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We consider a method for the accurate estimation of quenched random fields in the inverse Ising problem.
Approximations such as the mean-field or Bethe methods are applied to estimate quenched random coupling
parameters and external fields. A diagonal matching method is introduced to ensure consistency of the diagonal
part of the susceptibility, and the method yields an accurate estimation of the external fields. We introduce the
diagonal matching method into the mean-field, Thouless-Anderson-Palmer, and Bethe approximations, and we
investigate the effect of the diagonal matching method on the accuracy of estimation of the external fields.
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I. INTRODUCTION

Statistical physics has been deeply connected with com-
puter science in recent years [1]. Techniques developed in
statistical physics have been applied to various problems
in computer science. The Monte Carlo method is one such
technique, and the popularly used Monte Carlo method relies
significantly on computing power. Two other techniques
applicable to problems in computer science include the
mean-field and Bethe approximations in statistical physics.
These approximations are useful to estimate the marginals
of a probability distribution with many random variables.
Obtaining the average over a probability distribution with
many variables is a laborious task even if we utilize an
advanced computer. However, expectations can be easily
evaluated using the marginals. Consequently, researchers have
attempted to discover an accurate approximate method to
estimate marginals. Invoking the Bayes formula, we can infer
a cause from results, and the posterior probability in the
Bayes formula is evaluated using the marginals. In the field of
statistical physics, the mean-field and Bethe approximations
have been developed to estimate expectations averaged over
the Boltzmann distribution. In the field of computer science,
the belief-propagation algorithm, which is the same as the
Bethe approximation, has been discovered independently. The
belief propagation consists of recursive procedures in which a
message is passed from one vertex to another.

The inverse Ising problem, which is a typical problem
common to fields ranging from statistical physics to computer
science, has attracted considerable attention in recent years
[2–6]. The inverse Ising problem originates from Boltzmann
machine learning. In the conventional Ising model, magneti-
zations and correlation functions are estimated by averaging
over the Boltzmann distribution, and these expectations are
functions of coupling parameters between spins and external
fields applied to spins. The inverse Ising problem consists of
obtaining the inference of the coupling parameters and external
fields from magnetizations and correlation functions. It has
been pointed out that the inverse Ising problem has a close
connection with inference in biological problems [7–11].
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Provided that magnetizations and correlation functions are
given, obtaining the inference of the coupling parameters
and external fields is a computationally difficult problem.
In this light, approximate methods have been proposed
for obtaining the inference within feasible computational
times. The mean-field method is useful to infer coupling
parameters and external fields [12]. However, estimations
made via the mean-field method lack accuracy and, therefore,
advanced approximations such as the Thouless-Anderson-
Palmer (TAP) method, Sessak–Monasson expansion, and
Bethe approximation have been developed [13–17]. Since the
mean-field approximation does not provide the correlation
function between spins, we have to resort to the linear
response theory [12]. The linear response theory provides the
inference equations for the coupling parameters. When we
solve the inference equations for the coupling parameters, the
use of the diagonal matching method yields good estimations.
Recently, it has been shown that the adaptive TAP equation
[18,19] yields accurate estimations of the external fields [20].
It has also been shown that the adaptive TAP equation is similar
to the mean-field approximation with the use of the diagonal
matching method [21]. Raymond and Ricci-Tersenghi have
expanded the matching method into off-diagonal constraint
[22,23]. Thus, the diagonal matching method has drawn
revived interest.

In this paper, we concentrate on accurate estimations of
the external fields. The external fields are estimated more
accurately by the diagonal matching method than by any
conventional method. Although almost all of the existing
studies have been performed by numerical methods, we focus
on analytic elucidation of the diagonal matching method.
We introduce the diagonal matching method into the mean-
field, TAP, and Bethe approximations. The effect of the
diagonal matching method is investigated analytically. The
mean-field and TAP methods correspond to Gibbs free energy
approximated up to the first and second order of the coupling
parameters, respectively [24–26]. Therefore, the external fields
are expressed as expansions up to the first and second orders
of the coupling parameters. The introduction of the diagonal
parameter into the mean-field and TAP approximations leads
to the introduction of infinite-order terms of the coupling
parameters into the external fields. The Bethe approximation
is exact for treelike graphs. We find that the diagonal matching
method introduces the effect of loops into the external fields.

1539-3755/2014/89(6)/062135(10) 062135-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.062135


HIROHITO KIWATA PHYSICAL REVIEW E 89, 062135 (2014)

Recently, susceptibility propagation has been considered
as an efficient approach to estimate a correlation func-
tion between spins [27–29]. Susceptibility propagation is
an iterative algorithm for solving recursive equations. In
addition, susceptibility propagation incorporating the diagonal
matching method has been proposed and shown to provide
good results. We show that the susceptibility propagation
incorporating the diagonal matching method is identical to the
Bethe approximation with the use of the diagonal matching
method.

II. MODEL

Let us consider a graph G = (V,E), where V denotes a set
of vertices labeled by {1,2, . . . ,N}, and E denotes a set of
edges connecting vertices. On each vertex i ∈ V , there is an
Ising spin Si ∈ {+1, − 1}, and an external field hi is randomly
applied to the Ising spin. The system is completed by the
following energy function:

H = −
∑
i∈V

hiSi −
∑

(i,j )∈E
JijSiSj , (1)

wherein the second summation for (i,j ) runs over all of the
edges. The quantity Jij represents the weight of a random
coupling parameter between Ising spins Si and Sj . For
simplicity, we assume that the coupling parameter Jij is
symmetric with respect to i and j . If there is no edge between
a vertex i and j , the value of Jij is zero. The probability for the
system to be found in the state {Si} is given by the following
Boltzmann distribution:

