correct as long as n � 1.
In the case n = 0, m = 1 or 2 one has to account for additive

renormalizations which become essential for the specific heat
for ε = 0. The additive renormalizations and its consequences
are discussed in Appendix B. We apply the scalings (4.2) to
the result (B12) and obtain

G0,m({z,r⊥},τ ; x,y; ρ,μ)

= [(�μ)2(Xρ(�)ρ)−1Xτ (�)]mG0,m({(�μ)2[Xρ(�)ρ]−1z,

�μr⊥},(�μ)−2Xτ (�)τ ; x̄(�),ȳ(�); 1,1)

+ (−τ )2−m

ρ
I (�)[δ(r1 − r2)]m−1, (4.6)

with I (�) given by Eq. (B11).
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B. Driven surface diffusion

In experiments on surface growth, one often measures
the roughness of a surface and the associated roughness
exponents. These exponents are defined through the height-
height correlation function

C(z,r⊥,τ ) = 〈[h(z,r⊥) − h(0,0)]2〉. (4.7)

For surface diffusion, the physical dimension is d = 2. Hence,
we are interested in the scaling behavior of the height-height
correlation and its roughening properties for ε > 0. The
asymptotic solutions of the RG equations (4.4) are

X(�) = �η, η = γ∗,

Xρ(�) = �ζ∗ , Xτ (�) = �κ∗ , (4.8)

where γ∗, ζ∗, and κ∗ are the values of the RG functions at
the fixed point x∗, y∗. For the stable fixed point as well as for
the GP fixed point, we have x∗ > 0. Hence we get from the
definitions (3.15) the exact relation

2κ∗ − 3ζ∗ = ε − η. (4.9)

The scaling behavior of the height-height correlation function
(4.7) can be deduced from the general result (4.5):

C(z,r⊥,τ ) = �d−4+�+ηC(�1+�z,�r⊥,�−1/ντ ), (4.10)

where we have defined the anisotropy and the correlation
length exponents

� = 1 − ζ∗, ν = 1

2 − κ∗
, (4.11)

which are related (with exception of the FIS model) by

d − 2 + η = 2

ν
− 3�. (4.12)

Due to the presence of strong anisotropy, we have to dealing
with two different roughness exponents α⊥ and α‖ defined by

C(0,r⊥,τ ) ≡ |r⊥|2α⊥c⊥(τ |r⊥|1/ν),

C(z,0,τ ) ≡ |z|2α‖c‖ (τz1/(1+�)ν). (4.13a)

The two exponents

α⊥ = 1
2 (4 − d − η − �) = 1 + � − 1/ν ,

α‖ = α⊥
1 + �

= 1 − 1

(1 + �)ν
(4.14)

are read off immediately. In the dimensional expansion about
three surface dimensions, we get

� = 1 − 3ε

37
,

1

ν
= 2 − 22ε

37
,

α⊥ = 19ε

37
, α‖ = 19ε

74
, η = 2ε

37
, (4.15)

to first order in ε.

C. Elastic phase transition

As mentioned above, the physical and the upper critical
dimensions coincide for elastic transitions. Therefore we have

ε = 0, and we are interested in logarithmic corrections. The
typical measurable quantities are the susceptibility

χ =
∫

dz d2r⊥ 〈∇⊥u(z,r⊥) · ∇⊥u(0,0)〉

=
∫

dz d2r⊥ (−∇2
⊥)G2,0(z,r⊥,τ ) (4.16)

of the critical modes ∇⊥u, and the critical part of the specific
heat

c =
∫

dz d2r⊥〈e(z,r⊥)e(0,0)〉

=
∫

dz d2r⊥ G0,2(z,r⊥,τ ), (4.17)

which, as the second line of Eq. (4.17) indicates, can be
calculated from the energy correlation function. Here we need
the asymptotic solutions of the RG equations (4.4) for the
amplitudes using the asymptotic flow (3.27). We get

X(�) � | ln �|−a/4, Xρ(�) � | ln �|−3a/8,

Xτ (�) � | ln �|−3a/4−b, (4.18)

with the constants a and b given in Eqs. (3.28) and (3.29).
From the general scaling properties of the Green’s functions
(4.5) and by setting

