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Minimum vertex cover problems on random hypergraphs: Replica symmetric solution
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The minimum vertex-cover problems on random α-uniform hypergraphs are studied using two different
approaches, a replica method in statistical mechanics of random systems and a leaf removal algorithm. It is found
that there exists a phase transition at the critical average degree e/(α − 1), below which a replica symmetric
ansatz in the replica method holds and the algorithm estimates exactly the same solution of the problem as that by
the replica method. In contrast, above the critical degree, the replica symmetric solution becomes unstable and the
leaf-removal algorithm fails to estimate the optimal solution because of the emergence of a large size core. These
results strongly suggest a close relation between the replica symmetry and the performance of an approximation
algorithm. Critical properties of the core percolation are also examined numerically by a finite-size scaling.
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I. INTRODUCTION

The more crucial part of everyday life computers bear, the
more significance computer science and information theory
seem to have. Among them, the computational complexity
theory studies the difficulty, the limit of improving algorithms,
to solve theoretical computational problems. It has revealed
that the problems belong to several classes such as P and NP

and there are many inclusion relations between these classes.
For example, two-satisfiability (2-SAT) problems belong to
a class of P guaranteed to be solved in polynomial time. 3-
SAT and the vertex cover problems belong to a class of NP -
complete [1].

These problems are deeply related to the well-known
P versus NP problem attracting the theoretical computer
scientists. Then, the worst-case performance to solve the
computational problems has been one of the main subjects.
Among many types of combinatorial optimization problems,
the minimum vertex cover (min-VC) problem to be discussed
in this paper belongs to a class of NP -hard, and it applies to
searching a file on a file storage [2] and to improving the group
testing [3]. The approximation algorithm for the min-VC and
its performance have been studied [4].

In addition to the worst-case analysis, an important al-
ternative is the study of typical-case behavior on a class of
random instances of the computational problems. Recently,
statistical-mechanical methods of random spin systems have
been applied to the problems such as K-SAT and other
constraint-satisfaction problems [5]. These methods, devel-
oped in the spin-glass theory [6], enable us to study the
typical properties of the randomized problems. For example,
the statistical-mechanical approaches find a SAT/UNSAT
transition of K-SAT [7] and p-XOR-SAT [8]. They are also
applied to estimating a colorable transition of q coloring
[9] and random-averaged optimal values of min-VC [10–13]
problems. These results clarify that there is a so-called replica
symmetric (RS) phase where a replica symmetry ansatz
correctly provides typical properties of the problems, and
a replica symmetry breaking (RSB) phase where the RS
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solution becomes incorrect. Together with these approaches,
a typical-case performance of some approximation algorithms
has been also studied [14–16], suggesting that there is a
nontrivial relation between the replica symmetry and the
performance of approximation algorithms.

In this paper, we study the min-VC problem on a random
hypergraph. A number of vertices connected to an edge is
called an edge size and a graph whose edge size is more
than 3 is defined as a hypergraph. A statistical-mechanical
model defined on a standard graph with edge size 2 has
two-body interactions. In contrast, the model defined on a
hypergraph includes multibody interactions determined by
its edge size, which often change a type of phase transition
and a breaking pattern of the replica symmetry as shown
in the p-body spin glass model [17]. From this viewpoint,
influence of an edge size on the typical estimates of random
computational problems has been investigated by statistical-
mechanical approaches. In fact, it has been revealed that
the edge size changes the properties of some problems such
as K-SAT [5,7], q-coloring [18], and min-VC problems on
K-uniform regular random hypergraphs [19]. It is also found
that there exists a transition related to typical-case difficulty
between 2-SAT and 3-SAT [20]. Here we study the typical-case
behavior of the min-VC problem, explained later, on random
α-uniform hypergraphs and focus on the relation between the
replica symmetry and the performance of an approximation
algorithm called an extended leaf removal algorithm, proposed
to solve min-VC problems on hypergraphs approximately. In
the present work, we concentrate here on the replica symmetric
solution, while the related model has been studied in the
level of one step RSB [19], which is the current state-of-
the-art technique in the statistical-mechanical approach. It is
analytically shown in this paper, however, that an instability of
the replica symmetric solution, not the breaking of higher step
replica symmetry, is significantly related to the performance
limitation of the specific approximation algorithm. We also
discuss a geometric transition found in a core generated by
the leaf-removal algorithm, which occurs at the same critical
average degree as the instability of the RS solution.

This paper is organized as follows. In the following
section, we define the min-VC problem and α-uniform random
hypergraph ensembles and show the statistical-mechanical
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analysis of min-VC problems based on the replica method.
We estimate an averaged minimum-cover ratio under the RS
ansatz. We discuss the stability of the RS solution and find a
critical average degree beyond which the RS solution becomes
unstable. In Sec. III we introduce the leaf removal algorithm
for solving a min-VC problem on a given graph. We study
asymptotic behavior of its recursive relations in the algorithm
particularly for α = 3, which reveals emergence of the core
above the same critical average degree as the instability of
the RS solution. In Sec. IV we perform numerical simulations
by the leaf removal algorithm and Markov-chain Monte Carlo
method. We also show finite-size-scaling analyses for a critical
phenomena of the core percolation. The final section is devoted
to a summary and discussion. In the Appendix we describe the
details of the recursive analysis of the leaf removal algorithm.

