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The classical n-vector φ4 model with O(n) symmetrical Hamiltonian H is considered in a ∞2 × L slab
geometry bounded by a pair of parallel free surface planes at separation L. Standard quadratic boundary terms
implying Robin boundary conditions are included in H. The temperature-dependent scaling functions of the
excess free energy and the thermodynamic Casimir force are computed in the large-n limit for temperatures T

at, above, and below the bulk critical temperature Tc. Their n = ∞ limits can be expressed exactly in terms
of the spectrum and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. This equation
is solved by numerical means for two distinct discretized versions of the model: in the first (“model A”),
only the coordinate z across the slab is discretized and the integrations over momenta conjugate to the lateral
coordinates are regularized dimensionally; in the second (“model B”), a simple cubic lattice with periodic
boundary conditions along the lateral directions is used. Renormalization-group ideas are invoked to show that,
in addition to corrections to scaling ∝ L−1, anomalous ones ∝ L−1 ln L should occur. They can be considerably
decreased by taking an appropriate g → ∞ (Tc → ∞) limit of the φ4 interaction constant g. Depending on the
model A or B, they can be absorbed completely or to a large extent in an effective thickness Leff = L + δL.
Excellent data collapses and consistent high-precision results for both models are obtained. The approach to
the low-temperature Goldstone values of the scaling functions is shown to involve logarithmic anomalies. The
scaling functions exhibit all qualitative features seen in experiments on the thinning of wetting layers of 4He and
Monte Carlo simulations of XY models, including a pronounced minimum of the Casimir force below Tc. The
results are in conformity with various analytically known exact properties of the scaling functions.
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I. INTRODUCTION

The confinement of low-energy long-wavelength fluctua-
tions in media frequently leads to effective forces between
confining boundaries and macroscopic bodies that are im-
mersed into these media. A celebrated and much studied
class of examples of such fluctuation-induced forces are
the quantum electrodynamics (QED) Casimir forces that act
between arbitrary objects coupling to the electromagnetic
field, such as grounded metallic plates in vacuum. They are
caused by the confinement of vacuum fluctuations of the
electromagnetic field [1–3].

During the past two decades, it has become clear that a
wealth of classical analogs of such effective forces, called
“thermodynamic Casimir forces,” exist [4–7]. Rather than
by quantum fluctuations, the latter are induced by thermal
fluctuations at or near critical and multicritical points, or by
Goldstone modes [8]. The purpose of the present paper is to
present exact results for the thermodynamic Casimir force of
the O(n) φ4 model in an ∞2 × L slab geometry bounded by
two free surfaces at z = 0 and z = L. A brief account of some
of the results reported here was given in a recent letter [9]. The
issue has also been taken up in a recent work [10,11], where
parts of the results of [9] were reproduced (to a considerably
lower accuracy) [12].

Our motivation for this work is rooted in the following
considerations. The universal properties of QED Casimir
forces at temperature T = 0 usually can be studied within
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the framework of effective free field theories in which
the interaction of the electromagnetic fields with matter is
taken into account via appropriate boundary conditions at
the surfaces of the confining material bodies. By contrast,
for adequate investigations of thermodynamic Casimir forces
near critical and multicritical points, the use of interacting
field theories is indispensable. Studies of such kind, though
important and of general interest, normally turn out to be rather
challenging because they involve a combination of difficult
problems. Satisfactory theories of thermodynamic Casimir
forces in d-dimensional slabs as functions of temperature and
thickness L must be able to cope with bulk and boundary
critical behavior, finite-size critical or pseudocritical behavior,
and the crossover from d- to (d−1)-dimensional behavior that
occurs as the bulk correlation length ξ becomes larger than L.
Furthermore, they should yield a qualitatively correct phase
diagram for finite L. This demands a proper treatment of
low-temperature excitations.

In order to safeguard against misunderstandings, a few
remarks are appropriate. Note, first of all, that we shall not
consider temperature effects on QED Casimir forces. One
source of such effects is thermal fluctuations in the material
bodies immersed into the QED vacuum. If one chooses instead
of the QED vacuum a polarizable and magnetizable medium, a
second source of temperature effects is thermal fluctuations in
the medium. Both types of temperature effects have attracted
considerable attention and occasionally produced controver-
sial results [13]. They depend on properties of the models
of matter chosen for the material bodies and the medium,
and they exhibit a lesser degree of universality than T = 0
QED Casimir forces and thermodynamic Casimir forces. We
shall not engage in their analysis in this paper. Second,
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following established practice, we will refer to effective forces
induced by thermal fluctuations near critical (or multicritical)
points as thermodynamic Casimir forces, using the adjective
“thermodynamic” to indicate that temperatures other than Tc

