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Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics
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Blackbody radiation is reconsidered using the counterpart of the Bose-Einstein distribution in the κ statistics
arising from the Kaniadakis entropy. The generalized Planck radiation law is presented and compared to the usual
law, to which it reduces in the limiting case κ → 0. Effective Einstein’s coefficients of emission and absorption
are defined in terms of the Kaniadakis parameter κ . It is shown that the Kaniadakis statistics keeps unchanged the
first Einstein coefficient A while the second coefficient B admits a generalized form within the present theoretical
framework.
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I. INTRODUCTION

Due to its historical significance and ability to describe
experimentally realizable phenomena, blackbody radiation has
been a favorite test for advances in statistical physics. A large
number of contributions have focused on its reformulation
in the framework of nonextensive q statistics [1–14] first
recognized by Rényi [15] and subsequently proposed by
Tsallis [16]. Several approximations have been involved and
different aspects of the blackbody radiation have attracted a
good deal of interest. The thermodynamical quantities have
been reconsidered [12] and it has been shown that the basic
thermodynamical relations (though remaining form invariant)
are affected by the nonextensive parameter q. In Ref. [1], use
was made of the generalized nonextensive Planck radiation
law to interpret data from the cosmic microwave background
radiation. Considering a simple model, Wang and Méhauté [7]
showed that the nonextensivity prescription unexpectedly
modifies the Einstein coefficients of emission and absorption.
There are also some studies in connection with the Rényi
entropy [12] and the Beck-Cohen superstatistics [14]. Such
studies have been—partially—motivated by one fact: even
though the usual Planck radiation law has been confirmed
experimentally over and over again, small deviations from this
law have been detected in the cosmic microwave radiation.
A possible explanation is that these deviations could have
arisen at the time of matter-radiation decoupling, due to the
nonextensive statistics environment [1].

On the other hand, major developments in statistical physics
have been motivated by the observation of distributions
that do not arise from the usual Boltmann-Gibbs-Shannon
(BGS) statistical mechanics. The latter can be obtained by
a maximization of the BGS entropy, leading to exponential
distributions, whereas some observations clearly indicate
distributions that exhibit a power-law asymptotic behavior.
Such distributions can originate from a deformation of the
usual BGS entropy. The distributions arising from the Tsallis
entropy (which is a one-parameter generalization of the
BGS entropy) present a power-law behavior. The latter have
shown a good agreement with observations and experimental
measurements (distribution of cold atoms in dissipative optical
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lattices [17], spin-glass relaxation [18], velocity distributions
in driven dissipative dusty plasma [19], etc.). However,
other generalizations of the entropy also lead to power-law
distributions which are different from those generated by the
Tsallis entropy. Hence, it is of interest to study the implication
of such alternative distributions and their ability to describe
key phenomena.

In a very interesting and influential paper [20], Kaniadakis
proposed a deformation of the entropy for relativistic systems:
a deformation of the usual BGS entropy, involving one con-
tinuous parameter κ . The Kaniadakis entropy leads inherently
to nonexponential distributions [21–25]. Those distributions
also exhibit a power-law asymptotic behavior, according to
the experimental evidence. Such power-law distributions have
been observed in a variety of relativistic systems such as
plasmas [26] and multiparticle production processes [27].
For instance, empirical nonexponential distributions with
power-law tails have been systematically used to model high-
energy plasmas. The κ-deformed distributions arising from the
Kaniadakis entropy have been applied to cosmic rays [21],
quark-gluon plasma formation [28], kinetics of interacting
atoms and photons [29], nonlinear kinetics [30,31], etc.

In this paper, we propose to reconsider blackbody radiation
within the theoretical framework of the κ statistics arising from
the Kaniadakis entropy. To this end, we use the κ counterpart
of the Bose-Einstein distribution and apply it to photons. This
distribution has been successfully applied to generalize Bose-
Einstein condensation and to interpret liquid 4He behavior at
low temperatures [32]. It may be of interest to see how different
entropies leading both to power-law distributions can describe
the same phenomenon. The generalized Planck radiation law
in q statistics has already been employed in interpreting
the cosmic microwave background radiation and has been
compared to observations made by the FIRAS spectrographer
in the Cosmic Background Explorer satellite [1,11].