II. DEFINITION OF MIN-VC AND RANDOM
HYPERGRAPHS AND STATISTICAL-MECHANICAL

ANALYSIS

Let us suppose that an α-uniform hypergraph G =
(HV,HE) consists of N vertices i ∈ HV = {1, . . . ,N} and
(hyper)edges (i1, . . . ,iα) ∈ HE ⊂ HV α (i1 < · · · < iα). We
define covered vertices as a subset HV ′ ⊂ HV and covered
edges as a subset of edges connected to at least a covered
vertex. The vertex cover problem on the hypergraph G is to
find a set of the covered vertices HV ′ by which all edges
are covered. We define the cover ratio on G as |HV ′|/N with
|HV ′| being the size of the vertex cover problem. The min-VC
problem on G is to search a set of the covered vertices with
the minimum-cover ratio.

In the random α-uniform hypergraph all the edges are set
independently from all α-tuples of vertices with probability p.
The degree distribution of the graph converges to the Poisson
distribution with the average degree c, which is given as c =
pNα−1/(α − 1)! for large N . In this paper, we focus on an
average of the minimum-cover ratio xc over the sparse random
hypergraphs with the average degree c being O(1).

The vertex cover problems are mapped on the lattice gas
model [10,11,21] on the random hypergraphs. We define a
variable νi on each vertex, representing the existence of a
gas particle, which takes 0 if a vertex i is covered and 1 if
uncovered. An covered edge has at least a vertex with νi = 0
in its connected vertices. Thus, an indicator function for a
given particle configuration ν = {νi} = {0,1}N is defined as

χ (ν) =
∏

(i1,...,iα )∈HE

(1 − νi1 · · · νiα ), (1)

which takes 1 if ν is a solution of the vertex cover problem on
the hypergraph, and 0 otherwise. Using the indicator function,
the grand canonical partition function of the model reads

� =
∑

ν

exp

(
μ

N∑
i=1

νi

)
χ (ν), (2)

where μ is a chemical potential and the sum is over all
configurations of ν. In this formulation, only the solutions of
the vertex cover problem contribute the partition function and
its ground states in a large μ limit are given by the solutions
of the min-VC problem. To study the typical case, we need

to take the average over the random hypergraphs and the
limit as N → ∞. Then, the average minimum-cover ratio is
represented as

xc(c) = 1 − lim
μ→∞ lim

N→∞
1

N
E

〈 ∑
i

νi

〉
μ

, (3)

where 〈· · · 〉μ is the grand canonical average and E is the
average over the random hypergraph ensemble. Our aim is to
obtain the theoretical estimate of the average minimum-cover
ratio as a function of the average degree c.

The average minimum-cover ratio is derived from the
averaged grand potential density −(μN )−1E ln �, which is
obtained by using the replica method for finite connectivity
graphs [22]. Following the standard procedure of the replica
method, the original problem is reduced to solving a saddle-
point equation of a replicated order parameter functional. To
proceed the calculation, we assume the RS ansatz that the
solution of the saddle-point equation has a replica symmetry.
Introducing a local field on a vertex associated to the order
parameter and its distribution function, we obtain the saddle-
point equation of the distribution. Finally, under the RS ansatz,
the average minimum-cover ratio is obtained as a function of
the average degree c,

xc(c) = 1 −
[
W [(α − 1)c]

(α − 1)c

]1/(α−1)(
1 + W [(α − 1)c]

α

)
,

(4)

where W (x) is the Lambert W function defined as
W (x) exp[W (x)] = x. We call this estimate the RS solution
of min-VC problems. This solution is also obtained by an
alternative cavity method [12]. Although the instability of the
RS solution such as the de Almeida-Thouless instability [23]
must be examined to validate the solution, we here naively
study an instability condition of the saddle-point equation
against a perturbation of the local field distribution within the
RS sector. The analysis leads to a critical value of the average
degree c∗ = e/(α − 1) above which the RS solution becomes
unstable. These results, xc and c∗, include the case of α = 2
[10]. The obtained xc gives a correct value below the critical
average degree, while a RSB solution for xc is required above
it.

III. LEAF REMOVAL ALGORITHM

Here we turn our attention to the estimate of xc by using an
approximation algorithm. The leaf removal algorithm has been
proposed as an approximation algorithm to solve a min-VC
problem on a graph with α = 2 [24] and has also been applied
to search for a k-core [25] and a 3-XOR-SAT solution [15]. For
a min-VC problem on a given graph, this algorithm consists
of iterative steps, where vertices called a leaf, as well as the
edges connected to the leaves, are removed from the graph with
covered vertices appropriately assigned to those vertices. This
removal step makes new leaves and the algorithm continues
in an iterative way until the leaf is empty. By this procedure,
the minimum-cover ratio is estimated correctly at least for the
removed part of the graph. We consider the global leaf removal
(GLR) algorithm [14], which removes simultaneously all the

062139-2



MINIMUM VERTEX COVER PROBLEMS ON RANDOM . . . PHYSICAL REVIEW E 89, 062139 (2014)

leaves found in a recursive step. We focus on the expansion
of this algorithm for the min-VC problem on a hypergraph
with α = 3, while it is straightforward to extend it to that on a
hypergraph with α � 4. A crucial point in our algorithm is in
definition of a leaf, where a leaf {i,j,k} ∈ HV 3 (i < j < k) is
defined as a 3-tuple of vertices connected to an edge (i,j,k), at
least two of which has degree 1. As in [14], we define a bunch
of leaves as vertices in a maximal family of leaves with the
same vertex. For example, if there are two edges {i,j1,j2} and
{i,k1,k2} and the degree of vertices j1,j2,k1 and k2 is 1, a set
of vertices {i,j1,j2,k1,k2} is a bunch of leaves.