are also considered.
Instructive examples of the kind of systems we will be

concerned with are provided by d = 3 dimensional systems
whose low-temperature bulk phase exhibits long-range order
and the spontaneous breaking of a continuous symmetry. To
become specific, take a classical n-vector φ4 model on a
slab R2 × [0,L] whose Hamiltonian H[φ] is invariant under
the symmetry group O(n) and involves only short-range
interactions. In the thermodynamic bulk limit L = ∞, a
bulk critical temperature Tc > 0 exists above and below
which the model is disordered and ordered, respectively.
The spontaneous breaking of the symmetry from O(n) to
O(n − 1) in the low-temperature phase implies the presence
of Goldstone modes (“spin waves”). For finite L, low-energy
excitations of this kind destroy long-range order for any T > 0:
it is rigorously known that no phase with long-range order
exists at T > 0 when L < ∞; see, e.g., [14–16]. Thus, a
crossover from three-dimensional bulk critical behavior to
two-dimensional pseudocritical behavior should occur as the
bulk correlation length ξ becomes larger than L. This applies
to the disordered phase as T → Tc. In the ordered bulk phase,
ξ = ∞ because of Goldstone singularities at any T < Tc; then
the appropriate length scale � L up to which bulk behavior
locally prevails is given by the Josephson coherence length [17]
(spin stiffness; see, e.g., [18]). Furthermore, the reduced
thermodynamic Casimir force per unit area, βFC(T ,L), where
β = 1/kBT , does not vanish in the limit T → 0 since confined
Goldstone-mode excitations give rise to a fluctuation-induced
force [8].

The features just discussed manifest themselves in the
temperature dependence of the thermodynamic Casimir force
βFC(T ,L). Recall that according to finite-size scaling argu-
ments [19] and renormalization-group analyses [20–22], it
should take the scaling form

βFC(T ,L) � L−d ϑ(x), x ≡ t(L/ξ+)1/ν, (1.1)

in the scaling limit t ≡ T/Tc − 1 → 0 and L → ∞, with x

kept fixed. Here we used ξ+, the nonuniversal amplitude of
the bulk correlation length ξ (t > 0) � ξ+t−ν in the disordered
phase, to fix the scale of x. The scaling function ϑ(x) is
universal; it depends only on gross properties of the medium,
boundaries, and geometry (bulk and surface universality
classes, large-scale boundary conditions, etc.), but not on
microscopic details. For the O(2) case of a slab confined by
free surfaces, information about ϑ(x) is available from two
sources: from experiments on the thinning of 4He wetting
films on copper substrates as T is lowered below the λ

transition [23,24], and from Monte Carlo calculations for XY

models on simple cubic lattices with uniform nearest-neighbor
interactions [25–27]. Both consistently indicate that ϑ(x) has
the following properties:

(p1) it is negative, and hence βFC(T ,L) attractive, for all
x; this property also follows from the rigorous theorem for
reflection positive systems in a slab geometry with symmetric
boundary conditions proved in [28] (for an analogous theorem
for Gaussian models, see [29]);

(p2) it decreases ∝ exp(−const x) for x � 1; this property
is in conformity with renormalization-group improved pertur-
bation theory [20] and ultimately follows from the exponential
decay of correlation functions in the disordered phase;

(p3) its t = 0 critical value ϑ(0) is rather small;
(p4) it has a deep smooth minimum ϑmin located at

xmin < 0;
(p5) it approaches a zero-temperature limit ϑ(−∞) < 0.
Standard perturbative renormalization-group approaches

based on the ε = 4 − d expansion reproduce only some of
these properties, yet fail to yield others such as (p4) and (p5).
Their first application to the study of thermodynamic Casimir
forces was restricted to the critical point and Dirichlet bound-
ary conditions at both surface planes (D-D boundary condi-
tions) [30]. Then two-loop calculations giving the ε expansions
of the scaling functions ϑ(x) to O(ε) in the paramagnetic phase
t > 0 for five different boundary conditions followed [20,21].
In addition to periodic (pbc), antiperiodic, and D-D boundary
conditions, also special (sp) boundary conditions of the Robin
type corresponding to the critical enhancement of the surface
interactions either on both surface planes (sp-sp) or on just
one of them were considered, namely, the combinations
sp-D and D-sp with Dirichlet boundary conditions on the
respective second plane. The results of [20,21] for periodic
and sp-sp boundary conditions hinted at problems with the ε

expansion at t = 0. Subsequent work [31–33] revealed that
the ε expansions of the Casimir forces at t = 0 actually break
down for these boundary conditions. The origin of the problem
may be traced back to the presence of a zero mode at the
bulk critical temperature in the Ornstein-Zernike (zero-loop)
approximation, which thus predicts a sharp transition for
finite L there. The associated infrared singularities imply that
the conventional RG-improved perturbation theory becomes
ill-defined at t = 0. Appropriate modifications of it have shown
that the small-ε expansions of both ϑpbc(0) and ϑ sp−sp(0)
involve fractional powers εk/2 with 2 � k ∈ N, modulated by
powers of ln ε when k � 5 [31,32,34–37]. This breakdown
of the ε expansion at t = 0 for periodic and sp-sp boundary
conditions makes extrapolations based on small-ε expansions
to low orders rather unreliable.

