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Liquid helium does not obey the Gibbs fluctuation-compressibility relation, which was noted more than
six decades ago. However, still missing is a clear explanation of the reason for the deviation or the correct
fluctuation-compressibility relation for the quantum liquid. Here we present the fluctuation-compressibility
relation valid for any grand canonical system. Our result shows that the deviation from the Gibbs formula arises
from a nonextensive part of thermodynamic potentials. The particle-exchange symmetry of many-body wave
function of a strongly degenerate quantum gas is related to the thermodynamic extensivity of the system; a Bose
gas does not always obey the Gibbs formula, while a Fermi gas does. Our fluctuation-compressibility relation
works for classical systems as well as quantum systems. This work demonstrates that the application range of the
Gibbs-Boltzmann statistical thermodynamics can be extended to encompass nonextensive open systems without
introducing any postulate other than the principle of equal a priori probability.
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I. INTRODUCTION

The Gibbs fluctuation-compressibility formula provides
the general relationship of the mean-scaled particle number
fluctuation 〈δN2〉/N̄ to the isothermal compressibility κT of a
fluid system [1,2]:

〈δN2〉
N̄

= ρ̄kT κT , (1)

where ρ̄ and kT denote the mean density of the fluid and the
thermal energy, respectively. Equation (1) is used to show the
equivalence between canonical ensemble and grand canonical
ensemble of a macroscopic system with finite compressibility
[3]. It also serves as the starting point for the derivation of
the compressibility equation, the well-known integral equation
relating the particle pair correlation to the compressibility in a
fluid system and the relationship of the integrated intensity of
the radiation scattered by a fluid or the static structure factor
to the compressibility of the fluid [4,5]. As a general statistical
mechanical equation, Eq. (1) has been used in various fields
of physical science [6–21].

More than six decades ago, however, Price pointed out that
liquid helium does not obey Eq. (1) [22,23]. This issue has
been neither well known nor carefully examined, so Eq. (1)
has been applied to quantum liquids without caution in the
literature [3,16,20,21,24,25]. There have been a few papers
in which Price’s work was noted [26,27]. A deviation from
Eq. (1) was directly observed in the two-dimensional Bose
gas of cesium [28]. However, so far, the correct form of the
fluctuation-compressibility relation has remained unknown
for general quantum liquids and there has not been yet a clear
explanation of why the Gibbs fluctuation formula does not
hold for liquid helium.

In this work we present a universal form of the fluctuation-
compressibility relation, which holds exactly for any open
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system at grand canonical equilibrium states. As will be shown
shortly, Eq. (1) exactly holds only for an extensive system
whose thermodynamic potentials, such as the internal energy
and free energies, are strictly linear with respect to the system
size [3,29]. It was previously shown that a homogeneous
classical mechanical system becomes an extensive system in
the macroscopic limit [30]. However, many systems of interest
in modern science are so small that they may not be extensive
systems due to surface interactions with the surrounding envi-
ronment [31]. Even for a macroscopic system, nonextensivity
can be developed by a spatially inhomogeneous external poten-
tial imposed on the system [32]. Quantum mechanical nature of
a system can be another cause of nonextensivity. The universal
fluctuation-compressibility relation reported in the present
work holds for those nonextensive systems as well and it
reduces to the Gibbs fluctuation formula for extensive systems.

We find that the particle-exchange symmetry of the many-
body wave function is fundamentally related to thermo-
dynamic extensivity of an ideal quantum gas system at
low temperature; a strongly degenerate Bose gas does not
satisfy the Gibbs fluctuation-compressibility relation because
of a nonextensive part of the grand potential even in the
macroscopic limit, whereas a Fermi gas does satisfy Eq. (1) at
all accessible temperatures [33]. The correctness of the present
fluctuation-compressibility relation could be confirmed for
ideal quantum gas systems and also for the classical ideal gas
system under a constant force field that does not obey the Gibbs
fluctuation formula. Our result is obtained by considering
the standard grand canonical ensemble and it demonstrates
that the application range of the Gibbs-Boltzmann statistical
thermodynamics can be extended to encompass nonextensive
open systems without introducing any fundamental assump-
tion other than the principle of equal a priori probability.

II. UNIVERSAL FLUCTUATION FORMULA

To begin, we introduce a thermodynamic potential X that
is defined by X ≡ G − μN̄ , where G, μ, and N̄ denote the
Gibbs free energy, the chemical potential, and the average
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number of particles in our grand canonical system. Euler’s
theorem dictates that X of extensive systems be identically
equal to zero [29], so it does not play any role in thermodynam-
ics of extensive systems. However, thermodynamic potential
X is indispensable for the thermodynamic description of
nonextensive open systems within Gibbs-Boltzmann statistical
mechanics.

In terms of the thermodynamic potential X, the grand
potential � (≡G − μN̄ − PV ) of an open system at the grand
canonical equilibrium state defined by chemical potential μ,
temperature T , and volume V is given by

� ≡ X − PV = −kT ln �(μ,T ,V ), (2)

where � denotes the grand partition function of the system.
In Eq. (2), the thermodynamic potential X is a part of the
grand potential �, which emerges for a nonextensive system
only. For an extensive system of which X is identically
equal to zero, the thermodynamic pressure P in Eq. (2) is
given by P = −�/V = kT ln �(μ,T ,V )/V [29], which is the
textbook result. However, for a system with nonvanishing X,
P is no longer given by −�/V ; instead, it is given by P =
kT [∂ ln �(μ,V,T )/∂V ]μ,T [32,34,35] (see Appendix A).
Substituting the latter equation into Eq. (2), one obtains the sta-
tistical mechanical expression of thermodynamic potential X:

X = kT V

[
∂[V −1 ln �(μ,V,T )]

∂ ln V

]
μ,T

. (3)

On the other hand, the remaining part −PV of the grand po-
tential � is given by −PV = kT [∂ ln �(μ,V,T )/∂ ln V ]μ,T .
Note that X does not vanish unless ln �(μ,V,T ) or −�/kT

is linearly proportional to V [32].
For a system with a thermodynamic potential X, we

could obtain the relation between the mean-scaled variance
〈δN2〉/N̄ of the particle number fluctuation and the isothermal
compressibility κT [≡ −V −1(∂V /∂P )T ,N̄ ] as

〈δN2〉
N̄

= ρ̄kT κT

[
1 + 1

N̄

(
∂X

∂μ

)
T ,N̄

][
1 + 1

N̄

(
∂X

∂μ

)
T ,V

]
.

(4)

A detailed derivation of Eq. (4), the key result of the present
work, is given in Appendix B. Note that Eq. (4) reduces to the
Gibbs fluctuation formula, Eq. (1), if our system is an extensive
system of which X is identically equal to zero. Because the
derivation of Eq. (4) was made by considering the standard
grand canonical ensemble without using any approximation, it
is the general fluctuation formula applicable to any system in
the grand canonical equilibrium state. Below, the correctness
of Eq. (4) is confirmed for a few exactly solvable models.