The definition of the GLR algorithm is as follows:
Step 1: The initial graph G is named G(0). Set k = 0.
Step 2: Search all leaves from the graph G(k). If there is no

leaf, go to Step 6.
Step 3: Remove all the leaves except for a bunch of leaves.

In each bunch of leaves, remove only one of leaves. Then, the
others are isolated with degree 0.

Step 4: Assign covered vertices to the one with the maximal
degree in each removed leaf from G(k).

Step 5: The left graph is named G(k+1), and return to Step
2 with k increased by 1.

Step 6: If there exist connected vertices in the left graph,
assign all of them to covered vertices. Stop the algorithm.

Figure 1 is an example of the GLR algorithm on a 3-uniform
hypergraph. It is proven that the result of the algorithm is
independent of order of removal and a selection of a leaf out
of a bunch of leaves in the removal process. In the example,
the resultant numbers of covered and isolated vertices are
determined regardless of the selection of a removed leaf,
{1,2,5} or {3,4,5}. As shown in Fig. 1, when the recursive
steps stop, the left graph consists of isolated vertices and a
core, which is defined as a set of vertices connected to edges
without leaves. Vertices which are not selected for the removal

FIG. 1. A series of GLR procedures on a 3-uniform hypergraph.
1) Step 2 (k = 0): The initial graph G(0) has a bunch of leaves
{1,2,3,4,5}, where {1,2,5} and {3,4,5} are leaves. 2) Step 3: By
the “bunch of leaves” rule, either leaf must be removed. Here,
a leaf {1,2,5} is removed (drawn by dotted lines) and vertices 3
and 4 become isolated. 3) Step 4: As an optimal solution, the
GLR algorithm assigns “covered” to vertex 5 with degree 3 and
“uncovered” to vertices 1,2,3, and 4. Step 5: The left graph with
vertices 3,4,6,7,8 and 9 becomes G(1). The GLR algorithm goes to
the next iteration as k = 1. 4) Step 1 (k = 1): G(1) has no leaves.
Then, the GLR algorithm goes to Step 6. Step 6: Vertices 6,7,8, and
9, which belong to a core (component surrounded by a broken line),
are assigned to covered vertices.
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FIG. 2. (Color online) The core size density in the GLR algo-
rithm as a function of the average degree c. Open marks are the data
obtained by the GLR algorithm with the vertex size 104, 5 × 104, and
105, which are taken an average over 104 random hypergraphs. The
solid line is the core size density predicted by the asymptotic analysis
of the recursive formula in the GLR algorithm. The vertical dotted
line represents the critical average degree c∗ = e/2.

in Step 3 become isolated and the core with O(N ) vertices
exists in large c. We note that Step 4 can be omitted if one is
interested only in the minimum-cover ratio, not the covered
vertices. Because the algorithm covers all vertices in the core
without searching an optimal solution of the min-VC problem
as shown in Step 6, the existence of the core with O(N )
vertices leads to overestimation of the average minimum-cover
ratio. We study the core size at the end of the GLR algorithm
by numerically performing the above-mentioned procedure
for finite-size random hypergraphs with α = 3. While the
computational time for the GLR algorithm is proportional
to the number of vertices, it takes time of the order of
N3 for generating a random graph. To avoid it, we use the
microcanonical ensemble [14] with fixing the number of edges
to the expectation number of edges cN/3, ignoring fluctuation
of the average degree. We expect that such fluctuation is
irrelevant in a large-N limit. In Fig. 2, the core size density
obtained by numerical simulations is presented as a function
of the average degree c up to N = 105. The data averaged over
104 random graphs converge well for large sizes and a giant
core with O(N ) emerges above a certain value of c.

We discuss the asymptotic behavior of the recursive
procedure in the GLR algorithm. We introduce the fractions of
the core cn, the isolated vertices in, and the edges in the core
ln averaged over random hypergraphs after the nth step of the
algorithm, and find

in = e2n+1 + 2e2n + 2ce2ne
2
2n−1 − 2,

cn = e2n − e2n+1 − 2ce2ne
2
2n−1 + 2ce3

2n−1,

ln = c

3
(e2n − e2n−1)2(e2n + 2e2n−1),

(5)

where a parameter en (n � −1) obeys a recursion relation,

en = exp
(−ce2

n−1

)
, e−1 = 0. (6)

A detailed derivation of the formulas is shown in the Appendix.
By definition, the average fraction of the removed vertices rn
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up to the nth step is given by rn = 1 − in − cn. These fractions
are governed by the sequence of en and their values at the end
of the algorithm are determined by the asymptotic behavior of
the recursion relation of {en}.