This article is organized in the following fashion. In the
next section, we derive the generalized Planck radiation law
in the framework of the Kaniadakis κ statistic and compare
it with the usual Plank law arising from BGS statistics.
The low- (Rayleigh-Jeans law) and high- (Wien shift law)
frequency limits are exposed. In Sec. III, we focus on the effect
of Kaniadakis entropy on Einstein’s coefficients. Working
parallel to the treatment in Ref. [7] and considering a model of
N atoms with two nondegenerate energy states, we define
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effective Einstein’s coefficients within the κ statistics and
compare them to the usual ones arising from the standard
BGS theory. A summary of our findings and conclusions is
given in Sec. IV.

II. GENERALIZED PLANCK RADIATION LAW

Recently, κ deformation of the Bose-Einstein statistical
distribution was proposed [33]. The latter is given by

f (ε) = 1

expκ

(
ε−μ

kT

) − 1
, (1)

where μ, T , and k are, respectively, the chemical potential,
the temperature, and the Boltzmann constant. Note that expκ

stands for a one-parameter generalization of the exponential,
given by

expκ (x) = (
√

1 + κ2x2 + κx)1/κ . (2)

In the limiting case κ → 0, it reduces to the ordinary
exponential function and the usual Bose-Einstein distribution
is then recovered. Equation (1) can be used to describe photons,
assuming the dilute gas approximation for ε = hν, where ν is
the frequency of the photon and μ = 0 since the photon gas is
not a variable system state. The number of photons within a
frequency range between ν and ν + dν is given by

dNν = 8πV

c3

ν2dν

expκ

(
hν
kT

) − 1
(3)

with a corresponding energy

dEν = 8πV

c3

hν3dν

expκ

(
hν
kT

) − 1
= 8πhcV

λ5

−dλ

expκ

(
hc

λkT

) − 1
, (4)

where λ = c/ν stands for the wavelength. Equation (4) is
the Planck radiation law generalized in the framework of
Kaniadakis κ statistics. In the limit κ → 0, it reduces to the
usual Planck radiation law. It is worth noting that (4) is different
from its nonextensive counterpart, arising from the Tsallis
statistical theory, which is given by

dEν = 8πV

c3

hν3dν[
1 + (q − 1) �ω

kT

]1/(q−1) − 1
. (5)

It may be useful to note that, for q < 1 and in contrast to (4),
expression (5) exhibits a cutoff �ω

kT
< 1

1−q
. In the limit of low

frequencies (hν � kT ), the denominator in Eq. (4) can be
expanded to first order, leading to

dEν = 8πV

c3
kT ν2dν. (6)

Equation (6) is the classical Rayleigh-Jeans law. It is worth-
while to notice that it is identical to the usual Rayleigh-Jeans
law. In fact and as mentioned by Kaniadakis [34], the effect of
the κ deformation is appreciable only for large values of x [in
fact, the first three terms in the Taylor expansion of expκ (x)
are the same as for the ordinary exponential]. Since expκ (x)
is a monotonically increasing function of x, the limit of high
frequencies (hν � kT ) gives

dEν = 8πV

c3

hν3

expκ

(
hν
kT

)dν, (7)
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FIG. 1. Variation of the energy density with the frequency, for
different values of the Kaniadakis parameter κ = 0.00 (solid line),
0.10 (dashed line), 0.20 (dotted line), and 0.30 (dash-dotted line),
with T = 500 K.

which can be viewed as a generalization of the Wien shift
law. In this limit, the effect of the Kaniadakis κ statistics is
noticeable, since it shows an asymptotic power-law behavior
instead of the exponentially decreasing law inherent in BGS
statistics. It is worth noticing that the same power-law behavior
is shown by the Tsallis q statistics for q > 1, with the
correspondence κ → (q − 1). However, in the q < 1 case, the
behavior is very different since the q-generalized law exhibits
a cutoff. In the limit κ → 0, Eq. (7) reduces to the usual Wien
shift law

dEν = 8πV

c3
exp

(
− hν

kT

)
hν3dν. (8)

From Eq. (4), one can obtain the following energy density:

ρκ (ν,T ) = 8πhν3

c3

1

expκ

(
hν
kT

) − 1
(9)

The frequency dependence of the energy density is then traced
in Fig. 1 for different values of the Kaniadakis parameter κ

and T = 500 K. Figure 1 shows that an increase of κ leads to
an increase in the energy emitted by the blackbody, especially
in the high-frequency region. This result is very similar to
the one produced by nonextensive effects with q > 1. It is
interpreted in the nonextensive q statistics as due to long-range
correlations in the system energy [7]. Such an interpretation in
the framework of κ statistics remains an open question.