III. IDEAL BOSE GAS SYSTEM

For an ideal Bose gas system with a macroscopic volume,
the analytic expression of the grand partition function �BE is
given by [3,29,36]

− �BE/kT = ln �BE(μ,V,T )

= Vg5/2(z)/�3(T ) − ln(1 − z) (0 < z < 1),

(5)

where z and �(T ) denote exp(μ/kT ) and the thermal de
Broglie wavelength, respectively. In Eq. (5), gν(z) is defined
by gν(z) ≡ ∑∞

n=1 zn/nν . By substituting Eq. (5) into Eq. (3),
we obtain the expression of the thermodynamic potential X

for an ideal Bose gas system as

X = kT ln(1 − z)(≡ XBE). (6)

Note that XBE is nothing but the ground-state contribution to
the grand potential �BE , which corresponds to the last term
on the right-hand side of Eq. (5). Substituting Eq. (6), in turn,
into Eq. (4), we obtain the fluctuation formula of an ideal
Bose gas system as

〈δN2〉
N̄

= ρ̄kT κT (1 − f0)2, (7)

where f0 denotes the ground-state fraction defined by
n̄0/N̄ , with n̄0 being the average number of particles in the
ground quantum state, i.e., n̄0 = z/(1 − z) [3,29,36].
Because the mean particle number N̄ is given by
N̄ = Vg3/2(z)/�(T )3 + n̄0 for an ideal Bose gas system
[3,29,36], f0 [=1 − (N̄ − n̄0)/N̄ ] can be written as

f0 = 1 − g3/2(z)

ρ̄�3(T )
= 1 − g3/2(z)

g3/2(1)

(
T

T0

)3/2

, (8)

where T0 denotes the condensation temperature defined by
ρ̄�3(T0) ≡ g3/2(1) ∼= 2.612. A positivity of f0 enforces the
range of z to decrease with temperature T for an ideal Bose
gas system (see Appendix C).

Let us now test the correctness of Eq. (7). For the
ideal Bose gas system, the exact expression of 〈δN2〉/N̄
can be obtained from the general relation 〈δN2〉/N̄ =
(∂ ln N̄/∂ ln z)T ,V [3,29,36]:

〈δN2〉
N̄

= g1/2(z)

g3/2(1)

(
T

T0

)3/2

+ f0

1 − z
. (9)

On the other hand, the exact expression of κT can be obtained
from the equation of state of the Bose gas system (see
Appendix D):

κT = 1

ρ̄kT

1

(1 − f0)2

[
g1/2(z)

g3/2(1)

(
T

T0

)3/2

+ f0

1 − z

]
. (10)

With Eqs. (9) and (10) at hand, one can easily verify the
correctness of Eq. (7) or (4) for an ideal Bose gas system.

In the macroscopic limit where N̄ → ∞, V → ∞, and
N̄/V = ρ̄ = const, f0 can be approximated by f0

∼= 0 when
T > T0 and f0

∼= 1 − (T/T0)3/2 when T < T0 [3,29,36].
Consequently, in the macroscopic limit, Eq. (7) reads as

〈δN2〉
N̄

∼=
{

ρ̄kT κT (T/T0)3 (T < T0)

ρ̄kT κT (T > T0).
(11)

Note that the Gibbs fluctuation formula is approximately
valid when T > T0, but it is not when T < T0, even in the
macroscopic limit.

The isothermal compressibility κT of an ideal Bose gas,
given in Eq. (10), has a phase transition at T = T0. In Fig. 1(a)
we show the dependence of κT on temperature T for various
values of N̄ with a phase transition at T = T0. In the high-
temperature limit, κT of the ideal Bose gas reduces to the
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FIG. 1. (Color online) Temperature dependence of the scaled isothermal compressibility ρ̄kT κT , the mean scaled number fluctuation
〈δN 2〉/N̄ , and the ratio of ρ̄kT κT to 〈δN 2〉/N̄ for (a)–(c) an ideal quantum gas with the positive exchange symmetry (Bose gas) and for (d)–(f)
an ideal quantum gas with the negative exchange symmetry (Fermi gas). An ideal Bose gas does not obey the Gibbs fluctuation-compressibility
relation, Eq. (1), below the condensation temperature T0, whereas an ideal Fermi gas does at all accessible temperature. Both an ideal Bose
gas system and an ideal Fermi gas system obey our fluctuation-compressibility relation, Eq. (4). For an ideal Bose gas system, ρ̄kT κT and
〈δN 2〉/N̄ are not the same and dependent on the size of system, in contrast with those for usual extensive systems including an ideal Fermi gas
system. The discrepancy between ρ̄kT κT and 〈δN 2〉/N̄ of an ideal Bose gas system persists in the macroscopic limit below the condensation
temperature.

isothermal compressibility of a classical ideal gas system

κT
∼= 1

ρ̄kT
= κid

T (T/T0 � 1). (12a)

In comparison, in the low-temperature limit, the approximate
expression of κT is found to be

κT
∼= N̄

ρ̄kT

(
T0

T

)3

(T/T0 	 1) (12b)

(see Appendix E). As shown in Fig. 1(a), Eq. (12) provides an
excellent approximation of the exact κT given in Eq. (10). Note
that the isothermal compressibility of the strongly degenerate
Bose gas is dependent on the system size N̄ . This reflects
that an ideal Bose gas system is not a usual extensive system
when T < T0. Note also that ρ̄kT κT of a strongly degenerate
ideal Bose gas is proportional to (T/T0)−3, divergent as T/T0

approaches zero.
Substituting Eq. (12) into Eq. (11), one obtains the

asymptotic behavior of 〈δN2〉/N̄ for an ideal Bose gas system
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in the grand canonical equilibrium state:

〈δN2〉
N̄

∼=
{

N̄ (T 	 T0)

1 (T � T0).
(13)

Equation (13) can also be obtained directly from Eq. (9)
by using the method in Appendix E. Note that, in the
low-temperature limit, the standard deviation of the number
fluctuation in a strongly degenerate ideal Bose gas sys-
tem does not vanish even in the macroscopic limit, i.e.,
limN̄→∞

√
〈δN2〉/N̄ ∼= 1. For this reason, the equivalence

between the grand canonical ensemble and the canonical
ensemble cannot be guaranteed for a strongly degenerate ideal
Bose gas system [37]. However, when T > T0, the particle
number distribution is given by the classic Poisson statistics
of which the mean scaled standard deviation is small in the
macroscopic limit, i.e.,

√
〈δN2〉/N̄ = 1/

√
N̄ . Recently, the

transition of the photon number distribution between the large
fluctuation regime of an ideal Bose condensate and the small
fluctuation regime of Poisson statistics was directly observed
for a photon gas system in a dye microcavity [37]. A brief
review of the particle number fluctuation in the grand canonical
system and other statistical ensembles of the ideal Bose gas
system is presented in Appendix F.