�2 = Xτ (�)|τ | (4.19)

(we have set the scale so that μ,ρ → 1 to simplify the
conclusions), we obtain

χ (τ ) = �−2X(�)χ (�−2Xτ (�)τ )

= X(�)

Xτ (�)|τ |χ (1) � | ln |τ ||γ0

|τ | (4.20)

asymptotically. The correction exponent γ0 = a/2 + b reads

γ0 = 20
37 , (4.21)

whereas the special models lead to

GP: γ0 = 4
5 , FIS: γ0 = 4

9 . (4.22)

Next, using the scaling result for the energy correlations (4.6)
we get

c(τ ) = Xτ (�)2

Xρ(�)
c[�−2Xτ (�)τ ] + 1

ρ
I (�)

= Xτ (�)2

Xρ(�)
c(1) + 1

ρ
I (�)

� const| ln |τ ||α0−1 + | ln |τ ||α0

α0
(4.23)

with the correction exponent α0 = 1 − 9a/8 − 2b. We recog-
nize that the term originating from the additive renormalization
overwhelms the first one asymptotically. The correction
exponent reads

α0 = − 4
37 . (4.24)

The special models lead to

GP: α0 = − 4
5 , FIS: α0 = 1

9 . (4.25)
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Note that our results for the correction exponents for the
susceptibility and the specific heat of the FIS model are in full
agreement with those obtained by FIS originally. Hence, our
calculation passes an another consistency check.

V. CONCLUDING REMARKS AND OUTLOOK

In summary, we have studied driven surface diffusion at
the phase transition from isotropic, Edwards-Wilkinson-type
behavior to a state characterized by longitudinal ripples and
continuous elastic phase transitions. We have shown that
the two transitions belong under appropriate conditions to
the same universality class. We derived the field-theoretic
Hamiltonian for this universality class which has an upper
critical dimension of dc = 3. The dimension d plays different
roles in the two systems. In driven surface diffusion, d is
the dimension of the substrate, whereas for the elastic phase
transition, d is the full dimension of space. Hence, physically,
d = 2 in the former problem and d = 3 in the latter. Thus, the
critical behavior in the surface diffusion problem is described
by power laws with anomalous scaling exponents, whereas
that of the elastic phase transitions under consideration is
described by power laws with mean-field exponents decorated
by logarithmic corrections. We calculated these anomalous ex-
ponents and logarithmic corrections, respectively, for several
experimentally relevant quantities.

As far as elastic phase transitions were concerned, we
restricted ourselves to crystals with tetragonal or higher
symmetry, i.e., crystals whose harmonic Lagrange energy
density can be obtained from the tetragonal case by imposing
relations between certain elastic constants because crystals
with lower symmetry such as orthorhombic or monoclinic
symmetry have simple mean-field behavior. In addition to
that, we have left aside crystals with cubic symmetry in
the transversal subspace. These do have anomalous scaling
behavior, however, the diagrammatic perturbation calculation
gets significantly more involved when cubic terms are present
and is beyond the scope or the present paper. We will present
our results for the cubic case in a future publication [29].

Our model Hamiltonian differs from the SPJ model in that
we do not assume tilt invariance and that we do assume detailed
balance, at least on a semimacroscopic scale. Our result for the
anisotropy exponent � is smaller and those for the roughness
exponents are larger than the corresponding one-loop results
produced by the SPJ model. Hence, in comparison, our model
leads to a less anisotropic but slightly rougher surface. Its
restriction to detailed balance makes our model a special
case of a more general model. Our results, moreover, show
that our model corresponds to a RG fixed point of this more
general model. Whether or not this fixed point is the stable
fixed point of the more general model, we cannot judge at this
point, and we will address this question in future work. This
question is also important from an experimental standpoint. If
our fixed point turns out to bestable, this would mean that the
asymptotic behavior in a typical experiment on driven surface
diffusion with oblique incidence would show detailed balance
as characterized by our fixed point.