It is found that there exists a critical average degree
c∗ = e/2 for the recursion relation. Below the critical value, the
sequence {en} converges to the unique value [W (2c)/(2c)]1/2

and consequently the core size c∞ is zero. Above the critical
value, however, a bifurcation occurs in the recursion relation
and the sequence has a cycle with period 2. This type of
transition would occur above α = 3 at the critical average
degree c∗ = e/(α − 1). Because e−1 = 0, an even term e2n is
larger than that at one step later, that is e2n+1. We compute
the limiting values limn→∞ e2n+1 and limn→∞ e2n numerically
as a function of c. The difference between them yields the
emergence of the O(N ) core. We present the core size density
obtained from the asymptotic analysis of the recursion relation
by the solid line in Fig. 2, which coincides with numerical
GLR data. We thus confirm that a core percolation occurs
at the critical average degree in the GLR algorithm, which
coincides with that of the RS instability. From the analysis
near the critical degree, we find

c∞ = 1√
e

(
6ε − 3

√
6ε3/2 + 51

10
ε2

)
+ O(ε5/2),

(7)

l∞ = 1√
e

(
3ε −

√
6

2
ε3/2 + 27

20
ε2

)
+ O(ε5/2),

where ε = (c − c∗)/c∗(� 0). The core thus emerges linearly
near above the critical average degree. These findings, the
bifurcation in the recursion relation and the core percolation,
are common in the min-VC problems on random graphs with
α = 2 [14].

As mentioned above, the GLR algorithm estimates the
minimum-cover ratio by the size of the removed part in
the graph during the recursive procedure, which is given as
r∞ = 1 − i∞ − c∞.

Taking one-third of r∞ and adding c∞ to the value, we
obtain the estimate of the average minimum-cover ratio by the
algorithm. Thus, we find that below the critical average degree
e/2 the estimate r∞/3 coincides with the RS solution Eq. (4)
estimated by the replica method. In contrast, the sequence {en}
of the algorithm does not converge to a unique value above the
critical value and the GLR algorithm could not give a precise
estimate of xc there.

Here, we show the asymptotic analysis of the recursion
relation in the GLR algorithm on 3-uniform hypergraphs. It
revealed that the O(N ) core emerges at the critical average
degree c∗ = e/2, where the RS solution becomes unstable.
While this analysis offers thermodynamic properties of the
core, it is still hard to predict other critical properties of the core
percolation, especially finite-size effects. In the next section,
we show some numerical results according to typical perfor-
mance of the GLR algorithm and critical properties of the core.

IV. NUMERICAL RESULTS

In order to confirm whether these analyses in the previous
section estimate the average minimum-cover ratio xc for α = 3
correctly, we study the min-VC problems by a Markov chain
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FIG. 3. (Color online) The average minimum-cover ratio on ran-
dom α-uniform hypergraphs with α = 3 as a function of the average
degree c. Open marks are numerical results by the exchange MC
(diamonds) and by the GLR algorithm for N = 104 (squares) and
105 (triangles). Lines represent analytic results by the replica method
(solid), by the GLR algorithm (dashed), and on the removed part
of the graphs by the GLR algorithm (dashed-dotted). The vertical
dotted line is the critical average degree c∗ = e/2, below which all
lines merge into a single line.

Monte Carlo (MC) method. In particular, we use the replica
exchange Monte Carlo method [26,27] for accelerating the
equilibriation of the system. In our simulations, the total
number of replicas is fixed to be 50 and each has a different
value of chemical potential ranging from −2 to 10. The value
of xc for each random graph is estimated as the smallest cover
ratio found during MC simulations with 217 Monte Carlo steps,
which is averaged over 800 hypergraphs randomly generated.
The average minimum-cover ratio is extrapolated from the
numerical results for finite sizes N up to N = 512 by fitting a
second-order polynomial of 1/N . Figure 3 shows the obtained
minimum-cover ratio as a function of the average degree c.
Below the critical average degree e/2 where the RS solution
is considered to be correct, the MC result is consistent with
those by the two approaches, the replica method and the GLR
algorithm. Above the critical value, on the other hand, the MC
estimate stays slightly above that by the replica method and
considerably deviates from that by the GLR algorithm. The
former is due to the instability of the RS solution and the latter
is the existence of the core with O(N ) vertices.

Next, we study the critical properties of the core percolation
in the GLR algorithm. While the critical threshold of the core
percolation and the exponent of the core size are determined
in the previous section, some critical exponents are not
obtained analytically from the asymptotic analysis of the GLR
algorithm. Thus, we study the critical nature of the core
percolation by numerically performing the GLR algorithm.
We measure the number of vertices in the core, Nc, and that
of edges in the core, Lc, for a given hypergraph with the
vertex size N . At the critical average degree c = c∗ of the core
percolation, Nc, Lc and its average connectivity ceff = 3Lc/Nc

are expected to exhibit power-law behavior as

Nc(c∗) ∼ Lc(c∗) ∼ Nω,
(8)

ceff(c∗) − 3
2 ∼ N−φ,
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being an effective average degree in the core, and open triangles are
the probability Prob(Nc = 0) of the random graph for completely
removable in the GLR algorithm. The lines represent results obtained
by a fitting to power-law decay in N .

where the average connectivity 3/2 in the large N limit is
derived from Eq. (7). We also evaluate probability of random
hypergraphs removed completely by the GLR algorithm,
which is also assumed to be a power law in N with another
exponent η,

Prob(Nc(c∗) = 0) ∼ N−η. (9)

These quantities are shown in Fig. 4, where the average is
taken over 105 random hypergraphs. The data in Fig. 4 are
fitted by the power laws with

ω = 0.63(1), φ = 0.20(1), η = 0.241(1). (10)

We then perform the finite-size-scaling analyses of the fluctu-
ation of Nc and Lc near the critical average degree.