IV. IDEAL FERMI GAS SYSTEM

The grand potential or logarithm of the grand partition
function of an ideal Fermi gas system with a macroscopic
volume is linearly proportional to the volume of the system
[3,29,36]

−�FD/kT = ln �FD(μ,V,T ) = V h5/2(z)/�3(T ), (14)

with hν(z) = ∑∞
n=1 (−1)n+1zn/nν . For the macroscopic ideal

Fermi gas system, the thermodynamic potential X defined in
Eq. (3) vanishes; consequently, Eq. (4) reduces to the Gibbs
fluctuation formula and it should be correct. This prediction
could be confirmed by substituting the exact expressions of
〈δN2〉/N̄ and κT of an ideal Fermi gas system into Eq. (1) (see
Appendix G):

〈δN2〉/N̄ = ρ̄kT κT = h1/2(z)

ρ̄�3(T )
. (15)

As shown in Figs. 1(d) and 1(e), 〈δN2〉/N̄ or ρ̄kT κT of an
ideal Fermi gas system is independent of the system size at all
temperatures, in contrast to that of an ideal Bose gas system
below the condensation temperature.

V. PARTICLE EXCHANGE SYMMETRY AND
THERMODYNAMIC EXTENSIVITY

Our results suggest that the particle-exchange (PE) sym-
metry of many-body wave function of an ideal quantum gas
system is fundamentally related to thermodynamic extensivity
of the system at low temperature. An ideal gas system with the
positive PE symmetry (Bose gas) switches from an extensive
system to a nonextensive system as the system cools down
below the condensation temperature; in contrast, an ideal gas
system with the negative PE symmetry (Fermi gas) is an

extensive system in the macroscopic limit at all accessible
temperatures [33].

To explain why the PE symmetry plays an essential role
here, let us recall that the PE symmetry of many-body wave
function of an ideal quantum gas system is related to the
thermodynamics of the system; the grand potential � of an
ideal quantum gas system is given by

−�/kT = ±
∑

k

ln[1 ± z exp(−εk/kT )], (16)

with the minus sign for bosons and the plus sign for fermions,
where εk denotes the quantum mechanical energy of the kth
quantum state of a single gas particle [3,29,36]. For an ideal
quantum gas system with a macroscopic volume, the grand
potential given in Eq. (16) reduces to Eq. (5) for bosons and
to Eq. (14) for fermions. As shown in Secs. III and IV, the
thermodynamic potential X associated with the latter vanishes
at all accessible temperatures, whereas that associated with the
former does not. This is because only the grand potential (5)
of bosons contains the nonextensive part arising from the
ground-state contribution, which is not negligible below the
condensation temperature.

The PE symmetry-dependent thermodynamics emerges
because the number of ideal gas particles occupying a single
quantum state depends on the PE symmetry. Let us recall that
the grand potential (16) of an ideal quantum gas system can
be written as

−�/kT =
∑

k

ln
nmax

k∑
nk=0

[z exp(−εk/kT )]nk ,

where nmax
k denotes the maximum number of ideal gas particles

in the kth quantum state [3,29,36]. The negative PE symmetry
inherent to the many-body wave function of an ideal Fermi
gas system forbids more than one fermion from being in
the same quantum state, so we have nmax

k = 1 for the ideal
Fermi gas system. For this reason, the contribution of a single
quantum state to the grand potential is always negligible for
the macroscopic Fermi gas system. On the other hand, for an
ideal Bose gas system, there is no restriction on the occupancy
of each quantum state and nmax

k should read as infinity, so the
contribution of the ground state to the grand potential, which is
the nonextensive part of the grand potential, can be significant
below the condensation temperature. This explains why the
thermodynamic extensivity of an ideal quantum gas system
depends on the PE symmetry of the many-body wave function
of the system.

Let us compare the entropy of an ideal Bose gas system with
that of an ideal Fermi gas system, which can be calculated
by S = −(∂�/∂T )μ,V with � = −kT ln �. If a system is
an extensive system, the entropy per particle S/N̄ of the
system should be independent of the system size. As shown
in Fig. 2(a), S/N̄ of an ideal Bose gas system is independent
of the system size when T > T0, but it becomes dependent
on the system size when T < T0; in contrast, S/N̄ of an
ideal Fermi gas system is independent of the system size
at any temperature. In Fig. 2(b) we also display the relative
contribution X/� of thermodynamic potential X to the grand
potential � for the ideal quantum gas systems. Note that, for an
ideal Bose gas system with any finite size, the thermodynamic
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FIG. 2. (Color online) Temperature dependence of entropy and
thermodynamic potential X for (a,b) an ideal Bose gas system and
for (c,d) an ideal Fermi gas system with various sizes. For an ideal
Bose gas system, the entropy is not strictly linear with respect to
the system size so that entropy per particle S/N̄ is dependent on
the system size, and thermodynamic potential X makes the dominant
contribution to the total grand potential � when T 	 T0. For an ideal
Fermi gas system, in contrast, the entropy is strictly linear with respect
to the system size and X/� is zero at all accessible temperatures.

potential X makes the dominant contribution to the total grand
potential � in the low-temperature regime, where the entropy
is no longer an extensive variable, but it vanishes in the
high-temperature regime where the entropy of the system is an
extensive variable. In contrast, X/� = 0 at any temperature
for an ideal Fermi gas system.

We note that, at any finite temperature, X/� actually
vanishes in the thermodynamic limit where N̄ → ∞, V → ∞,
and N̄/V = ρ̄ = const for a strongly degenerate Bose gas
system as well as for a Fermi gas system [29]. This is because
X, given in Eq. (6), is proportional to lnV , whereas �, given
in Eq. (5), is proportional to V . However, this does not mean
that n̄0 = −(∂X/∂μ)V,T is always negligible compared to
N̄ = −(∂�/∂μ)V,T in the thermodynamic limit. Similarly,
the effect of thermodynamic potential X on the fluctuation
formula, Eq. (4) or (7), is not negligible at all for the strongly
degenerate Bose gas system in the thermodynamic limit. In
the sense that a strongly degenerate Bose gas system does
not obey the Gibbs fluctuation formula that is exact for
any extensive system whose thermodynamic potential X is
identically equal to zero, the strongly degenerate Bose gas
system is a nonextensive system.

VI. OTHER MODELS

For an ideal Bose gas system, the thermodynamic potential
X defined in Eq. (3) comes from the last term on the right-hand
side (RHS) of Eq. (5), the ground-state contribution to ln �BE .
Its effect on the fluctuation formula is negligible when T > T0,
but it is not when T < T0, as shown in Eq. (11). The similar
phase transition is expected for other Bose gas systems with

the following form of grand partition function:

ln �(μ,V,T ) = V φ(μ,T ) − ln(1 − z). (17)

Here φ(μ,T ) can be a general function of μ and T . A
representative example is an ideal Bose gas system trapped
in a harmonic potential U (r) = 2−1mω2|r|2, with m and mω2

denoting the mass of the gas particle and the force constant,
respectively. The grand partition function of this system
conforms to Eq. (17), given that the volume V is identified
by (kT0/mω2)3/2, and the thermodynamic potential X and
the fluctuation formula are given by Eqs. (3) and (4) (see
Appendix H).