In the case of D-D boundary conditions the situation is
somewhat better. The Ornstein-Zernike approximation yields
a zero-mode at a shifted temperature tD−D(L) < 0, and hence
predicts a sharp transition for finite L there. Thus the ε

expansion remains valid for all t � 0. This applies more
generally for Robin boundary conditions corresponding to
subcritical enhancement of the surface interactions [37], where
Ornstein-Zernike theory yields a zero-mode and hence a sharp
finite-L transition at a shifted temperature in the open interval
(tD−D(L),0). These predictions of sharp L < ∞ transitions
below the bulk critical temperature are qualitatively correct
for the (d = 3)-dimensional scalar (n = 1) case. The main
hard challenge one is faced with is to design a theory that is
capable of handling in addition to the infrared singularities
at t = 0 also those at the shifted critical temperature and the
associated dimensional crossover.

The situation is worse in the (d = 3)-dimensional O(n � 2)
case. Since long-range order is rigorously ruled out for
finite thickness L at all temperatures T > 0 by the Mermin-
Wagner theorem [14,16]; only a rounded L < ∞ transition is
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possible when T > 0, where the O(2) case is special in that
a Kosterlitz-Thouless transition to a low-temperature phase
with quasi-long-range order is known to occur at a nonzero
temperature TKT(L) < Tc (see [38] and its references). The
destruction of long-range order at low temperatures caused
by low-energy fluctuations is a nonperturbative phenomenon
(“nonperturbative mass generation”). Any theory aiming at a
satisfactory description of the Casimir force for the full range
(−∞,∞) of the scaling variable x must be able to account for
it. Otherwise the scaling function ϑ(x) it yields cannot even
qualitatively be correct.

Given these challenges and the present unsatisfactory
state of the theory, reliable knowledge from exact solutions
of appropriate model systems could be extremely useful:
It could serve a dual purpose, providing both a starting
point and benchmark for approximate treatments of more
realistic models. Exact solutions of O(n) models in the limit
n → ∞ lend themselves to these goals because fluctuations
can be dealt with in a systematic, mathematically controlled
fashion when n becomes large. This applies to both critical
and Goldstone mode fluctuations. Furthermore, the theory
succeeds in generating a nonzero mass for T > 0 in two-
dimensional bulk systems [39,40].

The usefulness of exact n → ∞ results for fluctuation-
induced forces of O(n) models on (d = 3)-dimensional films
has been convincingly demonstrated for the case of periodic
boundary conditions. Danchev [41,42] managed to compute
the thermodynamic Casimir force as a function of T and
magnetic field h in the limit n → ∞. The behavior of ϑpbc(x),
the analog of the scaling function ϑ(x) introduced in Eq. (1.1),
in the vicinity of Tc gave clear indications of problems with
the ε expansion for pbc in this temperature regime. The exact
n = ∞ critical value ϑpbc(0) = −4ζ (3)/5π � −0.306 turned
out to be fairly close to the Monte Carlo value � −0.304 for
the Ising case n = 1 [43–46]. However, evaluating Krech and
Dietrich’s O(ε) results [20,21] at ε = 1 for n = 1,2,3,∞ gives
values of ϑpbc(0) that deviate strongly from the exact n = ∞
result for d = 3. Even worse, the differences increase as n

grows [7,32].
Subsequent work revealed that the ε expansion actually

breaks down at Tc for pbc [31,32,35]. Thus the exact n = ∞ re-
sults for the (d = 3)-dimensional case with pbc have provided
helpful guidance and a benchmark for assessing the quality
of estimates based on both the ε expansion and Monte Carlo
calculations for finite values of n. A similarly important role
have exact n → ∞ solutions played in the theory of crossover
behavior near quantum critical points [47]. In fact, close
analogies exist between classical models on a strip with pbc
and bosonic quantum systems in 2 + 1 spacetime dimensions
whose dynamic critical exponent is z = 1. This follows from
the well-known fact that the latter at temperature T = 1/kBβ

can be mapped onto (d = 3)-dimensional classical systems on
a strip of width β subject to pbc along the β direction.

On the other hand, the exact n = ∞ scaling function ϑpbc(x)
for d = 3 does not exhibit a local minimum below Tc [property
(p4)]. It rather decreases smoothly and monotonically from its
maximum value zero at temperatures above Tc to its Goldstone
value ϑpbc(−∞) = −ζ (3)/π [41,42,48], where it saturates.
In order for the Casimir force to have a local minimum at
T < Tc, free boundary conditions and the implied breaking

of translational invariance along the z direction appear to be
crucial.