Our model Hamiltonian differs from the FIS model in
that it includes a relevant third order coupling that does

not destroy the continuous character of the transition. The
presence of this term modifies the exponents of the logarithmic
corrections to the susceptibility and the specific heat. For
the former, the difference is quantitative; for the latter it is
even qualitative. The FIS model predicts that the specific
heat diverges as the transition is approached, whereas we
find that it vanishes. As the FIS model, our model entirely
neglects the noncritical transversal components of the elastic
displacement field. If the order parameter field corresponded
directly to a component of the strain tensor, one could simply
integrate out the noncritical strain components. This would
produce additional negative contributions to the positive (on
grounds of stability) fourth order coupling constant of our
model. If the additional negative contributions exceed the
positive contribution in magnitude, the transition becomes first
order. However, here we have to integrate out the transversal
displacement components and not entire components of the
strain tensor. The transversal components of the displace-
ment are contained together with its critical components in
different components of the strain tensor, and it is not clear
how to integrate them out. We will return to the question
of the influence of the noncritical displacements in future
work.

From a conceptual standpoint, it is worthwhile to reflect
on the different roles played by reference and target space
symmetries in elastic phase transitions and related problems
[33]. Invariance under rigid rotations in target space, unless
broken by external fields, is a symmetry that applies likewise
to any crystal, or for that matter to any elastic system that can
be described by Lagrange elasticity theory, including smectic
liquid crystals, liquid crystal elastomers, etc. Reference space
symmetry, on the other hand, is determined by the crystal-
lographic point group of a given elastic system. It has been
an established approach for setting up field-theoretic models
for elastic systems for about three decades to employ gradient
expansion and then to retain only those terms that are deemed
relevant based on dimensional analysis. Examples where this
approach has been used include, to name a few, the original
work on nematic liquid crystals by GP, isotropic [34] and
anisotropic [35] tethered membranes, sliding columnar phases
[36], nematic elastomers [37,38] and their membranes [39],
and so on, and we also used this approach here. For systems
with comparatively high reference space symmetry, vestiges
of the target space rotational invariance remain in the final
field-theoretic Hamiltonian. The nonlinear part of the strain
∂‖u + 1

2 (∇⊥u)2 in the GP model, for example, ensures that the
target space symmetry is realized at least linearly. The situation
is similar in the other examples just mentioned. For the elastic
transition studied in the present paper, with exception of the
limiting isotropic case that coincides with the GP model, the
reference space symmetry is comparatively low, and there are
no remains of the target space rotational invariance in the final
Hamiltonian. It transpires that the extent to which the latter
symmetry survives when setting up field theories depends on
the former and that, in a sense, reference space symmetry is
superior to target space symmetry. It is desirable to get a deeper
understanding of the interplay of the two symmetries in field
theories, and we see here an interesting opportunity for future
work.
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2(c)2(a) 2(b)

FIG. 4. Two-leg diagrams. A dash symbolizes a transversal and
a point a longitudinal derivative at an external leg.
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APPENDIX A: CALCULATION OF FEYNMAN DIAGRAMS

Here we present a few cornerstones of our calculation of
Feynman diagrams. The one-loop diagrams of our theory are
depicted in Figs. 4 to 6. A typical integral encountered in
calculating these diagrams reads

Fαβ =
∫

q1+q2=q

q1,‖q1,⊥α((
q2

1,⊥ + τ/2
)2 + ρ2q2

1,‖
)

× q2,‖q2,⊥β[(
q2

2,⊥ + τ/2
)2 + ρ2q2

2,‖
] , (A1)

where
∫

q . . . = (2π )−d
∫

. . . ddq. In all of our one-loop in-
tegrals, we can set the external longitudinal momentum to
zero. Via setting q1,‖ = −q2,‖ = ω/ρ, the integration over the
internal longitudinal momentum can then be performed using
the identity

1

2π

∫ ∞

−∞

dω

(ω2 + c2)n
= [2(n − 1)]!

[(n − 1)!]2(2c)2n−1
. (A2)

We obtain

Fαβ = − 1

2ρ3

∫
q1,⊥+q2,⊥=q⊥

q1,⊥αq2,⊥β(
q2

1,⊥ + q2
2,⊥ + τ

) . (A3)

The remaining integrations are simplified by switching inte-
gration variables to q1,⊥ = q⊥/2 + p⊥ and q2,⊥ = q⊥/2 − p⊥
and defining m2 := τ/2 + q2

⊥/4:

Fαβ = − 1

16ρ3

∫
p⊥

q⊥αq⊥β − 4p⊥αp⊥β

p2
⊥ + m2

= − 1

16ρ3

∫
p⊥

q⊥αq⊥β − 4p2
⊥δαβ/(d − 1)

p2
⊥ + m2

. (A4)

3(b)

1

2
3

3(a) 1 2

3

FIG. 5. Three-leg diagrams.