Equation (7) tells us that the population condensation of
ideal Bose particles to the single-particle ground state makes
an ideal Bose gas system deviate from the Gibbs fluctuation
formula. This result suggests that a similar deviation from
the Gibbs fluctuation formula would occur for an imperfect
Bose gas system below the condensation temperature at which
the population condensation to the ground state or to a
small number of low-energy quantum states occurs [38–41]
(see Appendix I). Recently, an experimental estimation for
the dependence of κT on temperature was made in the
three-dimensional Bose gas of 87Rb within the temperature
interval (T0,2T0) [5]. The experimental data clearly exhibit
the temperature-dependent phase transition of κT , which is
qualitatively the same as that shown in Fig. 2 as T approaches
T0 from above. The authors’ experimental analysis was made
effectively on the basis of the Gibbs fluctuation formula,
Eq. (1), but it does not introduce a serious error as Eq. (1)
is approximately valid when T > T0, as shown in Eq. (11).
The experimental data of κT at temperature below T0 are yet
to be reported, but we note here that care must be taken in
the analysis of the experimental data at temperature below T0

where neither the Gibbs fluctuation formula nor the assumption
of the equivalence between different ensembles is valid.

Note that the first term on the RHS of Eq. (5), the
contribution of the excited states, to ln � is linear in volume V ,
which makes the Bose gas system an extensive system at high
temperatures at which condensation to the ground quantum
state is negligible. However, the contribution of the excited
states to ln � may not be always linear with respect to volume
V under the presence of an inhomogeneous external field,
which can be a separate source of the nonextensivity leading to
the deviation from the Gibbs fluctuation formula. For example,
let us consider a system of mutually noninteracting particles in
a cylinder with a fixed basement area A and variable height l

under the inhomogeneous external field producing a downward
external force fd [Fig. 3(a)]. The grand partition function of
the system is given by

− β � = ln � = z [V/�3(T )][1 − exp(−V/V ∗)](V/V ∗)

(18)

in the classical limit, which is nonlinear with respect to volume
V (≡Al). In Eq. (18), V ∗ denotes a characteristic volume
defined by V ∗ = kT A/fd . For this system, thermodynamic
potential X defined in Eq. (3) can be easily obtained as

X = kT N̄

(
V/V ∗

exp(V/V ∗) − 1
− 1

)
. (19)
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FIG. 3. (Color online) Fluctuation-compressibility, entropy, and
thermodynamic potential X of a classical ideal gas system under
constant downward force fd . (a) Schematic representation of the
mutually noninteracting gas system under constant downward force
fd . (b) Comparison between the mean-scaled fluctuation 〈δN2〉/N̄
(=1) and the scaled isothermal compressibility ρ̄kT κT . Here V

(=Ah) denotes the volume of the system and V ∗ denotes the
characteristic volume defined by V ∗ ≡ AkT/fd . (c) The entropy per
each particle becomes dependent on the system size when V/V ∗ > 1.
Here Sid denotes the entropy of the classical ideal gas system in the
absence of an external field. (d) The relative contribution of X to
� becomes dominant when V � V ∗, where the entropy per each
particle is significantly dependent on the system volume.

The corresponding fluctuation formula (4) reads as

〈δN2〉
N̄

= ρ̄kT κT

{
V/2V ∗

sinh(V/2V ∗)

}2

. (20)

A detailed derivation of Eqs. (18)–(20) is presented in
Appendix J. Note that, unless the external force fd vanishes,
Eq. (20) deviates from the Gibbs fluctuation relation, Eq. (1).
The correctness of Eq. (20) can be confirmed with the exact
expressions 〈δN2〉/N̄ = 1 and ρ̄kT κT = sinh2(x)/x2 with
x = V/2V ∗, available for this system, which are displayed
in Fig. 3(b). A detailed derivation of the exact expressions
for 〈δN2〉/N̄ and κT of this system is also presented in
Appendix L. The deviation from the Gibbs fluctuation formula
implies that this system is a nonextensive system. Indeed,
the entropy per each particle in this system is found to be
dependent on the size of the system especially when V > V ∗,
where the relative contribution of nonextensive part X to the
total grand potential becomes dominant [see Fig. 3(c) and
Appendix L].

VII. CONCLUSION

To conclude, starting from the standard grand canonical
ensemble, we obtain a universal fluctuation-compressibility
relation, Eq. (4), which is a generalization of the Gibbs
fluctuation formula for nonextensive open systems. This work
demonstrates that the application range of Gibbs-Boltzmann
statistical thermodynamics can be extended to nonextensive

open systems without introducing an additional postulate other
than the principle of equal a priori probability by introducing
thermodynamic potential X (≡G − μN ). The Gibbs-Duhem
equation, the compressibility equation, and other related
statistical thermodynamic equations, which are exact only
for extensive open systems, can be extended to general
nonextensive open systems with use of the thermodynamic
potential X. The thermodynamic potential X would play
a crucial role also in the thermostatistical description of
small open systems of which properties are dependent on
their surface interactions with the surrounding environment.
More research should be directed toward the development of
statistical thermodynamics of a small nonextensive system
interacting with its environment, which has a number of
practical applications.
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APPENDIX A: RELATIONSHIP BETWEEN GRAND
CANONICAL PRESSURE AND CANONICAL PRESSURE

We note here that the grand canonical pressure P =
kT [∂ ln �(μ,V,T )/∂V ]μ,T is nothing but the grand canonical
average of the canonical pressure [32,35]. Given that (N,j )
denotes the j th microscopic state of a grand canonical system
containing N particles, the probability p(N,j ) that the grand
canonical system is at a microstate (N,j ) is given by

p(N,j ) = exp{β[μN − ε(N,j )(V )]}/�, (A1)

where μ, β, and ε(N,j ) denote the chemical potential, the
inverse temperature, and the quantum mechanical energy of the
system in state (N,j ) and � denotes the grand canonical parti-
tion function defined by � = ∑

N,j exp{β[μN − ε(N,j )(V )]}.
The grand canonical pressure is given by

P = −
(

∂�

∂V

)
μ,T

= kT

(
∂ ln �(μ,V,T )

∂V

)
μ,T

. (A2)

Noting that � can be expressed as
∑

N zNQ(N,V,T ) with z de-
fined by z = exp(βμ) and Q(N,V,T ), the canonical partition
function, defined by Q(N,V,T ) = ∑

j exp[−βε(N,j )(V )],
Eq. (A2) can be rewritten as

P = kT

∞∑
N=0

p(N )

(
∂ ln Q(N,V,T )

∂V

)
T

=
∞∑

N=0

p(N )

(
−∂F

∂V

)
N,T

, (A3)

where

p(N ) =
∑

j

p(N,j ) = zNQ(N,V,T )/�(μ,V,T )
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and F represents the Helmholtz free energy defined by
F = −kT ln Q(N,V,T ). Equation (A3) shows that the grand
canonical pressure is the particle number average of the
canonical pressure P (C) [≡ − (∂F/∂V )N,T ].