The purpose of the present paper is to compute the scaling
function ϑ(x) and its counterpart for the excess free energy
for free boundary conditions and d = 3 exactly in the limit
n → ∞. Owing to these boundary conditions, translation
invariance is broken along the z direction. This implies that the
n → ∞ limit is not given by the solution of a mean spherical
model [7,49] with a global constraint on the sum

∑
i〈s2

i 〉 of
the expectation values of the square of spin variables over
all sites i. Instead, separate constraints of this kind must
be imposed on the respective sums

∑
i∈z〈s2

i 〉 for each layer
z [50–52]. The associated z-dependent Lagrange multipliers
correspond to a quadratic interaction V (z) φ2, where the
potential V (z) must be determined self-consistently by solving
the constraint equations along with a Schrödinger equation
(see, e.g., [51–54], Appendix B in [55], and [9]). Bray and
Moore [51,52] succeeded in determining the solution V (z)
in the scaling regime for the special case of a semi-infinite
system at bulk criticality, L = ∞, t = 0, in closed analytic
form. Whether the self-consistent potential V (z) or even the
spectrum and eigenfunctions of the corresponding Schrödinger
equation can also be obtained in analytical closed form for
finite L and away from Tc is not at all clear, if not unlikely. We
therefore attack these problems below by numerical means.

The remainder of the paper is organized as follows. In the
next section, we introduce the continuum φ4 model on a slab
whose large-scale behavior we are going to study. We begin
with general considerations concerning the corrections to
scaling that can be expected on general grounds for the critical
Casimir force in d = 3 dimensions. Since the correction-to-
scaling exponent ω of the Wegner bulk corrections takes the
exact n = ∞ value ε ≡ 4 − d, it becomes ω = 1 at d = 3.
However, in systems bounded by (d−1)-dimensional surface
planes one expects quite generally irrelevant surface scaling
fields that scale as a length [22,56,57]. Since these two types
of irrelevant scaling fields become degenerate at d = 3, log-
arithmic anomalies occur in surface and finite-size quantities
such as the Casimir force, as will be explained in Sec. III.

For our subsequent numerical analysis of the self-consistent
Schrödinger equation that the exact n → ∞ solution involves,
a discretization of our model is necessary. We use two
distinct discretization schemes: In the first (Sec. IV), we
merely discretize along the z direction, leaving continuous the
coordinates along the other (“parallel”) directions, and using
dimensional regularization to regulate the ultraviolet singu-
larities (UV) of the required parallel momentum integrations.
We then show how the Schrödinger equation involving the
discretized version of the operator −∂2

z can be efficiently
solved at Tc. The convergence of the solution depends
significantly on the value of the φ4 interaction constant g.
By taking an appropriate g → ∞ limit, we manage to obtain
simplified equations, improve the speed of convergence, and
suppress logarithmic corrections. Subsequently, the analysis
is extended to temperatures T �= Tc. Precise results for the
Casimir amplitude and the scaling functions of the excess
free energy and the Casimir force are derived for the case of
asymptotic Dirichlet boundary conditions.

The use of partial discretization in conjunction with dimen-
sional regularization means that not all corrections to scaling
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due to a finite lattice constant are incorporated. This prompted
us to check and corroborate our findings by a separate careful
study of a fully discretized model. The corresponding lattice
model and its analysis is described in Sec. V. Taking again an
appropriate g → ∞ (Tc → ∞) limit, we are able to make
contact with the simplified equations of Sec. IV in which
corrections to scaling are suppressed.

Logarithmic anomalies manifest themselves also in the
low-temperature behavior. They are produced by Goldstone-
mode excitations on length scales smaller than the Josephson
correlation length. To gain information about their effects on
the behavior of the Casimir force scaling function ϑ(x) in
the limit x → −∞, we use the fact that our O(n) φ4 film
model with free boundary conditions can be mapped at low
temperatures onto a nonlinear sigma model. This mapping is
expounded in Appendix B and exploited in Appendix C to
determine the asymptotic form of ϑ(x) as x → −∞, which
turns out to involve logarithmic anomalies. Our main findings
are stated at the end of Sec. IV. A more detailed analytical
investigation of the low-temperature asymptotics of the scaling
functions is reserved for a subsequent paper [58].

In Sec. VI, we gather the available knowledge about exact
properties that is relevant for our subsequent numerical work.
Section VII then follows with a detailed account of our
methods used to determine the numerical solutions of the
self-consistent equations for both the partially discretized and
the lattice model and a presentation of their results. Our
high-precision data for the lattice model turn out to agree
to all significant digits with those for the partially discretized
one. Section IX contains a brief summary of our results and
our conclusions. In addition to the two Appendices B and C
already mentioned, there is a third one (Appendix A) to which
some technical details have been relegated.