4(c)

1 3

2 4

4(a)

21

43
4(b)

1 2

3 4

FIG. 6. Four-leg diagrams.

Using dimensional regularization of the integral with
d = 3 − ε, we finally obtain

Fαβ = −Aεμ
−ε

16ρ3ε
{2q⊥αq⊥β + (q2

⊥ + 2τ )δαβ} + O(ε0), (A5)

where Aε = �(1 + ε/2)/(4π )(d−1)/2. All other Feyman inte-
grals at one-loop order can be calculated by similar means. We
get

Gαβ =
∫

q1+q2=q

q1,⊥αq1,⊥β[(
q2

1,⊥ + τ/2
)2 + ρ2q2

1,‖
]

× q2,‖q2,‖[(
q2

2,⊥ + τ/2
)2 + ρ2q2

2,‖
]

= Aεμ
−ε

16ρ3ε
{2q⊥αq⊥β − (q2

⊥ + 2τ )δαβ} + O(ε0), (A6)

Hαβ =
∫

p

p⊥αp⊥β

[(p2
⊥ + τ/2)2 + ρ2p2

‖]
= −Aεμ

−ε

4ρε
τδαβ + O(ε0),

(A7)

Iαβγ δ =
∫

p

p⊥αp⊥βp⊥γ p⊥δ

[(p2
⊥ + τ/2)2 + ρ2p2

‖]2
= 3Aεμ

−ε

16ρε
Sαβγ δ + O(ε0),

(A8)

with Sαβγ δ = (δαβδγ δ + δαγ δβδ + δαδδβγ )/3,

Jαβγ δ =
∫

p

(p‖)2p⊥αp⊥βp⊥γ p⊥δ

[(p2
⊥ + τ/2)2 + ρ2p2

‖]3
= 3Aεμ

−ε

64ρ3ε
Sαβγ δ + O(ε0),

(A9)

Kαβγ δ =
∫

p

(p‖)4p⊥αp⊥βp⊥γ p⊥δ

[(p2
⊥ + τ/2)2 + ρ2p2

‖]4
= 3Aεμ

−ε

128ρ5ε
Sαβγ δ + O(ε0).

(A10)

The two-leg diagrams are shown in Fig. 4. With the
results above we obtain their singular parts that constitute the
counterterms

C(2(a)) = −f

2

∑
αβγ δ

q⊥αq⊥βSαβγ δHγδ = u

6ε
τq2

⊥, (A11)

C(2(b))=g2

9

∑
αβ

q⊥αq⊥β (Fαβ + Gαβ) = − v2

36ε

(
τ + 1

2
q2

⊥

)
q2

⊥,

(A12)
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and

C(2(c)) = g2

18
q2

‖
∑
αβ

Iααββ = v2

36ε
q2

‖ . (A13)

Our calculation of the three-leg diagrams (Fig. 5) yields

C(3(a)) = − igf

2
q3,‖

∑
αβγ δμ

q1,⊥αq2,⊥βSαβγ δIγ δμμ

= u

6ε
igT (q1,q2,q3) (A14)

and

C(3(b))=4ig3

9
q3,‖

∑
αβγ δ

q1,⊥αq2,⊥βJαβγ γ = v2

36ε
igT (q1,q2,q3)

(A15)

after symmetrization of the external leg moments. From the
four-leg diagrams (Fig. 6) we obtain

C(4(a)) = 3f 2

2

∑
αβγ δμνκλ

q1,⊥αq2,⊥βSαβμνIμνκλ

×Sκλγ δq3,⊥γ q4,⊥δ

= 3u

8ε
f S(q1,q2,q3,q4), (A16)

C(4(b)) = −8fg2

3

∑
αβγ δμν

q1,⊥αq2,⊥βJαβμν

×Sμνγ δq3,⊥γ q4,⊥δ (A17)

= − 5v2

36ε
f S(q1,q2,q3,q4), (A18)

and

C(4(c)) = 16g4

27

∑
αβγ δ

q1,⊥αq2,⊥βKαβγ δq3,⊥γ q4,⊥δ

= v2

72ε
g2S(q1,q2,q3,q4), (A19)

again after symmetrization.