P ({Si}) = 1

Z({hi},{Jij }) exp(−βH )

with Z({hi},{Jij }) =
∏
i∈V

∑
Si=±1

exp(−βH ), (2)

where β denotes the inverse temperature. Denoting the expec-
tation value with respect to the above Boltzmann distribution
by angle brackets 〈· · · 〉, we obtain the magnetization on
a vertex i and the correlation function between Si and Sj

as 〈Si〉 and 〈SiSj 〉, respectively. The magnetizations and
correlation functions are functions of {hi} and {Jij }. Given
{hi} and {Jij }, we can evaluate the magnetizations 〈Si〉
and correlation functions 〈SiSj 〉. However, an inverse Ising
problem is formulated by evaluation of a set of {hi} and {Jij }
from a given set of 〈Si〉 and 〈SiSj 〉. Given 〈Si〉 and 〈SiSj 〉,
it is possible to evaluate the exact values of {hi} and {Jij }
by adjusting them at the expense of an enormous amount of
computation. In order to avoid such expensive computation,
approximate methods have been developed.

It is useful to introduce the Gibbs free energy for the
formulation of approximate methods. The Gibbs free energy
is defined as

G({mi},{Jij }) = max
{hi }

[∑
i∈V

himi − 1

β
ln Z({hi},{Jij })

]
. (3)

The magnetization is derived from 〈Si〉 =
argminmi

G({mi},{Jij }). Although it is impossible to
evaluate Eq. (3) exactly, the Plefka expansion is a useful
approximate method to evaluate G({mi},{Jij }), and it is an

expansion with respect to the coupling parameters {Jij } [25].
The Plefka expansion of G({mi},{Jij }) is given by

G({mi},{Jij }) =
∞∑

k=0

G(k)({mi},{Jij }), (4)

wherein the superscript represents the order of the coupling
parameters {Jij }, and the values of G(k)({mi},{Jij }) up to the
third-order term are [26]

G(0)({mi},{Jij })

= 1

β

∑
i∈V

(
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

)
, (5)

G(1)({mi},{Jij }) = −
∑

(i,j )∈E
Jijmimj , (6)

G(2)({mi},{Jij }) = − 1

2
β

∑
(i,j )∈E

J 2
ij

(
1 − m2

i

)(
1 − m2

j

)
, (7)

G(3)({mi},{Jij })

= −2

3
β2

∑
(i,j )∈E

J 3
ijmimj

(
1 − m2

i

)(
1 − m2

j

)

− β2
∑

(i,j,k)

JijJjkJki

(
1 − m2

i

)(
1 − m2

j

)(
1 − m2

k

)
. (8)

The symbol
∑

(i,j,k) in Eq. (8) denotes summation over all three
distinct vertices. The Gibbs free energy up to the first-order
approximation in Eq. (4), i.e., G � G(0) + G(1), corresponds to
the mean-field approximation, and the Gibbs free energy up to
the second-order approximation, i.e., G � G(0) + G(1) + G(2),
corresponds to the TAP approximation [24].

By the property of the Legendre transformation, we obtain
the external field hi conjugated with mi as follows:

hi = ∂G({mi},{Jij })
∂mi

= 1

β
tanh−1 mi +

∞∑
k=1

∂G(k)({mi},{Jij })
∂mi

. (9)

As for the nth-order approximation, the external field yields

hi = 1

β
tanh−1 mi +

n∑
k=1

∂G(k)({mi},{Jij })
∂mi

. (10)

The right-hand side (rhs) of Eqs. (9) and (10) are functions
of {mi} and {Jij }. Consequently, if {mi} and {Jij } are given,
the external field {hi} is approximately evaluated by Eq. (10).
In order to estimate the coupling parameters {Jij }, the linear
response theory is utilized [12,13]. In the case of Eq. (1), the
susceptibility between spins on the vertices i and j is defined
by χij = 〈SiSj 〉 − 〈Si〉〈Sj 〉 and is also expressed as βχ̄ij =
∂mi/∂hj . We distinguish χij from χ̄ij because χij is a given
quantity in the inverse Ising problem and χ̄ij is derived from
Eq. (9) or (10). We introduce two matrices X and G whose ij th
elements are given by (X)ij = χij and (G)ij = ∂2G/∂mi∂mj ,
respectively. The coupling parameters {Jij } are evaluated from
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the relations

β
∂2G({mi},{Jij })

∂mi∂mj

= (X−1)ij , (11)

where i �= j , and X−1 is an inverse matrix of X . Within the nth-
order approximation, we approximate the Gibbs free energy at
G = ∑n

k=0 G(k). In the case of i �= j , the coupling parameter
Jij is estimated by the ij th element of Eq. (11). In the case
of i = j , the left-hand side (lhs) of Eq. (11) does not equal
the rhs when we use the approximate methods. In order to
equalize the lhs of Eq. (11) with the rhs, the diagonal matching
method has been proposed [12,13]. The diagonal matching
method introduces additional parameters {�i} into the Gibbs
free energy as follows:

GDM({mi},{Jij }) = G({mi},{Jij }) − 1

2

∑
i∈V

�i

(
1 − m2

i

)
,

(12)

where the subscript DM denotes the Gibbs free energy
obtained using the diagonal matching method. The quantities
{�i} are determined to satisfy the diagonal element of Eq. (11)
or the following relation:

β
(
1 − m2

i

) = (
G−1

DM

)
ii
, (13)

where (GDM)ii = ∂2GDM/∂m2
i = ∂2G/∂m2

i + �i and
(GDM)ij = ∂2GDM/∂mi∂mj = ∂2G/∂mi∂mj , provided
i �= j . Equation (13) is derived from the diagonal
elements of βX = G−1

DM by using the relation
χii = 〈SiSj 〉 − 〈Si〉〈Sj 〉 = 1 − m2

i . By considering Eq. (11)
and the relation ∂2GDM/∂mi∂mj = ∂2G/∂mi∂mj for i �= j ,
we conclude that the use of the diagonal matching method
does not influence the evaluation of Jij . Substituting Eq. (12)
into Eq. (9), we can derive the external field by the diagonal
matching method as follows:

hi = ∂GDM({mi},{Jij })
∂mi

= ∂G({mi},{Jij })
∂mi

+ �imi. (14)

Upon comparing Eqs. (9) and (14), the external fields {hi} are
found to be modified by the diagonal matching method, and
they significantly depend on the values of {�i}. We evaluate �i

using various approximate methods and compare them from
the viewpoint of accuracy of approximations.