II. CONTINUUM MODEL AND
LARGE-COMPONENT LIMIT

A. Continuum model

A standard continuum model for studying critical behavior
of a d-dimensional strip V = Rd−1 × [0,L] bounded by
two free surfaces at z = 0 and z = L in the absence of
symmetry-breaking fields is defined by the O(n)-symmetrical
Hamiltonian

H =
∫

V

ddx
[1

2
(∇φ)2 + τ̊

2
φ2 + g

4!n
φ4
]

+
2∑

j=1

∫
Bj

dd−1y
c̊j

2
φ2. (2.1)

Here φ = (φa,a = 1, . . . ,n) is an n-component order-
parameter field, and the usual short hand (∇φ)2 =∑n

a=1(∇φa)2 is used. We write the position vector as x =
( y,z), decomposing it into a (d−1)-dimensional coordinate
y parallel to the surface planes B1 = {( y,0) | y ∈ Rd−1} and
B2 = {( y,L) | y ∈ Rd−1} and a one-dimensional coordinate z

perpendicular to them. Since we wish to study this model in
the limit n → ∞, we normalized the φ4 interaction constant
such that the limit can be taken at fixed g.

Let

Z =
∫

D[φ] e−H[φ] (2.2)

be the partition function of this model. We wish to determine
the reduced free energy per base area A = ∫

Rd−1 dd−1y of the
slab and number of components,

fL = − lim
n→∞

lnZ
nA

. (2.3)

For later use, let us also introduce the correspondingly defined
reduced bulk free energy density

fb = lim
L→∞

fL/L (2.4)

and the reduced excess free energy density

fex(L) ≡ fL − Lfb, (2.5)

whose limiting value

fex(∞) ≡ lim
L→∞

fex(L) = fs = fs,1 + fs,2 (2.6)

yields the sum fs of the surface free energy densities fs,1 and
fs,2 of the two semi-infinite systems with the boundary planes
B1 and B2, respectively. We will refer to the difference

fres(L) = fex(L) − fs (2.7)

as residual free energy.
In the scaling regime (small |T/Tc − 1|, large L), this

quantity is expected to have a scaling form analogous to
Eq. (1.1), namely (see, e.g., [20])

fres(T ,L) � L−(d−1) �(x) , (2.8)

from which the Casimir force

βFC = − ∂

∂L
fres(L) = − ∂

∂L
fex(L) (2.9)

can be computed in a straightforward fashion to conclude that

ϑ(x) = (d − 1) �(x) − x

ν
�′(x), (2.10)

while the Casimir amplitude �C is defined as

�C ≡ �(0). (2.11)

The relevant large-n equation from which the above quan-
tities are to be computed can be derived by standard methods
(see, e.g., [40,59] and Appendix B of [55]). Introducing an
auxiliary field ψ(x), we can make a Hubbard-Stratonovich
transformation

e− g

4!n φ4 =
√

3n

2πg

∫ ∞

−∞
dψ e

1
2 φ2 iψ− 3n

2g
ψ2

(2.12)

to obtain

Z = C

∫
D[φ]

∫
D[ψ] e

− 1
2

∫
ddx[φ(−∇2+τ̊+iψ)φ+ 3n

g
ψ2]

,

(2.13)

where C is a constant (depending on g/n). To arrive at the
derivative term of the action in Eq. (2.13) we integrated
by parts. The boundary terms produced by this operation
cancel those resulting from the surface integrals

∫
Bj

of the
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Hamiltonian (2.1) provided the Robin boundary conditions
(cf., for example, [22,36,37]),

(∂z − c̊1)φ( y,0) = 0,
(2.14)

(∂z + c̊2)φ( y,L) = 0,

hold. The Laplacian must be interpreted accordingly; with
these boundary conditions imposed, it is self-adjoint.

B. Large-n limit

The large-n behavior of the functional integral (2.13)
follows via a saddle-point integration. Since translation in-
variance is broken along the z direction, we must look for a
z-dependent extremum ψ ≡ ψ(z). It is convenient to express
this as

iψ(z) = V (z) − τ̊ (2.15)

in terms of a potential V (z). Let us restrict ourselves to the
case of disordered phases [with unbroken O(n) symmetry].
Then we can integrate out the order-parameter field φ in a
straightforward fashion. Upon taking a Fourier transform with
respect to the y coordinate, we arrive at

fL = 1

2

∫ (d−1)

p
tr
[

ln
(

p2 − ∂2
z + V

)]

− 3

2g

∫ L

0
dz [τ̊ − V (z)]2 + f

(0)
L , (2.16)

where f
(0)
L is a trivial background term which we shall drop

henceforth since it does not affect the universal quantities
we are concerned with. Here, the Dirac notation tr(. . . ) =∫ L