According to the standard finite-size scaling ansatz, the sin-
gular part of a quantity Q(c,N ) which behaves as Q(c,∞) ∼

0
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FIG. 5. (Color online) Finite-size scaling plot of the number of
edges Lc in the core with the exponent θ = 0.38(1).
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FIG. 6. (Color online) Finite-size scaling plot of the variance
χL(c,N ) of the edge number in the core. The obtained scaling
parameters are θ = 0.37(2) and ρ = 0.77(2). The inset shows the size
dependence of χL at the critical average degree. The slope represents
the asymptotic power law as Nθρ expected from the finite-size scaling
analysis.

|c − c∗|ωQ follows the leading scaling form

Q(c,N ) = N−ωQθfQ[(c − c∗)Nθ ], (11)

where ωQ and θ are critical exponents and fQ(x) is a scaling
function. In order to obtain the data for the finite-size scaling
analysis, we perform the GLR algorithm for some values of c

around c∗ on 104 hypergraphs whose sizes are N = 9 × 103,
9 × 104, and 9 × 105. All the finite-size scalings shown
below are done by using a Bayesian scaling analysis [28].
As discussed in the previous section, the fraction Nc/N of
vertices and that Lc/N of edges in the core are proportional
to c − c∗ as c → c∗ + 0, leading that ωQ = 1 for Lc. Thus,
the finite-size scaling form for Lc/N has an unknown value of
the exponent θ . Figure 5 shows the finite-size scaling plot
for Lc/N with θ = 0.38(1). Here, other finite-size scaling
analyses are performed to deal with the fluctuation of fractions
Lc/N and ceff , and confirm scaling relations with ω and φ.
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FIG. 7. (Color online) Finite-size scaling plot of the variance
χc(c,N ) of the core size. The obtained scaling parameters are
θ = 0.39(2) and ρ ′ = 1.39(2). The inset shows the size dependence of
χc at the critical average degree. The slope represents the asymptotic
power law as Nθρ′

expected from the finite-size scaling analysis.
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TABLE I. Critical exponents of a percolation transition of the
core generated by the GLR algorithm. The first line presents our
numerical results for α = 3. The second one is those for α = 2 and
the bottom line displays those conjectured for α = 2 in Ref. [14].

θ ω φ ρ ρ ′ η

α = 3 0.38(1) 0.63(1) 0.20(1) 0.7(1) 1.4(1) 0.241(1)
α = 2 0.36(3) 0.63(1) 0.21(1) 1.5(1) 0.25(1)
Conjecture 2/5 3/5 1/5 1/2 3/2 24/100

We define normalized variances χL and χc as Var(Lc)/N and
NVar(ceff), respectively, where Var( · · · ) means a variance, and
the corresponding critical exponents ρ and ρ ′ are defined by

χL(c,∞) ∼ |c − c∗|−ρ,

χc(c,∞) ∼ |c − c∗|−ρ ′
.

(12)

They are examined using the finite-size scaling hypothesis
(11) and the scaling plots are presented in Figs. 6 and 7,
respectively. From these numerical observations, we evaluate
the critical exponents associated with the core percolation in
the first line of Table I.

Bauer and Golinelli have evaluated those critical exponents
in the case of α = 2 which are significantly different from those
of the bond percolation on a random graph and discussed their
scaling relations among the exponents [14].

These relations are appropriate if the scaling relations (8),
(11), and (12) are also valid for α = 3. Our finite-size scaling
analyses are marginally compatible with the scaling relations,
and the evaluated critical exponents are sufficiently close to
numerical results and their conjectures in the case of α = 2 are
shown in Table I. These results suggest that there is a universal
“GLR core” class, which is independent to the uniform edge
degree α.

V. SUMMARY AND DISCUSSION

To summarize, we have discussed the minimum vertex
cover problems on random α-uniform hypergraphs by the
statistical-mechanical replica method and the approximation
algorithm. The former estimates the average minimum-cover
ratio xc as a function of the average degree c under the
replica symmetric assumption. We find that an RS/RSB phase
transition occurs at the critical average degree c∗ = e/(α − 1),
which is well above a percolation threshold c = 1/(α − 1) in
the random graph. We also extend the global leaf removal
algorithm to the problem with α � 3 and study the asymptotic
behavior of the recursive procedure of the algorithm, particu-
larly in the case of α = 3. If the average degree is below the
critical value which coincides with that in the replica theory,
the cores at the end of the GLR algorithm remain to be o(N )
and they do not affect the estimate of the minimum-cover
ratio. In contrast, above the critical value, the O(N ) core
emerges, leading to a wrong estimation of the minimum-cover
ratio. Comparing the results obtained by MC simulations, we
confirm that these estimates are correct below the critical
average degree, but this is not the case above it. These results
strongly suggest that there is a close relation between the
replica symmetry in statistical physics and the performance

limitation of the leaf removal algorithm even when the edge
size α is larger than 2, although the similar relation has been
pointed out for α = 2 [14]. We also perform the finite-size
scaling analysis of the core generated by the GLR algorithm
and find that the critical exponents estimated are consistent
with those of the GLR core percolation with α = 2 and that
they are different from those of a normal percolation transition
on the random graph. This implies that there exists a universal
class of the GLR core percolation irrespective of the edge size.
After the submission of this paper, we became aware of a recent
work [29] in which the GLR algorithm for the maximum set
packing (MSP) problem also generates a core suggesting the
existence of the RS/RSB transition. As the MSP problem is
the dual problem of the min-VC problem, it is expected that
the core found in the MSP has the same critical properties
reported in this paper.