III. RESULTS

A. Mean-field theory with diagonal matching method

In this section, we consider the mean-field theory with the
diagonal matching method. The Gibbs free energy of the mean-
field theory with the diagonal matching method becomes

G
(mf)
DM ({mi},{Jij }) = G(0)({mi},{Jij }) + G(1)({mi},{Jij })

− 1

2

∑
i∈V

�i

(
1 − m2

i

)
, (15)

where G(0) and G(1) are given by Eqs. (5) and (6), respectively.
The second derivatives with respect to mi and mj yield

∂2G
(mf)
DM ({mi},{Jij })
∂mi∂mj

= −Jij (i �= j ), (16)

∂2G
(mf)
DM ({mi},{Jij })

∂m2
i

= 1

β

1

1 − m2
i

+ �i, (17)

where Eq. (16) corresponds to the off-diagonal element of GDM

and Eq. (17) corresponds to the diagonal element of GDM.
Substituting Eqs. (16) and (17) into Eq. (13), we obtain the
relation that determines �i . Equation (13) is the adaptive TAP
equation first introduced in Refs. [18,19]. In order to derive
an implicit relation for �i , we utilize the following formula
given in Appendix A: upon dividing the matrix GDM into
the diagonal elements and off-diagonal elements, the diagonal
elements and off-diagonal elements correspond to A and B,
respectively. The formula (A3) can be applied to the derivation
of (G−1

DM)ii as follows:

β
(
1 − m2

i

)
= β

(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

) + β
(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

)
×

∑
j∈∂i

Jij

β
(
1 − m2

j

)
1 + �jβ

(
1 − m2

j

)Jji

β
(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

)

+ β
(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

) ∑
j∈∂i

∑
k∈∂i(k �=j )

Jij

β
(
1 − m2

j

)
1 + �jβ

(
1 − m2

j

)
× Jjk

β
(
1 − m2

k

)
1 + �kβ

(
1 − m2

k

)Jki

β
(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

) + · · · ,

(18)

where
∑

j∈∂i denotes the summation with respect to all of the
vertices connecting to a vertex i. Upon dividing both sides of
Eq. (18) by β(1 − m2

i )/[1 + �iβ(1 − m2
i )], we have

1 + �iβ
(
1 − m2

i

)
= 1 +

∑
j∈∂i

β
(
1 − m2

j

)
1 + �jβ

(
1 − m2

j

)J 2
ij

β
(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

)

+
∑
j∈∂i

∑
k∈∂i(k �=j )

β
(
1 − m2

j

)
1 + �jβ

(
1 − m2

j

) β
(
1 − m2

k

)
1 + �kβ

(
1 − m2

k

)
× JijJjkJki

β
(
1 − m2

i

)
1 + �iβ

(
1 − m2

i

) + · · · . (19)

After rearrangement of the expression, we obtain the following
implicit relation for �i :

�i = 1

1 + �iβ
(
1 − m2

i

) ∑
j∈∂i

β
(
1 − m2

j

)
1 + �jβ

(
1 − m2

j

)J 2
ij

+ 1

1 + �iβ
(
1 − m2

i

) ∑
j∈∂i

∑
k∈∂i(k �=j )

β
(
1 − m2

j

)
1 + �jβ

(
1 − m2

j

)
× β

(
1 − m2

k

)
1 + �kβ

(
1 − m2

k

)JijJjkJki + · · · . (20)

We evaluate �i using an iterative method. Substituting �i = 0
into the rhs of Eq. (20), �i , which is up to the third-order terms
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of {Jij }, is obtained as

�i = β
∑
j∈∂i

J 2
ij

(
1 − m2

j

) + β2
∑
j∈∂i

∑
k∈∂i(k �=j )

Jij

× JjkJki

(
1 − m2

j

)(
1 − m2

k

) + O
(
J 4

ij

)
. (21)

Correction for higher-order terms of {Jij } in �i is obtained by
considering the higher-order terms in Eq. (18) and substitution
of Eq. (21) into the rhs of Eq. (20). The first term in
Eq. (21) corresponds to the Onsager reaction term. Substituting
Eqs. (15) and (21) into Eq. (14), we obtain

hi = 1

β
tanh−1 mi −

∑
j∈∂i

Jijmj + β
∑
j∈∂i

J 2
ijmi

(
1 − m2

j

)

+ 2β2
∑

(j,k)∈E
JijJjkJkimi

(
1 − m2

j

)(
1 − m2

k

) + O
(
J 4

ij

)
.

(22)

The third and fourth terms in Eq. (22) stem from the diagonal
matching method, i.e., �i in Eq. (14). Substituting Eqs. (6)–(8)
into Eq. (9), we obtain an exact formula of the external field
as follows:

hi = 1

β
tanh−1 mi −

∑
j∈∂i

Jijmj + β
∑
j∈∂i

J 2
ijmi

(
1 − m2

j

)

− 2

3
β2

∑
j∈∂i

J 3
ij

(
1 − 3m2

i

)
mj

(
1 − m2

j

)

+ 2β2
∑

(j,k)∈E
JijJjkJkimi

(
1 − m2

j

)(
1 − m2

k

)
+ O

(
J 4

ij

)
. (23)

The mean-field method is an approximation up to the first
order of {Jij }. By the use of the diagonal matching method, the
external field is correct up to the second order of {Jij }, and it is
partially correct up to the third order of {Jij }. The second-order
term of {Jij } in Eq. (22) corresponds to the Onsager reaction
term. Although the mean-field method does not contain the
Onsager reaction term in the approximated Gibbs free energy,
the term {�i} in Eq. (15) includes the Onsager reaction term.
The term �i partially reproduces the third-order term of
{Jij }, but the underlined term in Eq. (23) is not included in
Eq. (22). We consider that the term �i of the diagonal matching
method partially reproduces the higher-order terms of {Jij } in
the external field. General-order terms of {Jij } are discussed
later.