APPENDIX B: DERIVATION OF EQ. (4)

For a grand canonical system, 〈N2〉 is given by [3,4,6]

〈N2〉 =
∑
N

∑
j

N2p(N,j ) = N̄2 + kT

(
∂N̄

∂μ

)
T ,V

, (B1)

where N̄ denotes the average particle number defined by N̄ =∑
N

∑
j Np(N,j ). Equation (B1) can be easily obtained from

Eq. (A1). For an extensive system, it is well known that(
∂N̄

∂μ

)
T ,V

= N̄2

V
κT , (B2)

with κT the isothermal compressibility defined by κT =
−V −1(∂V /∂P )T ,N̄ [3,4,6]. The derivation of Eq. (B2) relies
on the Gibbs-Duhem equation that is correct only when
G = μN or X = 0. Substituting Eq. (B2) into Eq. (B1),
we obtain the conventional fluctuation-compressibility
equation, Eq. (1).

For a nonextensive system of which thermodynamic poten-
tial X (≡G − μN̄ ) does not vanish, Eq. (B1) yields Eq. (4).
To show this, we rewrite (∂N̄/∂μ)T ,V in Eq. (B1) as(

∂N̄

∂μ

)
T ,V

= −
(

∂V

∂μ

)
T ,N̄

(
∂N̄

∂V

)
T ,μ

. (B3)

Here (∂V /∂μ)T ,N̄ can be related to the isothermal compress-
ibility as(

∂V

∂μ

)
T ,N̄

=
(

∂P

∂μ

)
T ,N̄

(
∂V

∂P

)
T ,N̄

= −κT V

(
∂P

∂μ

)
T ,N̄

.

(B4)

One can relate (∂P/∂μ)T ,N̄ appearing in Eq. (B4), in turn,
to (∂X/∂μ)T ,N̄ by using the well-known thermodynamic
equation, dG = d(μN̄ + X) = V dP − SdT + μdN̄ :

V

(
∂P

∂μ

)
T ,N̄

= N̄ +
(

∂X

∂μ

)
T ,N̄

. (B5)

With Eqs. (B4) and (B5) at hand, we can rewrite Eq. (B3) as
follows:(

∂N̄

∂μ

)
T ,V

= κT

[
N̄ +

(
∂X

∂μ

)
T ,N̄

](
∂N̄

∂V

)
T ,μ

. (B6)

The remaining task is to relate (∂N̄/∂V )T ,μ to the derivative
of the thermodynamic potential X with respect to the chemical
potential μ. By noting that

d� = d(F − μN̄ ) = −SdT − PdV − N̄dμ, (B7)

we obtain (
∂N̄

∂V

)
T ,μ

=
(

∂P

∂μ

)
T ,V

. (B8)

Here (∂P/∂μ)T ,V can be related to (∂X/∂μ)T ,V . Substituting
F = G − PV into Eq. (B7), we obtain

d(PV ) = dX + SdT + PdV + N̄dμ, (B9)

from which we can get[
∂(PV )

∂μ

]
T ,V

= V

(
∂P

∂μ

)
T ,V

= N̄ +
(

∂X

∂μ

)
T ,V

. (B10)

Substituting Eq. (B10) into Eq. (B8) and plugging the resultant
expression for (∂N̄/∂V )T ,μ into Eq. (B6), we obtain

(
∂N̄

∂μ

)
T ,V

= κT

V

[
N̄ +

(
∂X

∂μ

)
T ,N̄

] [
N̄ +

(
∂X

∂μ

)
T ,V

]
.

(B11)

Finally, substituting the latter equation into Eq. (B1), we obtain

〈δN2〉 = 〈N2〉 − N̄2 = N̄2kT κT

V

[
1 + 1

N̄

(
∂X

∂μ

)
T ,N̄

]

×
[

1 + 1

N̄

(
∂X

∂μ

)
T ,V

]
, (B12)

which can be easily rearranged to Eq. (4) in the main text.

APPENDIX C: DEPENDENCE OF THE RANGE
OF ACTIVITY z [�exp(μ/kT)] ON TEMPERATURE T

As the fraction f0 of the ground-state population given
in Eq. (8) is non-negative, the following inequality should
be satisfied: g3/2(z) � g3/2(1)(T0/T )3/2 = ρ̄�3(T ), where
�(T ) = h/

√
2πmkT . At temperatures below T0, the latter

inequality is satisfied for any value of z [= exp(μ/kT )] in
the interval (0,1). To satisfy the inequality at temperatures
above T0, however, values of z must be in the interval 0 <

z < g−1
3/2[g3/2(1)(T0/T )3/2] (≡zmax), where g−1

3/2 denotes the
inverse function of g3/2. In the small-z limit, we have g3/2(z) =∑∞

n=1 zn/n3/2 ∼= z, so g−1
3/2(z) ∼= z. Because of the latter equa-

tion, the upper bound zmax of z is approximately given by
zmax

∼= g3/2(1)(T0/T )3/2 when T � T0. Since z should be
positive and smaller than zmax, the value of z should approach
zero in the high-temperature limit. As such, an ideal Bose gas
system in such limit as T → ∞ and z → 1 does not exist [13].

APPENDIX D: DERIVATION OF THE EXACT
EXPRESSION (10) OF κT FOR AN IDEAL BOSE GAS

Here we derive Eq. (10) starting from the definition of the
isothermal compressibility κT = −V −1(∂V /∂P )T ,N̄ and the
equation of state of the ideal Bose gas. The thermodynamic
pressure of the ideal Bose gas can be obtained by substituting

ln �BE(μ,V,T ) = −
∫ ∞

ε>0
D(ε) ln(1 − ze−βε)dε− ln(1 − z)

into Eq. (A2) [3,4,6]:

P = kT

�3
g5/2(z). (D1)

Noting that dgν(z)/dz = z−1gν−1(z), we obtain(
∂P

∂V

)
T ,N̄

= kT

�3

(
∂z

∂V

)
T ,N̄

g3/2(z)

z
, (D2)
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where (∂z/∂V )T ,N̄ can be written as

(
∂z

∂V

)
T ,N̄

= −
(

∂N̄
∂V

)
T ,z(

∂N̄
∂z

)
T ,V

= −
g3/2(z)

�3

V
�3

g1/2(z)
z

+ 1
(1−z)2

. (D3)

For the derivation of the second equality in Eq. (D3), we
make use of the textbook expression of N̄ , given by N̄ =
Vg3/2(z)/�3 + n̄0 with n̄0 = z/(1 − z). Substituting Eq. (D3)
into Eq. (D2), we obtain

κ−1
T = −V

(
∂P

∂V

)
T ,N̄

= kT

V

[
V
�3 g3/2(z)

]2

V
�3 g1/2(z) + z

(1−z)2

. (D4)

Noting that Vg3/2(z)/�3 is nothing but the number of particles
in the excited states, i.e., N̄ − n̄0, one can rearrange Eq. (D4)
as

κT = 1

ρ̄kT

1

[1 − (n̄0/N̄ )]2

g1/2(z) + �3

V
z

(1−z)2

ρ̄�3
. (D5)

From the expression of N̄ given above Eq. (D4), one can obtain
the well-known expression for ρ̄�3:

ρ̄�3 = g3/2(z) + �3

V

z

1 − z
. (D6)

Substituting Eq. (D6) into Eq. (D5), we obtain

κT = 1

ρ̄kT

1

[1 − (n̄0/N̄ )]2

g1/2(z) + �3

V
z

(1−z)2

g3/2(z) + �3

V
z

1−z

. (D7)

We can get an alternative expression for κT by noting that

ρ̄�3 = ρ̄�3
0(�/�0)3 = g3/2(1)(T0/T )3/2. (D8)

Substituting Eq. (D8) into Eq. (D5), we obtain

κT = 1

ρ̄kT

1

[1 − (n̄0/N̄ )]2

[
g1/2(z)

g3/2(1)

(
T

T0

)3/2

+
�3

V
z

(1−z)2

ρ̄�3

]
.