0 dz〈z| . . . |z〉 and the short hand∫ (d−1)

p
≡
∫ ∞

−∞

dd−1p

(2π )d−1
(2.17)

are used. Just as the Laplacian, the operator −∂2
z is subject to

the boundary conditions (2.14).
The stationarity of fL at V (z) implies the condition

δfL

δV (z)
= 1

2

∫ (d−1)

p
〈z|[ p2 − ∂2

z + V
]−1|z〉

+ 3

g
[τ̊ − V (z)] = 0. (2.18)

This is a nontrivial equation for V (z), which can be cast in a
more convenient form by introducing a complete orthonormal
set of eigenfunctions {ϕν(z) = 〈z|ϕν〉} satisfying[−∂2

z + V (z)
]
ϕν(z) = ενϕν(z) (2.19)

along with the boundary conditions (2.14). Using these
eigenfunctions, we can solve Eq. (2.18) for τ̊ − V (z) to obtain

τ̊ − V (z) = −g

6

∫ (d−1)

p

∑
ν

|ϕν(z)|2
p2 + εν

. (2.20)

Equation (2.20) for the potential and the Euclidean
Schrödinger equation (2.19), together with the boundary
conditions (2.14), form a set of equations that must be solved
self-consistently for V (z) and the eigenfunctions ϕν(z).

C. Remarks

Nonclassical bulk critical behavior is known to occur for
dimensions d between the upper and lower bulk critical
dimensions, i.e., for 2 < d < 4. Our primary concern in this
paper is to determine solutions to the above equations for
d = 3. Let us nevertheless temporarily consider the more
general case 2 < d < 4. Several remarks about the above
equations (2.16), (2.19), and (2.20) are necessary.

The first concerns the UV behavior of the required momen-
tum integrals. The integrals

∫ (d−1)
p of individual summands

labeled by ν in Eq. (2.20) are not guaranteed to be UV
convergent when d � 3. If we regularize them by restricting
the integration to | p| � �, power counting tells us that they
vary as �d−3. We must also take into account that the mode
summation

∑
ν in the limit L → ∞ involves an integration

over a set of one-dimensional wave vectors 0 � k < ∞. Hence
a leading UV singularity ∼ �d−2 is to be expected. We can
get rid of the UV divergence in Eq. (2.20) by subtracting from
this equation its bulk analog at the bulk critical point Tc. To
understand this, it will be helpful to see how information about
the bulk case can be recovered from the above self-consistent
equations. Taking the limit L → ∞ gives us a semi-finite
system. Let us denote the potential V (z) ≡ V (z|L) for this case
as V∞(z) ≡ V (z|∞). As z → ∞, this potential must approach
the bulk value, which is nothing but the inverse rb of the bulk
susceptibility χb:

lim
z→∞ V∞(z) = V∞(∞) = rb. (2.21)

The bulk analogs of the eigenvalues εν are continuous
functions εb(k) of the wavenumber k conjugate to z. From
Eq. (2.21) and the large-z limit of Eq. (2.19) we see that they
are given by

εb(k) = rb + k2, k ∈ (0,∞), (2.22)

for our continuum model (2.1).
It follows from these results in conjunction with Eq. (2.20)

that the bulk critical point is located at

τ̊c = −g

6

∫ (d−1)

p

∫
k>0

dk

π

1

p2 + εb,c(k)
, (2.23)

where εb,c(k) means the critical (rb = 0) analog of εb(k). Our
reason for writing εb,c(k) rather than k2 is to prepare for our
analysis below that uses a discretization along the z direction
in conjunction with dimensional regularization of the p
integrations. For simplicity, we take both the nearest-neighbor
(NN) bond and the lattice constant along the z direction to be
unity. Then Eq. (2.23) remains valid in the given form except
that the corresponding linear-chain dispersion relation

εlc
b,c(k) = 4 sin2(k/2), 0 � k � π, (2.24)

must be substituted for εb,c(k) and the k integration restricted
to the interval (0,π ).

Upon setting

τ̊ = τ̊c + τ, (2.25)

we can now subtract Eq. (2.23) from Eq. (2.20) to obtain

τ − V (z) = −g

6
IL(z) (2.26a)
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with

IL(z) =
∫ (d−1)

p

[∑
ν

|ϕν(z)|2
p2 + εν

−
∫

k>0

dk

π

1

p2 + εb,c(k)

]
.