B. TAP theory with diagonal matching method

Within the TAP approximation, the Gibbs free energy is
expressed by an expansion up to the second order of {Jij } as
follows:

G
(TAP)
DM ({mi},{Jij })
= G(0)({mi},{Jij }) + G(1)({mi},{Jij })

+G(2)({mi},{Jij }) − 1

2

∑
i∈V

�i

(
1 − m2

i

)
. (24)

The second derivatives with respect to mi and mj yield

∂2G
(TAP)
DM ({mi},{Jij })

∂mi∂mj

= −Jij − 2βmimjJ
2
ij (i �= j ),

(25)

∂2G
(TAP)
DM ({mi},{Jij })

∂m2
i

= 1

β

1

1− m2
i

+ β
∑
j∈∂i

J 2
ij

(
1 − m2

j

)+ �i.

(26)

Equation (25) corresponds to the off-diagonal element of
GDM, and Eq. (26) corresponds to the diagonal element.
Using Eq. (A3), we can evaluate an inverse matrix of GDM.
Substituting the inverse matrix into Eq. (13), we obtain the
relation that determines �i as follows:

β
(
1 − m2

i

) = β
(
1 − m2

i

)
1 + β

(
1 − m2

i

)[∑
k∈∂i β

(
1 − m2

k

)
J 2

ik + �i

]
+ β

(
1 − m2

i

)
1 + β

(
1 − m2

i

)[ ∑
k∈∂i β

(
1 − m2

k

)
J 2

ik + �i

]
×

∑
j∈∂i

(
Jij + 2βmimjJ

2
ij

)

× β
(
1 − m2

j

)
1 + β

(
1 − m2

j

)[∑
k∈∂j β

(
1 − m2

k

)
J 2

jk + �j

]
× (

Jij + 2βmimjJ
2
ij

)
× β

(
1 − m2

i

)
1 + β

(
1 − m2

i

)[∑
k∈∂i β

(
1 − m2

k

)
J 2

ik + �i

]
× + · · · . (27)

Multiplication of {1 + β(1 − m2
i )[

∑
k∈∂i β(1 − m2

k)J 2
ik +

�i]}/β(1 − m2
i ) to both sides of Eq. (27) yields

1 + β
(
1 − m2

i

) [∑
k∈∂i

β
(
1 − m2

k

)
J 2

ik + �i

]

= 1 +
∑
j∈∂i

β
(
1 − m2

j

)
1 + β

(
1 − m2

j

)[ ∑
k∈∂j β

(
1 − m2

k

)
J 2

jk + �j

]
× β

(
1 − m2

i

)
1 + β

(
1 − m2

i

)[∑
k∈∂i β

(
1 − m2

k

)
J 2

ik + �i

]
× (

Jij + 2βmimjJ
2
ij

)2 + · · · . (28)

After rearrangement of the expression, we obtain∑
k∈∂i

β
(
1 − m2

k

)
J 2

ik + �i

=
∑
j∈∂i

β
(
1 − m2

j

)
1 + β

(
1 − m2

j

)[ ∑
k∈∂j β

(
1 − m2

k

)
J 2

jk + �j

]

×
(
Jij + 2βmimjJ

2
ij

)2

1 + β
(
1 − m2

i

)[ ∑
k∈∂i β

(
1 − m2

k

)
J 2

ik + �i

]
+ · · · . (29)
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Equation (29) determines �i implicitly. Before evaluation of
�i , we estimate

∑
k∈∂i β(1 − m2

k)J 2
ik + �i iteratively. Substi-

tuting
∑

k∈∂l β(1 − m2
k)J 2

lk + �l = 0, where l = i or j , into
the rhs of Eq. (29), we obtain

∑
k∈∂i

β
(
1 − m2

k

)
J 2

ik + �i

=
∑
j∈∂i

β
(
1 − m2

j

)(
Jij + 2βmimjJ

2
ij

)2 + · · · . (30)

As a result, �i becomes

�i = 4β2
∑
j∈∂i

J 3
ijmimj

(
1 − m2

j

) + 2β2
∑

(j,k)∈E
JijJjk

× Jki

(
1 − m2

j

)(
1 − m2

k

) + O
(
J 4

ij

)
. (31)

The second term in Eq. (31) is evaluated by considering the
next-order term in Eq. (27). Substituting Eqs. (24) and (31)
into Eq. (14), we derive the external field as

hi = 1

β
tanh−1 mi −

∑
j∈∂i

Jijmj + β
∑
j∈∂i

J 2
ijmi

(
1 − m2

j

)

+ 4β2
∑
j∈∂i

J 3
ijm

2
i mj

(
1 − m2

j

) + 2β2
∑

(j,k)∈E
JijJjk

× Jkimi

(
1 − m2

j

)(
1 − m2

k

) + O
(
J 4

ij

)
. (32)

Equation (32) represents the external field evaluated by the
TAP approximation with the diagonal matching method. A
comparison of Eqs. (23) and (32) indicates that the TAP
approximation with the diagonal matching method does not
correctly yield the underlined term in Eq. (23). Although the
TAP approximation is exact up to the second-order term of
{Jij }, the diagonal matching method yields a part of correct
terms, which are of a higher order than the second-order
term.