(D9)

Noting that n̄0 = z/(1 − z) and that ρ̄V = N̄ , we obtain
Eq. (10) from Eq. (D9).

APPENDIX E: DERIVATION OF EQS. (12a) AND (12b)
FROM EQ. (10)

In the high-temperature limit, z approaches zero (Ap-
pendix C), so both n̄0 [=z/(1 − z)] and f0 = n̄0/N̄ approach
zero as well. In this limit, we can approximate gν(z) by
gν(z) = ∑∞

n=1 zn/nν ∼= z. Therefore, Eqs. (8) and (10) become

f0
∼= 1 − z

g3/2(1)

(
T

T0

)3/2

(T/T0 � 1) (E1)

and

κT
∼= (ρ̄kT )−1 z

g3/2(1)

(
T

T0

)3/2

(T/T0 � 1) (E2)

when the temperature is high enough. From Eq. (E1) we have
z(T/T0)3/2/g3/2(1) ∼= 1. Substituting the latter into (E2), we
obtain Eq. (12a) in the main text.

On the other hand, when T/T0 	 1, z approaches unity
[3,29] and f0 given in Eq. (8) becomes

f0 = n̄0/N̄ ∼= 1 − (T/T0)3/2. (E3)

From the latter equation and n̄0 = z/(1 − z), one can obtain
the following approximate expression of z:

z ∼= 1 − 1

1 + N̄ [1 − (T/T0)3/2]
∼= 1 − 1

1 + N̄
(T/T0 	 1).

(E4)

If N̄ is a large number, z is close to unity where g1/2(z) has the
following asymptotic behavior:

g1/2(z) ∼=
√

πN̄f0
∼=

√
πN̄ (T/T0 	 1). (E5)

Substituting Eqs. (E3)–(E5) into Eq. (10), we obtain

κT
∼= (T0/T )3

ρ̄kT

[ √
πN̄

g3/2(1)
+ N̄

]
(T/T0 	 1), (E6)

which reduces to Eq. (12b) when N̄ is a large number.

APPENDIX F: PARTICLE NUMBER FLUCTUATION OF
AN IDEAL BOSE GAS SYSTEM IN A GRAND CANONICAL

ENSEMBLE AND OTHER STATISTICAL ENSEMBLES

In the grand canonical ensemble of an ideal Bose gas sys-
tem, the anomalously large fluctuation in the particle number
in the low-temperature limit is caused by the condensation of
the entire population of the gas particles to the ground quantum
state of a single gas particle. It is known that the variance 〈δn2

k〉
of the number nk of gas particles in the kth quantum state is
given by n̄2

k + n̄k for a grand canonical ideal Bose gas system
[36]. In the low-temperature limit, the number n0 of Bose gas
particles in the ground state becomes effectively the same as
N , so the statistics of N become the same as those of n0, i.e.,
limT →0 〈δN2〉 = N̄2 + N̄ .

In the low-temperature limit, the probability p(N ) of the
number N of ideal boson particles in the system is given by

lim
T →0

p(N ) = zN (1 − z), (F1)

where the mechanical energy of the ground quantum state is
set equal to zero. Following the notation of the main text,
z denotes the activity defined by exp(μ/kT ). Equation (F1)
follows from the general statistical mechanical equation

p(N ) = zNQ(N,V,T )

�
, (F2)

where Q(N,V,T ) denotes the canonical partition function of
the system and � denotes the grand partition function given
by � = ∑∞

N=0 znQ(N,V,T ). In the low-temperature limit,
Q(N,V,T ) = exp(Nε0/kT ) for the ideal boson gas system.
If we set the energy ε0 of the ground quantum state equal to
zero, we have limT →0 Q(N,V,T ) = 1, so Eq. (F2) reduces to
Eq. (F1) in the low-temperature limit. The mean and variance
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of the distribution given in Eq. (F1) are given by

lim
T →0

N̄ = z

1 − z
(F3)

and

lim
T →0

〈δN2〉 = N̄2 + N̄, (F4)

respectively. In the macroscopic limit where N̄ � 1, Eq. (F4)
reduces to the low-temperature limit result of Eq. (13) in the
main text.

On the other hand, in the high-temperature limit, Eq. (F2)
reduces to the Poisson distribution

lim
T →∞

p(N ) = (zq)N

N !
exp(−zq), (F5)

where q is the partition function of the single gas particle
[29,36]. As is well known, the variance of the Poisson
distribution is identically equal to the mean value:

lim
T →∞

〈δN2〉 = N̄ = zq. (F6)

Equation (F6) is the same as the high-temperature limit result
of Eq. (13) in the main text.

In a microcanonical or canonical ensemble of an ideal Bose
gas system, the ratio of the variance 〈δn2

0〉c to the mean 〈n0〉c
of the number n0 of particles in the ground state vanishes
in the low-temperature limit [13,42,43]. This can be easily
understood because the variance 〈δN2〉 of the total number N

of particles is zero for a microcanonical or canonical system
and because N becomes approximately equal to n0 in the low-
temperature limit for the ideal Bose gas system. Similar results
were reported also for a canonical ensemble of a nonideal Bose
gas system [44].

APPENDIX G: DERIVATION OF
〈
δN2

〉
/N̄ AND κT FOR AN

IDEAL FERMI GAS SYSTEM

For an ideal Fermi gas system, the grand canonical partition
function is well known as �FD = ∏

p [1 + z exp(−βεp)]. Here
p (=2π�n/V 1/3) denotes the momentum eigenvalue, where n
is a vector whose components are integers. With the latter at
hand, one can derive the expression of the mean number N̄

of the Fermi gas particle by means of the standard statistical
mechanical relation, i.e., N̄ = kT (∂ ln �/∂μ)T ,V . The result
reads as

N̄ = V

�3
h3/2(z), (G1)

where hν(z) = ∑∞
n=1 (−1)n+1zn/nν . Furthermore, one can

easily get the expression of 〈δN2〉 by taking advantage of
the identity 〈δN2〉 = kT (∂N̄/∂μ)T ,V = z(∂N̄/∂z)T ,V :

〈δN2〉 = V

�3
h1/2(z). (G2)

In derivation of Eq. (G2), we make use of dhν(z)/dz =
hν−1(z)/z.