(2.26b)

The subtraction provided by the second term in square brackets
removes the leading UV singularity. This is evident for the bulk
case of our continuum model where IL(z) becomes

I∞(∞) ≡ Ib = −
∫ (d)

q

rb

q2(q2 + rb)
(2.27)

and UV convergent for d < 4.
The UV finiteness of I∞(z) can be explicitly verified both

for the semi-infinite case [51,52] and that of pbc [60]. We
refrain from an explicit demonstration of the UV finiteness of
IL(z) when L < ∞ for the fully continuous model (2.1) since
some sort of discretization will be needed for the numerical
analysis of the above self-consistency equations. In Sec. IV we
shall explicitly show that a discretization along the z direction
is sufficient to render the analog of the difference on the
right-hand side of Eq. (2.26b) UV finite. Thus no UV cutoff is
needed to deal with the set of self-consistent equations (2.19)
and (2.26). However, the UV behavior of contributions to fL

is worse. Therefore, appropriate subtractions are necessary to
obtain UV finite differences (see Sec. IV). In the case of the
lattice discretization used in Sec. V, the UV convergence of
quantities such as IL(z) and bulk, surface, and excess free
energies is, of course, trivially ensured because the wave
vectors q are restricted to the first Brillouin zone.

Our second remark concerns the challenge of finding exact
solutions to Eqs. (2.19) and (2.26). This is straightforward in
the bulk case because of translation invariance, but nontrivial
already for semi-infinite systems. Bray and Moore [51,52]
succeeded in determining the exact large-scale forms of
the potentials V∞,c(z) ≡ V (z|t=0,L=∞) at the bulk critical
point. For 3 < d < 4, they found two solutions, namely

V ord
∞,c(z) = (d − 3)2 − 1

4z2
(for 2 < d < 4) (2.28a)

and

V sp
∞,c(z) = (5 − d)2 − 1

4z2
(for 3 < d < 4), (2.28b)

associated with the ordinary and special surface transitions,
respectively. For 2 < d � 3, only V ord

∞,c(z) remains. No exact
solutions V∞(z) away from bulk criticality are known in
closed analytical form. Whether Bray and Moore’s results can
be generalized so as to determine the exact self-consistent
potential VL,c(z) in closed analytical form for finite L, either
just at t = 0 or even at t �= 0, is unclear to us and appears to be
an extremely difficult problem to which we have at present no
solution. We will therefore resort to numerical methods below.

Our third remark concerns the phase behavior of the
n = ∞ model. For finite L, it should behave as an effective
(d−1)-dimensional system on sufficiently long length scales.
As pointed out already in the introduction, the Mermin-Wagner
theorem [14] precludes a phase with long-range order at d = 3
when L < ∞. Likewise, no long-range ordered surface phase
can occur in the semi-infinite case when d � 3. This means

that in our analysis of the (d = 3)-dimensional case, only the
solution (2.28a) pertaining to the ordinary transition must be
considered.

III. CORRECTIONS TO SCALING

For precise numerical determinations of scaling functions
detailed knowledge of corrections to scaling is essential.
Anomalous corrections to scaling must be expected for surface
and finite-size quantities on general grounds at d = 3 when
n = ∞.

We begin by recalling the dependence of the bulk inte-
gral (2.27) on rb when the momentum integration is cut off by
means of a �-dependent cutoff function. This is analyzed for
a general class of cutoff functions in Appendix A of [40]. The
result is that Ib behaves as

Ib(rb) = �d−2 Ib(x2 = rb/�
2)

= �d−2[−Ad xd−2 + wd x2 + O(x4,xd )], (3.1)

where

Ad = −(4π )−d/2 �(1 − d/2) (3.2)

is a universal coefficient (independent of the chosen regu-
larization). By contrast, wd is nonuniversal (regularization
dependent). It can have either sign for given d ∈ (2,4), yet
has a pole term at d = 4 with the same residue as Ad :

w4−ε =
ε→0

1

8π2ε
+ O(ε0) = A4−ε + O(ε0). (3.3)

As examples, we give the values of w3 for the following
three distinct kinds of regularizations:

(a) a sharp cutoff regularization; this means that the
integration

∫ (d)
q in Eq. (2.27) is restricted to the d ball |q| � �;

(b) the mentioned discretization of the z coordinate,
combined with dimensional regularization of the parallel
momentum integrations

∫ (d−1)
p ;

(c) introduction of a simple cubic lattice (lattice constant
a = 1, NN bond = 1).

In case (c), the analog of Eq. (2.27) can be expressed as a
difference

Ib(rb) = W3(rb) − W3(0) (3.4)

of standard Watson integrals defined by [61]

Wd (λ) ≡
∫ π

0

dq1

π
· · ·
∫ π

0

dqd

π

1

λ + 4
∑d

i=1 sin2
(

qi

2

) . (3.5)

These regularizations (a)–(c) yield the values

w3 =
⎧⎨
⎩

w
(a)
3 = (2π2)−1,

w
(b)
3 = 0,

w
(c)
3 = −0.012164158583 . . . .