C. Arbitrary-order theory with diagonal matching method

In this section, we consider the effect of the diago-
nal matching method on inference about the external field
in the case that the Gibbs free energy is composed of
arbitrary-order terms of the coupling parameter. The Gibbs
free energy up to nth order of the coupling parameter is
given by

G
(nth)
DM ({mi},{Jij })

=
n∑

k=0

G(k)({mi},{Jij }) − 1

2

∑
i∈V

�i

(
1 − m2

i

)
. (33)

The above Gibbs free energy with n = 1 corresponds to the
Gibbs free energy of the mean-field approximation and that
with n = 2 corresponds to that of the TAP approximation. The
diagonal matching parameter �i is determined by the diagonal
element of Eq. (11) or Eq. (13). Substituting Eq. (33) into the
diagonal element of Eq. (11), we obtain the following relation

for �i :

β
∂2G

(nth)
DM

∂m2
i

= β

n∑
k=0

∂2G(k)

∂m2
i

+ β�i = (X−1)ii . (34)

The rhs of Eq. (34) is given by the inverse matrix of the
susceptibility matrix X , which is composed of the susceptibil-
ities. Since the susceptibilities are evaluated by the Boltzmann
distribution, the inverse matrix of the susceptibility matrix is
given by the exact Gibbs free energy. Substituting the exact
Gibbs free energy, i.e., Eq. (4), into the rhs of Eq. (34), we
obtain �i as follows:

�i =
∞∑

k=n+1

∂2G(k)

∂m2
i

. (35)

By substitution of Eq. (35) into Eq. (14), we formulate the
external field given by the diagonal matching method as
follows:

hi = ∂G
(nth)
DM

∂mi

=
n∑

k=0

∂G(k)

∂mi

+
∞∑

k=n+1

∂2G(k)

∂m2
i

mi. (36)

Equation (36) provides the approximate external field eval-
uated by the nth-order Gibbs free energy with the diagonal
matching method. The exact external field is given by
Eq. (9). A comparison of Eqs. (9) and (36) indicates that
the diagonal matching method yields exact terms up to nth
order of the coupling parameter and approximates ∂G(k)/∂mi

at ∂2G(k)/∂m2
i × mi for n < k. When the dependence of G(k)

on mi is G(k) = a + bm2
i (a and b are independent of mi),

the relation ∂G(k)/∂mi = ∂2G(k)/∂m2
i × mi is satisfied, and

the diagonal matching method yields the correct terms. Since
the mi dependence of the term in Eq. (7) and the second
term in Eq. (8) are proportional to (1 − m2

i ), these terms are
correctly reproduced by the diagonal matching method. We
conclude that the higher-order terms, whose mi dependence is
(1 − m2

i ), are correctly reproduced by the diagonal matching
method. Since the first term in Eq. (8) is not proportional
to (1 − m2

i ), it is not correctly reproduced by the diagonal
matching method. Substituting the first term in Eq. (8) into
the formula ∂2G(k)/∂m2

i × mi , we obtain the fourth term in
Eq. (32) in the case of the TAP approximation. Although
we investigate the validity of the diagonal matching method
by using the relation (34), the diagonal matching parameter
�i is determined by the relation (13). As for the mean-field
approximation, since the off-diagonal elements of Eq. (16)
are given by ∂2G

(mf)
DM /∂mi∂mj = −Jij , the diagonal matching

method does not yield the fourth term in Eq. (32). Taking
into consideration the higher-order terms of the coupling
parameter, we can reproduce the fourth term in Eq. (32)
by using the mean-field approximation with the diagonal
matching method.

D. Bethe approximation with diagonal matching method

In this section, we consider inference about the external
field by the Bethe approximation with the diagonal matching
method. The Gibbs free energy of the Bethe approximation is
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formulated by [15–17]

G(Bethe)({mi},{Jij }) = −
∑

(i,j )∈E
Jij ξij + 1

β

∑
i∈V

(1 − |∂i|)
∑

Si=±1

ρ1(Si |mi) ln ρ1(Si |mi)

+ 1

β

∑
(i,j )∈E

∑
Si=±1

∑
Sj =±1

ρ2(Si,Sj |mi,mj ,ξij ) ln ρ2(Si,Sj |mi,mj ,ξij ), (37)

where

ρ1(Si |mi) = 1 + Simi

2
, (38)

ρ2(Si,Sj |mi,mj ,ξij ) = 1 + Simi + Sjmj + SiSj ξij

4
, (39)

ξij = cosh(2βJij )
[
1 −

√
1 − (

1 − m2
i − m2

j

)
tanh2(2βJij ) − 2mimj tanh(2βJij )

]
. (40)

The mean-field approximation adopts an approach to account for the effect of the other spins with an external field. In the Bethe
approximation, the effect of two spins is considered in the approximation, and the effect of the other spins is considered as
an external field. Equations (38) and (39) correspond to the one-spin and two-spin marginal probabilities, respectively. From
the viewpoint of the expansion with respect to the order of the coupling parameter, the Bethe approximation corresponds to
resumming for all of the orders of the coupling parameters between two spins in the Plefka expansion [30]. Another advantage of
the Bethe approximation is that it is formulated by the message-passing rule of belief propagations [31]. The Gibbs free energy
by the Bethe approximation with the diagonal matching method is given by

G
(Bethe)
DM ({mi},{Jij }) = G(Bethe)({mi},{Jij }) − 1

2

∑
i∈V

�i

(
1 − m2

i

)
. (41)

By differentiating Eq. (41) with respect to mi , the external field is obtained as

hi = ∂G
(Bethe)
DM

∂mi

= 1

β
tanh−1 mi − 1

β

∑
j∈∂i

Mj→i + �imi, (42)

where Mj→i denotes a message that propagates from vertex j to vertex i. The quantity Mj→i is defined as