It is noted that the relation is not always true for all types
of random graphs. For instance, the GLR algorithm is not able
to remove any vertex on regular random graphs with c � 2
because no leaf is found there while, from the point of the
statistical-mechanical view, the min-VC problems on regular
random graphs with degree 2 are described by the RS solution
[19]. Thus, the relation depends on a type of random graphs
and approximation algorithms to be used to solve the problem.
In addition to the leaf removal algorithm, a recent work for the
min-VC problem with α = 2 [16,30] suggests that the linear
programming method, which is one of the most commonly
used techniques for solving optimization problems, has the
relation discussed in the present work.

Further study will be needed to establish the relation be-
tween the replica symmetry and the performance of numerous
algorithms.
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APPENDIX: RECURSIVE ANALYSIS OF GLR

In this Appendix we show details of recursive relations
of the GLR algorithm for α � 3. Following Ref. [14], we
consider the GLR algorithm on a three-uniform random rooted
(hyper)tree with the average degree c. On the rooted tree we
distinguish a root from other vertices. We perform the GLR
algorithm on it except that we do not remove the root before
the degree of its two neighbors becomes 1. Then we define
pn (n � 0) and qn (n � 1) as a generating function of rooted
trees whose root is removed exactly at the nth removal step
and whose root becomes isolated at the nth steps, respectively.
To simplify our notation we also use pn and qn to express a
state of a vertex. We define the sum of each state as

Pn =
n∑

k=0

pk, Qn =
n∑

k=1

qk, (A1)

where P∞ + Q∞ = 1 because all the roots are identified with
either pn or qn.
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These quantities are to be evaluated as a function of a
recursive step n. When the root is connected to a pair of
neighbors by an edge, we denote their states by a pair of pn and
qn. A state of the neighboring vertex is determined on a new
graph rooted by the neighboring vertex without the original
root and edges connected to them. For example, a couple of
states (pn, · ) means that a state of a neighbor is pn and the other
is in any states (“·” represents an arbitrarily state). The root
with degree 0 is denoted by p0 and its existence probability
is e−c. The root of pn should have k(� 1) edges connected to
at least a vertex of qn out of two vertices which are not Qn−1.
Except for those edges it can also be connected to (Qn−1, · ).
We express the number of the pairs as l(� 0). Hence, we find

pn = e−c
∑
k�1

{
c
[
q2

n + 2qn(1 − Qn)
]}k

k!

×
∑
l�0

{c[1 − (1 − Qn)2]}l
l!

= exp
[ − c(1 − Qn)2

] − exp
[ − c(1 − Qn−1)2

]
. (A2)

The root of qn should have k(� 1) pairs of neighbors with
(pn−1,Pn−1) and other l(� 0) pairs without Pn−1. Then qn

reads

qn = e−c
∑
k�1

[
c
(
P 2

n−1 − P 2
n−2

)]k

k!

∑
l�0

[
c
(
1 − P 2

n

)]l

l!

= exp
[ − cP 2

n−2

] − exp
[ − cP 2

n−1

]
. (A3)

Rewriting Eqs. (A2) and (A3), they read

pn = e2n+1 − e2n−1 (n � 0), qn = e2n−2 − e2n (n � 1).

(A4)

These relations lead to Eq. (6). This analysis on rooted trees can
be straightforwardly expanded to the case of general uniform
hypergraphs.

Here we discuss fractions in and rn of isolated and removed
vertices at the nth recursive step of the GLR algorithm. Using
a trivial relation in + cn + rn = 1, the core fraction cn is
obtained from in and rn. While pn and qn mentioned above are
clues to estimate those fractions, they should be reclassified
because of the exception rule on the rooted trees. We divide
pn into two fractions p′

n and p′′
n for calculating in. Defining

p′
n as a generating function of vertices which connect to a pair

of neighbors (qn,Pn−1) and p′′
n as the others, we find that the

vertices of p′′
n eventually are isolated at the nth step. It reads

p′′
n = pn − e−cc(2qnPn−1)

∑
l

{
c
[
1 − (1 − Qn−1)2

]}l

l!

= pn − 2ce2
2n−1(e2n−2 − e2n). (A5)

In contrast, p′
n is potentially removed at the nth step except

for a bunch-of-leaves rule. If a vertex of qn connects to more
than two couples of (pn−1,Pn−1), the GLR algorithm removes
only one of them and leaves others isolated by the rule. We
note that these neighbors are all in the p′ state. The isolated

fraction reads

e−c
∑
k�1

2(k − 1)

[
c
(
P 2

n−1 − P 2
n−2

)]k

k!