On the other hand, we can derive the exact expression of κT

for an ideal Fermi gas system from the equation of states of the
system and the definition of κT , i.e., κT = −V −1(∂V /∂P )T ,N̄ .
For an ideal Fermi gas system, the equation of state is well

known as [29]

P = kT

�3
h5/2(z). (G3)

To obtain the expression of κT , we first obtain the expression
for (∂P/∂V )T ,N̄ :(

∂P

∂V

)
T ,N̄

=
(

∂z

∂V

∂P

∂z

)
T ,N̄

= kT

z�3
h3/2(z)

(
∂z

∂V

)
T ,N̄

.

(G4)

Here we again take advantage of the identity dhν(z)/dz =
z−1hν−1(z). In Eq. (G4), (∂z/∂V )T ,N̄ can be rewritten as(

∂z

∂V

)
T ,N̄

= −
(

∂N̄

∂V

)
T ,z

/(
∂N̄

∂z

)
T ,V

, (G5)

which follows directly from the mathematical identity(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1.

The expressions of the denominator and numerator on the
right-hand side of Eq. (G5) can be written in terms of
hν(z); from (G1), one obtains (∂N̄/∂V )T ,z = h3/2(z)/�3 and
(∂N̄/∂z)T ,V = V h1/2(z)/z�3. Substituting the latter equa-
tions into Eq. (G5), we get(

∂z

∂V

)
T ,N̄

= − z

V

h3/2(z)

h1/2(z)
. (G6)

Substitution of Eq. (G6) into Eq. (G4) results in(
∂P

∂V

)
T ,N̄

= − kT

�3V

h2
3/2(z)

h1/2(z)
. (G7)

From the definition of the isothermal compressibility, we
finally get

κT ≡ −V −1

(
∂V

∂P

)
T ,N̄

= �3

kT

h1/2(z)

h2
3/2(z)

. (G8)

From Eq. (G1), one can easily obtain h3/2(z) = ρ̄�3. Substi-
tuting the latter into Eq. (G8), we finally obtain

κT = 1

ρ̄kT

h1/2(z)

ρ̄�3
. (G9)

Note that 〈δN2〉/N̄ given in Eq. (G2) and κT given in Eq. (G9)
obey the Gibbs fluctuation formula, in accordance with our
prediction for the ideal Fermi gas system.

APPENDIX H: IDEAL BOSE GAS TRAPPED BY AN
ISTOTROPIC HARMONIC POTENTIAL

For a mutually noninteracting Bose gas system, the loga-
rithm of the grand canonical partition function is given by

ln �BE(μ,V,T ) = −
∫ ∞

ε>0
D(ε) ln(1 − ze−βε)dε − ln(1 − z),

(H1)

where the density of states D(ε) is dependent on the external
field imposed on the system. When mutually noninteracting
bosons are trapped in the d-dimensional isotropic harmonic
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potential U (r) = 1
2mω2|r|2, the corresponding density of

states is given by

D(ε) ∼= εd−1

�(d)(�ω)d
. (H2)

Substitution of Eq. (H2) into Eq. (H1) yields

ln �BE(μ,V,T ) ∼= 1

(β�ω)d
gd+1(z) − ln(1 − z). (H3)

In Eq. (H3) we can identify the effective spatial extension of the
harmonically trapped system (kT ∗/mω2)d/2 as V , where T ∗ is
a certain constant temperature employed to convert the unit of
ω−d to that of volume and ω−d is an extensive thermodynamic
variable of the system as mentioned in Ref. [45]. Equation (H3)
then conforms to Eq. (17) with φ(μ,T ) identified by

φ(μ,T ) = (2π )d/2

�d

(
T

T ∗

)d/2

gd+1(z). (H4)

In the main text, T ∗ is chosen as the condensation temperature
T0, which is given by T0 = (�ω/k)[N̄/gd (1)]1/d .

APPENDIX I: THERMODYNAMIC POTENTIAL X OF AN
INTERACTING BOSE GAS SYSTEM

Equation (7) of the present work shows that the population
condensation of ideal Bose particles to the single-particle
ground state makes the system deviate from the Gibbs
fluctuation formula even in the macroscopic limit when
the temperature of the system is below the condensation
temperature. This result suggests that a similar deviation from
the Gibbs fluctuation formula would occur for an imperfect
BE system below the condensation temperature at which the
population condensation to the ground state or to a small
number of low-energy quantum states occurs [38–41]. Not
to mention, the nonextensive free energy does not vanish for
a finite-size Bose gas model either. As is the case for any
finite-size system, the free energy of a finite-size imperfect
Bose gas system is not strictly linear with respect to the size
of the system due to the surface contribution. For example,
we refer the grand potential of a hard-sphere Bose gas system
with a finite size in Ref. [46].

Here we briefly examine the effect of interparticle hard-
core repulsion on the grand potential �BE = −kT ln �BE and
thermodynamic potential X defined in Eq. (3) using the model
system considered by Huang et al. [38]. In the model, a/�

(with a the s-wave scattering length) is a small parameter and
the first-order expansion of −�BE/kT with respect to a/�

can be obtained as

− �BE/kT = ln �BE(μ,V,T )

∼= V

�3
g5/2(z)

[
1 − 2a

�

g3/2(z)2

g5/2(z)

]

− ln(1 − z) − 2a

�

(
z

1 − z

)

×
[

2g3/2(z) + �3

V

(
z

1 − z

)]
+ O(a2/�2).

(I1)

Substituting Eq. (I1) into Eq. (3), we obtain the expression of
XBE for the interacting Bose gas system as follows:

XBE/kT ∼= ln(1 − z) + 4a

�

(
z

1 − z

)

×
[
g3/2(z) + �3

V

(
z

1 − z

)]
+ O(a2/�2).

(I2)

Since

N̄ ∼= V

�3
g3/2(z) + z

1 − z
+ O(a/�),

Eq. (I2) can be rewritten as

XBE/kT ∼= ln(1 − z) + 4a

�

(
z

1 − z

)
ρ̄�3 + O(a2/�2).

(I3)

Substituting Eq. (I3) into Eq. (4), we can obtain the fluctuation-
compressibility relation for this system. The explicit expres-
sion of the relation, which is rather involved, will be omitted
here, but the leading-order expression is the same as Eq. (7) in
the main text, i.e.,

〈δN2〉
N̄

∼= ρ̄kT κT (1 − f0)2 + O(a/�). (I4)

Equation (I4) tells us that the effect of the thermodynamic
potential X on the fluctuation-compressibility relation does
not go away in the nonideal Bose gas system either, so it
also deviates from the Gibbs fluctuation formula when the
fraction f0 (≡n̄0/N̄ ) of particles in the ground quantum state
is nonzero.