Mj→i = −1

2
tanh−1

(
mi + ξij

1 + mj

)
− 1

2
tanh−1

(
mi − ξij

1 − mj

)
+ tanh−1 mi, (43)

or expressed by an iterative relation. The second derivatives of G
(Bethe)
DM with respect to mi and mj are derived as

∂2G
(Bethe)
DM ({mi},{Jij })

∂mi∂mj

= − 1

β

∂Mj→i

∂mj

, (44)

∂2G
(Bethe)
DM ({mi},{Jij })

∂m2
i

= 1

β

1

1 − m2
i

− 1

β

∑
j∈∂i

∂Mj→i

∂mi

+ �i. (45)

Substituting Eqs. (44) and (45) into the rhs of Eq. (13), we obtain the relation that determines �i . By using the same derivation
as those used in the mean-field and TAP approximations, the implicit equation for �i is obtained as follows:

β�i −
∑
x∈∂i

∂Mx→i

∂mi

=
∑
j∈∂i

β

1 + (
1 − m2

i

)[
β�i − ∑

x∈∂i
∂Mx→i

∂mi

] β
(
1 − m2

j

)
1 + (

1 − m2
j

)[
β�j − ∑

y∈∂j

∂My→j

∂mj

]
(

− 1

β

∂Mj→i

∂mj

)2

−
∑
j∈∂i

∑
k∈∂i(k �=j )

β

1 + (
1 − m2

i

)[
β�i − ∑

x∈∂i
∂Mx→i

∂mi

] β
(
1 − m2

j

)
1 + (

1 − m2
j

)[
β�j − ∑

y∈∂j

∂My→j

∂mj

]
× β

(
1 − m2

k

)
1 + (

1 − m2
k

)[
β�k − ∑

z∈∂k
∂Mz→k

∂mk

](
− 1

β

∂Mj→i

∂mj

)(
− 1

β

∂Mk→j

∂mk

)(
− 1

β

∂Mi→k

∂mi

)

+ · · · . (46)
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Substituting β�l − ∑
x∈∂l

∂Mx→l

∂ml
= 0 with l = i,j,k into the rhs of Eq. (46), we obtain �i up to the third-order terms of ∂Mj→i

∂mj
as

follows:

β�i =
∑
j∈∂i

∂Mj→i

∂mi

+
∑
j∈∂i

(
1 − m2

i

) (
∂Mj→i

∂mj

)2

+
∑
j∈∂i

∑
k∈∂i(k �=j )

(
1 − m2

j

)(
1 − m2

k

)∂Mj→i

∂mj

∂Mk→j

∂mk

∂Mi→k

∂mi

+ · · · . (47)

By substitution of Eqs. (B2) and (B3) into Eq. (47), we obtain the diagonal matching parameter �i , which is expanded with
respect to Jij , as follows:

�i = β2
∑
j∈∂i

∑
k∈∂i(k �=j )

JijJjkJki

(
1 − m2

j

)(
1 − m2

k

) + O
(
J 4

ij

)
. (48)

Substituting Eq. (48) into Eq. (42) and expanding Eq. (42) with respect to the coupling parameters, we obtain

hi = 1

β
tanh−1 mi −

∑
j∈∂i

Jijmj + β
∑
j∈∂i

J 2
ijmi

(
1 − m2

j

) − 2

3
β2

∑
j∈∂i

J 3
ij

(
1 − 3m2

i

)
mj

(
1 − m2

j

)

+ 2β2
∑

(j,k)∈E
JijJjkJkimi

(
1 − m2

j

)(
1 − m2

k

) + O
(
J 4

ij

)
. (49)

Equation (49) is in accord with Eq. (23) up to the third-order
terms of the coupling parameters. The above term �i includes
the fifth term in Eq. (23). Since the Bethe approximation
includes the contribution of clusters composed of two vertices,
the Bethe-approximated Gibbs free energy includes all of the
terms of (Jij )n in the Plefka expansion given by Eqs. (6)–(8).
The Bethe approximation is exact for the system that does not
include loops consisting of more than three edges. Equation
(48) indicates that the contribution of the loops is included in
the Bethe-approximated Gibbs free energy by the introduction
of the diagonal matching method. By the diagonal matching
method, the arbitrary-order terms that satisfy the relation
∂G(k)/∂mi = ∂2G(k)/∂m2

i × mi are included in the inferred
external field.

E. Equivalence between Bethe approximation
and susceptibility propagation

Susceptibility is required to infer the coupling parame-
ter in the inverse Ising problem. In order to estimate the
susceptibility, the susceptibility propagation algorithm has
recently been introduced to address the inverse Ising problem
[27–29]. In this section, we show the equivalence between
the Bethe approximation with the diagonal matching method
and susceptibility propagation with the diagonal matching
method [21]. Differentiating both sides of Eq. (42) by hj

and rearranging the expression, we obtain the susceptibility
as follows:

βχ̄ij = 1 − m2
i

1 + β�i

(
1 − m2

i

)(
βδij +

∑
k∈∂i

η
(j )
k→i

)
, (50)

where δij represents the Kronecker’s delta and η
(j )
k→i =

∂Mk→i/∂hj . The formula η
(j )
k→i is also expressed by a

recursive equation. Substituting the iterative solution η
(j )
k→i

of the recursive equation into Eq. (50), we can evaluate the
susceptibility. The adjustment of �i for χ̄ii = 1 − m2

i leads to

�̄i = 1

β2

1

1 − m2
i

∑
j∈∂i

η
(i)
j→i . (51)

In order to distinguish Eq. (51) from �i derived by Eq. (11),
we attach a bar to �i .