∑
l

[
c
(
1 − P 2

n−1

)]l

l!

= 2c
(
e2

2n−1 − e2
2n−3

)
e2n−2 − 2qn. (A6)

We therefore find the fraction �in of isolated vertices at the
nth step,

�in = pn − 2qn + 2c
(
e2ne

2
2n−1 − e2n−2e

2
2n−3

)
. (A7)

Starting with the initial condition i0 = e−c = e1, the fraction
of isolated vertices after the nth recursive step is obtained as

in = e2n+1 + 2e2n + 2ce2ne
2
2n−1 − 2. (A8)

Next, we evaluate the removed fraction rn. The basic
strategy is to count a fraction of qn and its neighbors at the
nth step, but it requires classification to avoid a multicounting
of the removed vertices. In the calculation of Eq. (A3), we
denote the number of pairs (pn−1,Pn−1) and that of others by
k and l, respectively. Vertices in the qn state are classified by
its neighbors as follows:

(1) q ′
n: k � 2.

(2) q ′′
n : k = 1 and l � 0 pairs of (Qn−2, · ).

(2a) q̃n: Only one pair with (pn−1,pn−1).
(2b) q̂n: Without q̃n out of q ′′

n .
(3) q∗

n : k = 1 and l � 1 pairs with (Qn−1, · ) at least one of
which needs to be (qn−1, · ).

(4) q ′′′
n : Others.

A careful observation shows that the GLR algorithm
removes three vertices from vertices with q ′

n and q ′′′
n and a

vertex from those with q∗
n and q̃n at the nth step. Then the

increment of the fraction �rn of removed vertices in the nth
step is given by

�rn = 3q ′
n + q∗

n + q̃n + 3q ′′′
n

= 3qn − 2ce3
2n−1 + 2ce3

2n−3. (A9)

Combined with the initial condition r0 = 0, the expression of
rn is obtained as

rn = 3 − 3e2n − 2ce2n − 2ce3
2n−1, (A10)

and eventually the core fraction cn at the nth step is obtained
as in Eq. (5).

A ratio ln of unremoved edges per the number of vertices
N and a ratio tn of removed edges at the nth step are also
estimated. They obey a simple relation ln + tn = c/3. It is
rather easy to estimate all edges connected to qn vertices as

e−c
∑
k�1

∑
l

(k + l)

[
c
(
P 2

n−1 − P 2
n−2

)]k

k!

[
c
(
1 − P 2

n−1

)]l

l!

= ce2n−2 − ce2n + ce2ne
2
2n−1 − ce2n−2e

2
2n−3. (A11)

It is, however, obviously overestimated because some edges
connect to other vertices in qn and some are already removed
before the nth step. Recalling the classification of vertices in
qn, we notice that some type of edges depending on the indices
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k and l causes this overcounting. They are estimated as

q ′′
n + 1

2
q̃n + e−c

∑
k�1

[
c
(
P 2

n−1 − P 2
n−2

)]k

k!

×
∑
l,l′

(
l + l′

2

) (
cq2

n

)l

l!

[2cqn(1 − Qn)]l
′

l′!

×
∑
m

{
c
[
1 − P 2

n−1 − q2
n − 2qn(1 − Qn)

]}m

m!

= 2

3
ce3

2n−1 − 2

3
ce3

2n−3 + 2

3
cq3

n + cq2
ne2n. (A12)

Edges connected to (Qn−1,Qn−1) or (Qn−1,1 − Qn−1) are
removed before the nth step and the ratio reads

e−c
∑
k�1

[
c
(
P 2

n−1 − P 2
n−2

)]k

k!

×
∑

l

l

{
c
[
Q2

n−1 + 2Qn−1(1 − Qn−1)
]}l

l!

×
∑
m

{
c
[
1 − P 2

n−1 − Q2
n−1 − 2Qn−1(1 − Qn−1)

]}m

m!

= cqn(1 − e2
2n−2). (A13)

These relations allow us to lead the incremental of tn as

�tn = − c

3
(e2n − e2n−1)2(e2n + 2e2n−1)

+ c

3
(e2n−2 − e2n−3)2(e2n−2 + 2e2n−3). (A14)

Then, tn and ln are derived as

tn = c

3
− c

3
(e2n − e2n−1)2(e2n + 2e2n−1),

ln = c

3
(e2n − e2n−1)2(e2n + 2e2n−1),

(A15)

with t0 = 0.
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[19] M. Mézard and M. Tarzia, Phys. Rev. E 76, 041124 (2007).
[20] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and

L. Troyansky, Nature (London) 400, 133 (1999).
[21] A. K. Hartmann and M. Weigt, Phase Transitions in Combi-

natorial Optimization Problems, (Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2005).

[22] R. Monasson, J. Phys. A 31, 513 (1998).
[23] J. R. L. de Almeida and D. J. Thouless, J. Phys. A 11, 983

(1978).
[24] R. M. Karp and M. Sipser, in Proceedings of 22nd Annual Sym-

posium on Foundations of Computer Science (IEEE Computer
Society, Los Alamitos, 1981), p. 364.

[25] B. Pittel, J. Spencer, and N. Wormald, J. Comb. Theory B 67,
111 (1996).