APPENDIX J: DERIVATION OF EQS. (19) AND (20)

Let us consider a system of mutually noninteracting
classical particles in a cylinder with a fixed basement area
A and a variable height l under the external potential, the
expression of which is given by U (x,y,z) = fdz in Cartesian
coordinate system. The grand canonical partition function of
the system is given by

ln � = exp(βμ)q(β), (J1)

where q(β) denotes the molecular partition function given by

q = 1

h3

∫ ∞

−∞
dpx

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz exp(−β|p|2/2m)A

×
∫ l

0
dz′ exp(−βfdz

′)

= Al

�3

1 − exp(−βfdl)

βfdl
. (J2)

Substituting Eq. (J1) into Eq. (3), we obtain the expression of
thermodynamic potential X (≡G − μN ) as

X = kT Al

(
∂(zq/Al)

∂ ln l

)
μ,T

= zkT l

(
∂(q/l)

∂ ln l

)
T

= N̄kT

(
∂ ln(q/l)

∂ ln l

)
T

, (J3)
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where z and N̄ denote the absolute activity and the average
number of particles in the system, given by z = exp(βμ) and
N̄ = zq [3,4,6].

To obtain the explicit fluctuation-compressibility relation
for the system [Eq. (4)], we must obtain the expression for
(∂X/∂μ)T ,V and (∂X/∂μ)T ,N̄ . From Eq. (J3) we obtain the
following expression of (∂X/∂μ)T ,V :(

∂X

∂μ

)
T ,V

=
(

∂z

∂μ

)
T

kT q

(
∂ ln(q/l)

∂ ln l

)
T

= N̄

(
∂ ln(q/l)

∂ ln l

)
T

. (J4)

The derivation of the expression for (∂X/∂μ)T ,N̄ is a bit more
involved. Using the chain rule, we get(

∂X

∂μ

)
T ,N̄

=
(

∂l

∂μ

)
T ,N̄

(
∂X

∂l

)
T ,N̄

. (J5)

Here (∂l/∂μ)T ,N̄ is given by the inverse of (∂μ/∂l)T ,N̄ , the
expression of which can be obtained as(

∂μ

∂l

)
T ,N̄

= −kT

(
∂ ln q

∂l

)
T

. (J6)

Equation (J6) follows from

ln N̄ = βμ + ln q. (J7)

On the other hand, the expression of (∂X/∂l)T ,N̄ on the RHS
of Eq. (J5) is given by(

∂X

∂l

)
T ,N̄

= N̄kT
∂

∂l

(
l
∂ ln(q/l)

∂l

)
T

= N̄kT

[(
∂ ln q

∂l

)
T

+ l

(
∂2 ln q

∂l2

)
T

]
, (J8)

which can be obtained by taking the partial derivatives of X

given in Eq. (J3). Substituting Eqs. (J6) and (J8) into Eq. (J5),
we obtain(

∂X

∂μ

)
T ,N̄

= −N̄

{
1 + l

∂

∂l

[
ln

(
∂ ln q

∂l

)
T

]
T

}
. (J9)

Substituting the explicit expression (J2) of q into Eqs. (J4)
and (J9), we get(

∂X

∂μ

)
T ,V

= N̄

(
βfdl

exp(βfdl) − 1
− 1

)
(J10)

and (
∂X

∂μ

)
T ,N̄

= N̄

(
βfdl

1 − exp(−βfdl)
− 1

)
. (J11)

Substituting Eqs. (J10) and (J11) into Eq. (4), we finally obtain

〈δρ2〉
ρ̄2

= ρ̄kT κT

N̄

(βfdl)2 exp(−βfdl)

[1 − exp(−βfdl)]2
, (J12)

which is the same as Eq. (20) in the main text.

APPENDIX K: DENSITY FLUCTUATION AND
ISTOTHERMAL COMPRESSIBILITY OF A CLASSICAL

IDEAL GAS SYSTEM UNDER CONSTANT FORCE FIELD

The probability p(N ) that a grand canonical system
contains N particles is well known as [3,4,6]

p(N ) = zNQ(N,V,T )/�. (K1)

Here Q(N,V,T ) denotes the canonical partition function
given by Q(N,V,T ) = qN/N ! for the mutually noninteracting
particles. Substituting the latter into Eq. (J7), we get the
Poisson distribution

p(N ) = (zq)Nexp(−zq)/N!. (K2)

It is well known that the variance 〈δN2〉 of Poisson distribution
is the same as its mean N̄ , i.e.,

〈δN2〉/N̄ = 1. (K3)

Now let us derive the expression for the isothermal compress-
ibility κT of the system from the definition of the isothermal
compressibility and the equation of state of the system. Note
that the pressure of the system of which grand canonical
partition function is given in Eq. (J1) is given by

P = kT

(
∂ ln �

∂V

)
μ,T

= kT

[
∂(zq)

∂V

]
μ,T

= kT z

A

(
∂q

∂l

)
T

= kT

A
N̄

(
∂ ln q

∂l

)
T

. (K4)

From Eq. (K4) one can obtain the following expression
of the isothermal compressibility κT defined by κT =
−V −1(∂V /∂P )T ,N̄ :

κ−1
T = −V

(
∂P

∂V

)
T ,N̄

= −l

(
∂P

∂l

)
T ,N̄

= −l
kT

A
N̄

(
∂2 ln q

∂l2

)
T

. (K5)

Substituting Eq. (J2) into Eq. (K5), we get

κ−1
T = kT

Al
N̄

(βfdl)2 exp(βfdl)

[exp(βfdl) − 1]2
. (K6)

With Eqs. (K3) and (K6) at hand, one can confirm the
correctness of Eq. (20).

APPENDIX L: DERIVATION OF THE EXACT
EXPRESSIONS FOR S/N̄k AND X/� FOR THE SYSTEM IN

FIG. 3(a)

When we want to know the expression for S/N̄k, we
can start from the general identity � = −kT ln �. From
d� = −SdT − PdV + Ndμ, S can be expressed as S =
−(∂�/∂T )V,μ. For the classical ideal gas under a constant
force field, the grand canonical partition function is given by
(see Appendix J)

ln � = exp(βμ)q(β) = exp(βμ)
V

�3(T )

1 − exp(−βfdl)

βfdl
.

(L1)
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By using Eq. (L1), we can get the entropy expression as

S

N̄k
= 7

2
− βμ − βfdl

exp(βfdl) − 1
, (L2)

where Eq. (J7) has been used.
Using the entropy expression, Sid in the case of a zero force

field, which is given by

Sid

N̄k
= ln

V

�3

e5/2

N̄
, (L3)

and Eqs. (J2) and (J7), Eq. (L2) can be rewritten as

S

N̄k
= Sid

N̄k
+ 1 + ln

1 − exp(−βfdl)

βfdl
− βfdl

exp(βfdl) − 1
, (L4)

which is used in Fig. 3(c). The expression of X/� used in
Fig. 3(d) is simply given by

X

�
= 1 − V/V ∗

exp(V/V ∗) − 1
(L5)

using Eqs. (19), (J1), and (J7).
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