To begin with, we show the equivalence of the inferred
coupling parameter between the Bethe approximation with the
diagonal matching method and the susceptibility propagation
with the diagonal matching method. By multiplication of
both sides of Eq. (50) by [1 + β�i(1 − m2

i )]/[β(1 − m2
i )], we

obtain

βχ̄ij

(
1

β

1

1 − m2
i

+ �i

)
= δij + 1

β

∑
k∈∂i

η
(j )
k→i . (52)

From the definition of Mk→i in Eq. (43), η
(j )
k→i is transformed

into

η
(j )
k→i = ∂Mk→i

∂hj

= ∂Mk→i

∂mk

∂mk

∂hj

+ ∂Mk→i

∂mi

∂mi

∂hj

= ∂Mk→i

∂mk

βχ̄kj + ∂Mk→i

∂mi

βχ̄ij , (53)

where we use the property that Mk→i is a function of mk and
mi . Substituting Eq. (53) into Eq. (52), we obtain the following
formula:

βχ̄ij

(
1

β

1

1 − m2
i

+ �i

)

= δij + 1

β

∑
k∈∂i

(
∂Mk→i

∂mk

βχ̄kj + ∂Mk→i

∂mi

βχ̄ij

)
. (54)

Equation (54) is transformed into

βχ̄ij

(
1

β

1

1 − m2
i

− 1

β

∑
k∈∂i

∂Mk→i

∂mi

+ �i

)

− 1

β

∑
k∈∂i

∂Mk→i

∂mk

βχ̄kj = δij , (55)

and, subsequently, taking Eqs. (44) and (45) into consideration,
we obtain the following formula:

∂2G
(Bethe)
DM

∂m2
i

βχ̄ij +
∑
k∈∂i

∂2G
(Bethe)
DM

∂mi∂mk

βχ̄kj = δij . (56)
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Equation (56) is rewritten as

β
(
G(Bethe)

DM X̄
)
ij

= δij , (57)

where (X̄)ij = χ̄ij . Equation (57) indicates the equivalence
between the Bethe approximation with the diagonal matching
method and susceptibility propagation with the diagonal
matching method.

We next show the equivalence between �i evaluated by
Eq. (11) and �̄i in Eq. (51). Invoking Eq. (53), we transform
Eq. (51) into the following formula:

�̄i = 1

β2

1

1 − m2
i

∑
j∈∂i

(
∂Mj→i

∂mj

βχ̄ji + ∂Mj→i

∂mi

βχ̄ii

)

= 1

β

1

1 − m2
i

∑
j∈∂i

∂Mj→i

∂mj

χ̄ji + 1

β

∑
j∈∂i

∂Mj→i

∂mi

, (58)

where we use the formula χ̄ii = 1 − m2
i . On the other hand,

�i is determined by the diagonal element of β(G(Bethe)
DM )ij =

(X̄−1)ij , which is derived from Eq. (57), as follows:

β
∂2G

(Bethe)
DM

∂m2
i

= β

(
∂2G(Bethe)

∂m2
i

+ �i

)
= (X̄−1)ii , (59)

and, subsequently, we obtain

�i = −∂2G(Bethe)

∂m2
i

+ 1

β
(X̄−1)ii

= − 1

β

1

1 − m2
i

+ 1

β

∑
j∈∂i

∂Mj→i

∂mi

+ 1

β
(X̄−1)ii , (60)

where we use Eq. (45). The expression (X̄−1)ii is derived from
the following relation:

1 =
∑

j

(X̄−1)ij (X̄)ji

=
∑
j∈∂i

(X̄−1)ij (X̄)ji + (X̄−1)ii(X̄)ii

=
∑
j∈∂i

(X̄−1)ij (X̄)ji + (X̄−1)ii
(
1 − m2

i

)
, (61)

and, subsequently, from the final line in Eq. (61), we obtain

(X̄−1)ii = 1

1 − m2
i

− 1

1 − m2
i

∑
j∈∂i

(X̄−1)ij (X̄)ji

= 1

1 − m2
i

− β

1 − m2
i

∑
j∈∂i

∂2G
(Bethe)
DM

∂mi∂mj

χ̄ji

= 1

1 − m2
i

+ 1

1 − m2
i

∑
j∈∂i

∂Mj→i

∂mj

χ̄ji . (62)

Substituting Eq. (62) into (X̄−1)ii in Eq. (60), we obtain

�i = 1

β

∑
j∈∂i

∂Mj→i

∂mi

+ 1

β

1

1 − m2
i

∑
j∈∂i

∂Mj→i

∂mj

χ̄ji = �̄i .

(63)

From Eqs. (57) and (63), we observe the equivalence between
the Bethe approximation with the diagonal matching method

and susceptibility propagation with the diagonal matching
method. The quantity �̄i , therefore, is obtained as Eq. (47)
or (48). These two methods yield the same values of {Jij } and
{hi} in the inverse Ising problem.

IV. SUMMARY AND DISCUSSION

We considered inference about the coupling parameters
and external fields in the inverse Ising problem by the use
of approximations. Some conventional approximations are
classified by the order of the coupling parameters. The Gibbs
free energy approximated up to the first-order term of the
coupling parameters and the second-order term correspond
to Gibbs free energies of the mean-field method and the TAP
method, respectively. The Gibbs free energy that includes all of
the (Jij )n terms corresponds to the Bethe approximation. The
higher is the order of terms that the approximation contains
in the Gibbs free energy, the more accurate is the estimation
of the coupling parameters and the external fields it gives.
Although the number of the unknown coupling parameters
{Jij } is N (N − 1)/2, the number of the derivatives of the
Gibbs free energy with respect to mi and mj is N (N + 1)/2.
The number of the unknown parameters is smaller than the
number of conditions. In order to utilize redundant conditions,
the diagonal matching method is introduced. The diagonal
matching method has been numerically shown to provide
an accurate estimation of the external fields. We analytically
evaluated the diagonal parameters �i for the mean-field, TAP,
and Bethe approximations, and we investigated the effect of
the diagonal matching method on inference of the external
fields. As for the naive mean-field approximation and TAP
approximation, the estimated external fields are given by
expansions of the finite-order terms of the coupling parameters.
By introduction of the diagonal matching method, we can
include the infinite-order terms of the coupling parameters in
the external fields. The diagonal parameter �i is evaluated by
means of two distinct approaches using Eqs. (13) and (34),
and �i evaluated by Eq. (13) differs from that by Eq. (34).
In the case of the mean-field approximation with the diagonal
matching method, it has already been numerically shown that
the external fields evaluated through �i by Eq. (13) differ
from those evaluated using Eq. (34). The derivation through
Eq. (13) corresponds to the adaptive TAP equation. In this
paper, we extended the adaptive TAP equation to the case
of the Gibbs free energy that contains the higher-order terms
of the coupling parameters, and we clarified the relationship
between the external fields obtained by Eq. (13) and those
obtained using Eq. (34).