III. GENERALIZED EINSTEIN COEFFICIENTS

Shortly before the development of quantum theory, Einstein
postulated on thermodynamic grounds a relationship between
the probabilities for spontaneous and stimulated emission.
Later on, the proposed relationship was confirmed by quantum
calculations. The so-called Einstein coefficients allow an
understanding of several radiative processes such as the
absorption and scattering of light and the amplification of light
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beams by lasers. In Ref. [7], it was shown that the q-generalized
coefficients of stimulated emission and absorption are different
from those already predicted by the BGS formalism. It
becomes of interest to investigate whether the Kaniadakis κ

statistics affect these coefficients and to what extent. Following
Ref. [7], let us consider a cavity containing N identical atoms,
each having two nondegenerate energy states E1 and E2. The
number of photons in the cavity varies with absorption and
emission by the atoms, with a frequency ν corresponding to
E2 − E1 = hν. Let A21 be the probability of a spontaneous
transition from E2 to E1, ρκ (ν,T )B21 the probability of
stimulated emission from E2 to E1, and ρκ (ν,T )B12 the
absorption probability from E1 to E2. Let N1 and N2 stand
for the numbers of atoms in the energy states E1 and E2,
respectively. It is easy to determine them in the canonical
ensemble (since the number of atoms remains constant). The
fraction of atoms in each level (which corresponds to the
probability of finding the atom in the corresponding state)
is given in the Kaniadakis κ statistics by

p1 = N1

N
= 1

Z
expκ (−E1/kT ) and

p2 = N2

N
= 1

Z
expκ (−E2/kT ), (10)

where Z stands for the partition function. In the limit κ →
0, Eq. (10) reduces to the well-known Boltzmann weight
exp(−Ei/kT ). This expression can be determined by a
maximization of the Kaniadakis entropy. Let us however
derive them in a less orthodox way, considering an alternative
method recently proposed by Oikonomou et al. [35]. From
thermodynamical considerations, the authors showed that such
an equilibrium probability distribution related to an entropic
form1 written as

S =
∑

i

pi	(1/pi) (11)

is given by

pi = [	−1(βEi)]−1

Z
, (12)

where β denotes the inverse temperature in energy units β =
1/kT . The Kaniadakis entropy is defined as the average of the
function [20]

	(x) ≡ lnκ = xκ − x−κ

2κ
, (13)

which is a one-parameter generalization of the logarithm. In
the limit κ → 0, it reduces to the usual logarithm and the Ka-
niadakis entropy of course reduces to the usual BGS entropy.
The inverse function of lnκ is the κ exponential presented
above (in fact, lnκ [expκ (x)] = x). The equilibrium probability
distributions are then given by (10). The conservation of the
number of atoms leads to
dN1

dt
= −dN2

dt
= N2A21 − N1ρκ (ν,T )B12 + N2ρκ (ν,T )B21.

(14)

1The method considered here is valid for all trace-form entropies.
Note that it apparently does not apply to non-trace-form entropies.

Considering the last equation at thermal equilibrium ( dN1
dt

=
dN2
dt

= 0), we obtain the energy density

ρκ (ν,T ) = A21

(N1/N2)B12 − B12
. (15)

Substituting Eq. (10) into Eq. (15), we obtain

ρκ (ν,T ) = A21

{expκ (−E1/kT )/ expκ (−E2/kT )}B12 − B12

= A21/B21

{expκ (−E1/kT )/ expκ (−E2/kT )}B12/B21 − 1
.

(16)

Equation (16) must be consistent with the κ-generalized
Planck law (9). We derive therefore the following generalized
Einstein’s coefficients in the Kaniadakis κ statistics:

A21

B21
= 8πhν3

c3
, (17)

B21

B12
= expκ (−E2/kT )

expκ (−E1/kT ) expκ (−hν/kT )
. (18)

The first ratio (17) is independent of the continuous parameter
κ and is identical to the one arising from the BGS formal-
ism [36]. It has been shown that it remains unchanged in the
Tsallis q statistics also [7]. The second ratio is κ dependent.
In the limit κ → 0, the coefficients of stimulated emission and
absorption are equal and their ratio is equal to unity. The fact
that the latter Einstein coefficient is temperature dependent
deserves discussion. In fact, the usual Einstein coefficients
are properties of the system and thus depend only on its
quantum mechanical nature. It is natural to ask why this ratio
is temperature dependent while it is a constant in the usual
BGS framework. We believe that the key is in the fundamental
question: under what circumstances is this procedure justified?
In Ref. [36], one can read a part of the answer: “The Einstein
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FIG. 2. Variation of the ratio B21/B12 with the temperature, for
different values of the Kaniadakis parameter κ = 0.10 (solid line),
0.50 (dashed line), and 0.90 (dotted line), with ν = 1014 Hz and a
given E1.
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FIG. 3. Variation of the ratio B21/B12 with the frequency, for
different values of the Kaniadakis parameter κ = 0.10 (solid line),
0.50 (dashed line), and 0.90 (dotted line), with T = 1000 K and a
given E1.