[26] C. J. Geyer, in Computing Science and Statistics: Proceedings of
the 23rd Symposium on the Interface, edited by E. M. Keramidas
(Interface Foundation of North America, Fairfax Station, 1991),
p. 156.

[27] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996).

[28] K. Harada, Phys. Rev. E 84, 056704 (2011);
http://kenjiharada.github.io/BSA/.

[29] C. Lucibello and F. Ricci-Tersenghi, Int. J. Stat. Mech. (2014)
136829.

[30] S. Takabe and K. Hukushima, J. Phys. Soc. Jpn. 83, 043801
(2014).

062139-8

http://dx.doi.org/10.1109/TIT.1964.1053689
http://dx.doi.org/10.1109/TIT.1964.1053689
http://dx.doi.org/10.1109/TIT.1964.1053689
http://dx.doi.org/10.1109/TIT.1964.1053689
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1126/science.264.5163.1297
http://dx.doi.org/10.1126/science.264.5163.1297
http://dx.doi.org/10.1126/science.264.5163.1297
http://dx.doi.org/10.1126/science.264.5163.1297
http://dx.doi.org/10.1103/PhysRevLett.87.127209
http://dx.doi.org/10.1103/PhysRevLett.87.127209
http://dx.doi.org/10.1103/PhysRevLett.87.127209
http://dx.doi.org/10.1103/PhysRevLett.87.127209
http://dx.doi.org/10.1103/PhysRevE.76.031131
http://dx.doi.org/10.1103/PhysRevE.76.031131
http://dx.doi.org/10.1103/PhysRevE.76.031131
http://dx.doi.org/10.1103/PhysRevE.76.031131
http://dx.doi.org/10.1103/PhysRevLett.84.6118
http://dx.doi.org/10.1103/PhysRevLett.84.6118
http://dx.doi.org/10.1103/PhysRevLett.84.6118
http://dx.doi.org/10.1103/PhysRevLett.84.6118
http://dx.doi.org/10.1103/PhysRevE.63.056127
http://dx.doi.org/10.1103/PhysRevE.63.056127
http://dx.doi.org/10.1103/PhysRevE.63.056127
http://dx.doi.org/10.1103/PhysRevE.63.056127
http://dx.doi.org/10.1140/epjb/e2003-00096-4
http://dx.doi.org/10.1140/epjb/e2003-00096-4
http://dx.doi.org/10.1140/epjb/e2003-00096-4
http://dx.doi.org/10.1140/epjb/e2003-00096-4
http://dx.doi.org/10.1103/PhysRevE.74.046110
http://dx.doi.org/10.1103/PhysRevE.74.046110
http://dx.doi.org/10.1103/PhysRevE.74.046110
http://dx.doi.org/10.1103/PhysRevE.74.046110
http://dx.doi.org/10.1007/s10051-001-8683-4
http://dx.doi.org/10.1007/s10051-001-8683-4
http://dx.doi.org/10.1007/s10051-001-8683-4
http://dx.doi.org/10.1007/s10051-001-8683-4
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1103/PhysRevE.86.041128
http://dx.doi.org/10.1103/PhysRevE.86.041128
http://dx.doi.org/10.1103/PhysRevE.86.041128
http://dx.doi.org/10.1103/PhysRevE.86.041128
http://dx.doi.org/10.1016/0550-3213(85)90374-8
http://dx.doi.org/10.1016/0550-3213(85)90374-8
http://dx.doi.org/10.1016/0550-3213(85)90374-8
http://dx.doi.org/10.1016/0550-3213(85)90374-8
http://dx.doi.org/10.1103/PhysRevE.66.056120
http://dx.doi.org/10.1103/PhysRevE.66.056120
http://dx.doi.org/10.1103/PhysRevE.66.056120
http://dx.doi.org/10.1103/PhysRevE.66.056120
http://dx.doi.org/10.1103/PhysRevE.76.041124
http://dx.doi.org/10.1103/PhysRevE.76.041124
http://dx.doi.org/10.1103/PhysRevE.76.041124
http://dx.doi.org/10.1103/PhysRevE.76.041124
http://dx.doi.org/10.1038/22055
http://dx.doi.org/10.1038/22055
http://dx.doi.org/10.1038/22055
http://dx.doi.org/10.1038/22055
http://dx.doi.org/10.1088/0305-4470/31/2/012
http://dx.doi.org/10.1088/0305-4470/31/2/012
http://dx.doi.org/10.1088/0305-4470/31/2/012
http://dx.doi.org/10.1088/0305-4470/31/2/012
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1088/0305-4470/11/5/028
http://dx.doi.org/10.1006/jctb.1996.0036
http://dx.doi.org/10.1006/jctb.1996.0036
http://dx.doi.org/10.1006/jctb.1996.0036
http://dx.doi.org/10.1006/jctb.1996.0036
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://dx.doi.org/10.1103/PhysRevE.84.056704
http://kenjiharada.github.io/BSA/
http://dx.doi.org/10.1155/2014/136829
http://dx.doi.org/10.1155/2014/136829
http://dx.doi.org/10.1155/2014/136829
http://dx.doi.org/10.7566/JPSJ.83.043801
http://dx.doi.org/10.7566/JPSJ.83.043801
http://dx.doi.org/10.7566/JPSJ.83.043801
http://dx.doi.org/10.7566/JPSJ.83.043801