APPENDIX B: ADDITIVE RENORMALIZATION AND RGE

As pointed out in Sec. IV, the Green functions G0,1(r1) and
G0,2(r1,r2) cannot be renormalized entirely by multiplicative
renormalization alone. Rather, they require extra additive
renormalization, which leads to the inhomogeneous RGEs

(m = 1,2):

(μ∂μ + ζρ∂ρ + κτ∂τ + βx∂x + βy∂y + mκ)G0,m({r})

= (−τ )2−mk
μ−ε

ρ
[δ(r1 − r2)]m−1, (B1)

where k is a function of the invariant coupling constants x and
y only. To lowest order, the additive renormalization arises
from the UV divergence of the diagram (4a) in Fig. 6 with
removed external legs and coupling constants. This divergence
is canceled by the additive counterterm

K = 1

2

∑
α,γ

Iααγ γ = μ−ε

16πρ

1

ε
+ O(ε0), (B2)

which leads after applying the operator μ∂μ···|0 to k = 1/16π

at lowest order.
To proceed towards its solution, let us discuss the form of

the RGE (B1) in more detail. This RGE is a partial differential
equation that describes the dependence of G0,m =: um(ξ ) upon
the variables (μ,ρ,τ,x,y) =: ξ = (xν ; ν = 1, . . . ,5). As far as
the RGE is concerned, the spatial coordinate plays solely the
role of a constant parameter. The general form of the RGE
is a quasilinear partial differential equation (PDE) (see, e.g.,
Ref. [40]): ∑

ν

aν(ξ,um)
∂um

∂xν

= b(ξ,um). (B3)

To find its solution, we consider um(ξ ) as the solution of the
implicit equation

w(um,ξ ) = 0 (B4)

and write the PDE as∑
ν

aν(ξ,um)
∂w

∂xν

+ b(ξ,um)
∂w

∂um

= 0. (B5)

This homogeneous PDE can be solved by employing the
characteristics ξ̄ (�), ūm(�) determined as usual by the ordinary
differential equations

�
dξ̄

dl
= a(ξ̄ ,ūm), �

dūm

dl
= b(ξ̄ ,ūm), (B6)

with a = (aν) = (μ,ζρ,κτ,βx,βy), and initial conditions
ξ̄ (1) = ξ , ūm(1) = um. Since w remains constant along the
characteristic flow, the solution is

w(ūm(�),ξ̄ (�)) = w(um,ξ ) = 0, (B7)

and ūm(�) is of the same functional form as that of um as a
function of ξ ,

ūm(�) = um[ξ̄ (�)]. (B8)

In our case, the characteristics μ̄(�) = �μ, ρ̄(�) = Xρ(�)ρ,
τ̄ (�) = Xτ (�)τ , x̄(�), ȳ(�) are defined by the differential
equations (3.26) and (4.4), and their asymptotic solutions in
the case ε = 0, � → 0 are given in Eqs. (3.27) and (4.18). It
remains to solve the differential equation for ūm(�):

�
dūm(�)

dl
= [−Xτ (�)τ ]2−m k(x̄(�),ȳ(�))

Xρ(�)ρ
δ(r1 − r2)

−mκ(x̄(�),ȳ(�))ūm(�). (B9)
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This equation has the solution

ūm(�) = Xτ (�)−m

[
um − (−τ )2−m

ρ
I (�)δ(r1 − r2)

]
, (B10)

where I (�) is the integral

I (�) =
∫ 1

�

d�′

�′
Xτ (�′)2

Xρ(�′)
k(x̄(�′),ȳ(�′)). (B11)

Since um = G0,m(r1,r2; ξ ) and ūm(�) = G0,m(r1,r2; ξ (�)), we
finally get

G0,m({r}; ξ ) = Xτ (�)mG0,m({r}; ξ (�))

+ (−τ )2−m

ρ
I (�)[δ(r1 − r2)]m−1 (B12)

from Eq. (B10).
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