coefficients are derived by consideration of a cavity in thermal
equilibrium, where the radiative energy is homogeneous and
isotropic in space. They hold generally for any spatially
isotropic distribution of radiative energy density. However, the
external light beams used in experiments do not usually have
this property, as in the example of a parallel light beam.” In
Ref. [7], dealing with a Tsallis q-statistical approach of these
coefficients, the authors relate this temperature dependence to
a symmetry problem. They write: “This study would give us an
opportunity to [· · · ] investigate the relation between this new
theory (i.e., Tsallis q statistics) and physical systems in the
non-Euclidean space-lime (e.g., fractal or mutifractal space-
time).” Based upon these arguments, our interpretation is the
following: If the radiative energy is homogeneous and isotropic
in space, the rates of absorption and stimulated emission are
the same (B12 = B21 = 1). Otherwise, the symmetry of the
problem may produce a difference between them and favor
one of the processes with respect to the other. Equation (18)
tells us that this effect depends on the temperature of the cavity.

Figure 2 depicts the variation of the ratio (18) with
temperature, for different values of κ , a constant frequency
ν = 1014 Hz, and a given E1. Figure 2 shows that an
increase of κ leads to an increase of the ratio B21/B12,
i.e., an increase (decrease) of the probability of emission
(absorption). The effect of the Kaniadakis κ distribution is
more marked for low temperatures and tends to vanish in

the limit T → ∞ (the emission and absorption coefficients
tend to be equal). Note that in the zero-temperature limit,
B21/B12 = 0, notwithstanding the strength of the κ parameter.
The coefficient of absorption is much superior to the emission
coefficient (black-hole effect). This result is similar to the one
observed for q > 1 in the q generalization of the Einstein
coefficients [7]. In Fig. 3 is plotted the variation of the
same ratio with frequency for different values of κ , with a
given E1 and a temperature T = 1000 K. It is found that in
the limit of vanishingly small frequency (ν → 0), the ratio
B21/B12 = 1, a result that is consistent with the one obtained
within the theoretical framework of q statistics [7]. The ratio
then decreases with an increase of the frequency. The falloff
of B21/B12 becomes less rapid as κ increases (Fig. 3).

IV. CONCLUSION

To conclude, we have proposed an alternative generaliza-
tion to the Planck law for blackbody radiation, using the
counterpart of the Bose-Einstein distribution in the Kaniadakis
κ statistics. A generalized Plank radiation law (which reduces
to the usual one for κ → 0) is derived. The Kaniadakis κ

statistics appears to have a similar effect on the Plank law to
the one produced by the nonextensive q statistics for q > 1.
In fact, the κ effect enhances the energy emitted by the black-
body, particularly in the high-frequency region. The so-called
Einstein coefficients for emission and absorption were also
reconsidered within the theoretical frame of the Kaniadakis
κ statistics. Interestingly, it is shown that the Kaniadakis
statistics keeps unchanged the first Einstein coefficient while
the second one admits a generalized form within the present
theoretical framework. The Kaniadakis entropy (as has already
been shown for the Tsallis entropy [7]) induces a difference
between the two Einstein coefficients B12 and B21. The ratio
B21/B12 reduces to unity in the limit T → ∞, rendering the
effect of the Kaniadakis κ statistics undistinguishable. In the
zero–temperature limit, we observed an interesting black-hole
effect. In the limit κ → 0, the two coefficients become equal,
as is well known from BGS statistics. We believe that it may
be of interest to investigate the effect of the Kaniadakis κ

statistics on the thermodynamical quantities of the blackbody
(free energy, entropy, total radiation energy, specific heat, etc.).
This issue appears as one of the interesting prospects that can
be proposed as a continuation of the present work. In fact, as
already shown for the Tsallis q statistics, the thermodynamical
relations must be form invariant under κ generalization. In
addition, a comparison with experimental data in the case of
the microwave background radiation would be welcome.
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