The Bethe approximation is known to be identical to the
belief-propagation algorithm. In order to estimate susceptibil-
ity efficiently, susceptibility propagation was introduced. Sus-
ceptibility propagation combined with the diagonal matching
method has been numerically shown to provide an accurate
estimation of magnetizations and correlation functions. We
showed that susceptibility propagation with the diagonal
matching method is the same as the Bethe approximation with
the diagonal matching method.

Although we can estimate the external fields accurately by
means of the diagonal matching method, the estimation of
the coupling parameters is not affected by it. The coupling
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FIG. 1. Inference performance of naive approximations and those
with diagonal matching method (dm) on the Sherrington-Kirkpatrick
model. Magnetizations and correlations used to infer coupling
parameters and external fields are calculated through exact exhaustive
enumeration. The coupling parameters and external fields are gener-
ated as Jij ∼ Normal (0,σ 2) and hi ∼ Normal (0,σ 2), respectively.
The inference error is defined as �h = [

∑
i(h

∗
i − hi)2/N ]1/2, where

h∗
i is the inferred external field. The number of vertices is N = 16,

and β is fixed at unity.

parameters are estimated by the naive approximations. Since
the external fields are estimated by using the inferred coupling
parameters, the accuracy of the inferred external fields seems
to depend on the accuracy of the inferred coupling parameters.
We investigate the effect of errors of the inferred coupling
parameters on the inference of the external fields. Figure 1
shows a comparison between the external fields estimated
by using the exact coupling parameters and those by using
the inferred coupling parameters. The external fields by using
the exact coupling parameters are less accurate than those by
using the inferred coupling parameters. Within the diagonal
matching method, the exact coupling parameters do not

increase the accuracy of the inference of the external fields.
The accurate estimation of both of the coupling parameters
and the external fields is a problem for future research. We
discussed the approximations based on the expansion with
respect to the order of the coupling parameters, and these
are applicable to the case that the coupling parameters are
small. The development of a method that is applicable to large
coupling parameters is also a problem for future research.

APPENDIX A: INVERSE MATRIX

In this Appendix, we present the formula of an inverse
matrix by perturbation. Let us consider two n × n matrices,
A and B. We can easily derive the following formula for an
inverse matrix of (A + B):

1

A + B
− 1

A
= − 1

A + B
B

1

A
. (A1)

Using the above formula iteratively, we obtain the inverse
matrix of (A + B) as follows:

1

A + B
= 1

A
− 1

A + B
B

1

A

= 1

A
−

( 1

A
− 1

A + B
B

1

A

)
B

1

A

= 1

A
− 1

A
B

1

A
+ 1

A + B
B

1

A
B

1

A
...

= 1

A
− 1

A
B

1

A
+ 1

A
B

1

A
B

1

A
− 1

A
B

1

A
B

1

A
B

1

A
· · ·

=
∞∑

n=0

1

A

{
(−B)

1

A

}n

. (A2)

In order to evaluate the inverse matrix G−1
DM in Eq. (13), we

divide GDM into two matrices, the diagonal part and the off-
diagonal one. By setting A as the diagonal part of GDM and B
as the off-diagonal part, Eq. (A2) is applicable to evaluation
of the inverse matrix. The diagonal element (G−1

DM)ii becomes

(
G−1

DM

)
ii

= 1

(GDM)ii
+ 1

(GDM)ii

∑
j∈∂i

(GDM)ij
1

(GDM)jj
(GDM)ji

1

(GDM)ii

− 1

(GDM)ii

∑
j∈∂i

∑
k∈∂i

(GDM)ij
1

(GDM)jj
(GDM)jk

1

(GDM)kk

(GDM)ki

1

(GDM)ii
+ · · · . (A3)

APPENDIX B: BETHE-APPROXIMATED GIBBS FREE ENERGY EXPANDED WITH RESPECT
TO COUPLING PARAMETER

An expansion with respect to the coupling parameter for the Bethe-approximated Gibbs free energy given by Eq. (37) is
obtained as follows:

G(Bethe)({mi},{Jij }) = 1

β

∑
i∈V

(
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

)
−

∑
(i,j )∈E

Jijmimj

− 1

2
β

∑
(i,j )∈E

J 2
ij

(
1 − m2

i

)(
1 − m2

j

) − 2

3
β2

∑
(i,j )∈E

J 3
ijmimj

(
1 − m2

i

)(
1 − m2

j

) + O
(
J 4

ij

)
. (B1)
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The expansion (B1) shows that the Bethe approximation includes all of the (Jij )n terms in the formula (37). By substitution of
Eq. (B1) into Eqs. (44) or (45), the differentiations of Mj→i with respect to mj or mi are, respectively, derived as follows:

∂Mj→i

∂mj

= βJij + 2β2J 2
ijmimj + O

(
J 3

ij

)
, (B2)

∂Mj→i

∂mi

= −β2J 2
ij

(
1 − m2

j

) − 4β3J 3
ijmimj

(
1 − m2

j

) + O
(
J 4

ij

)
. (B3)
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