(3.6)

The calculation of w
(a)
3 is elementary, w

(b)
3 follows by dimen-

sional arguments, and w
(c)
3 may be obtained in exact analytical

form from the results for Watson integrals given in [62]. They
yield

w
(c)
3 = 1

64π2W3(0)
− 7W3(0)

96
(3.7)
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with [61]

W3(0) =
√

3 − 1

192π3

[
�

(
1

24

)
�

(
11

24

)]2

= 0.252731009858663 . . . . (3.8)

These results exemplify the known fact that the coefficient
wd can have either sign or vanish. Since an adequate discussion
of the role of wd and the issue of its sign can be found in [40]
(p. 87), we can be brief. The important point is that whenever
wd > 0, the value g∗ = 6�ε/wd of g may be interpreted as
the location of an infrared-stable fixed point if 2 < d < 4. It
will be sufficient for our purposes to verify the consistency
of this statement with the corrections to scaling the large-
n solution yields for the bulk susceptibility. By combining
Eqs. (2.21), (2.26a), (2.27), and (3.1), we recover a familiar
result for the bulk equation of state, namely

τ/rb = 1 − g�−ε

6/wd

+ g

6
Ad r

−ε/2
b + O

(
r

1−ε/2
b /�2

)
. (3.9)

Its solution for small τ and rb gives

τ � gAd

6
r

1−ε/2
b

[
1 + 6

gAd

(
1 − g�−ε

6/wd

)
r

ε/2
b

]
(3.10)

and enables us to read off the standard n = ∞ results

γ = 2ν = 2

d − 2
, ω = 4 − d, (3.11)

for the bulk critical indices γ and ν and the correction-to-
scaling exponent ω, respectively.

If wd > 0 so that g∗ > 0, the corrections to scaling ∼ r
ε/2
b

in Eq. (3.10) can be eliminated by setting g = g∗, a trick
used also in Bray and Moore’s large-n analysis of the semi-
infinite system at t = 0 [51,52]. However, when wd < 0, this
is not possible since g must be positive. To understand the
limiting case wd = 0, it is helpful to consider a sequence of
regularizations yielding positive values w

(j )
d , j = 1,2, . . . ,∞,

with limj→∞ w
(j )
d = 0. For any finite j , there is an infrared-

stable fixed point whose location g∗
j moves to g∗ = ∞ as j →

∞. As can be seen from Eq. (3.10), the corrections to scaling
can still be suppressed by setting g = g∗ (= ∞) provided
an appropriately scaled temperature variable t = const τ/g is
introduced. This is the strategy we will employ in our analysis
in Sec. IV.

We next turn to the issue of corrections to scaling
in the semi-infinite and film cases L = ∞ and L < ∞,
respectively. Since we will mainly be concerned with the
(d = 3)-dimensional situation, we can restrict ourselves to the
ordinary transitions for which Dirichlet boundary conditions
hold asymptotically on large scales [22,57]. It is well known
that irrelevant surface scaling fields λ1 and λ2 associated with
the boundaries B1 and B2 of semi-infinite systems exist which
scale exactly as a length (a proof is given in Appendix C of
[56]). Physically, they correspond to so-called extrapolation
lengths which indicate the distance from the boundaries
where the linear extrapolation of φ vanishes [22,63,64]. An
alternative way of understanding their presence is to note
that the component Tzz of the stress-energy tensor appears
in the boundary operator expansion of the order parameter
about Bj [57,65]. Under RG transformations with a change

μ → μ� of the momentum scale this operator scales as
��[Tzz] with its engineering dimension �[Tzz] = d. Since the
RG-eigenexponent yλ of the scaling fields λj and �[Tzz] must
add up to the surface dimension d − 1, we have yλ = −1 and
hence ωλ = −yλ = 1 for the associated correction-to-scaling
exponent ωλ.

The result means that the n = ∞ correction-to-scaling
exponents ω and ωλ become degenerate at d = 3. Such
degeneracies are known to imply logarithmic anomalies. To
show this, we can generalize Wegner’s reasoning in Sec. V E
of [66] in an appropriate fashion. Ignoring the above mentioned
sign problem of wd , we assume that a regularization has
been chosen such that an infrared-stable fixed point with
g∗ > 0 exists. Let δg = μ−ε(g − g∗) be the dimensionless
linear scaling field [67] associated with deviations of the
dimensionful coupling constant g from its fixed-point value
g∗, and let λ̌j be the dimensionless linear surface scaling
fields λ̌j = λj/μ. Just as any other bulk scaling field, δg can be
coupled to other linear bulk scaling fields in the flow equations,
but not to any linear surface scaling fields. By contrast, the
surface scaling field λ̌j can be coupled to other linear bulk
scaling fields as well as to surface scaling fields associated
with the same surface plane Bj . Dropping all nonlinearities
and ignoring couplings to other scaling fields, we arrive at
phenomenological flow equations of the form

�
d

d�
δg(�) = ω δg(�) + · · · (3.12)

and

�
d

d�
λ̌j (�) = λ̌j (�) + aj,g δg(�) + · · · (3.13)

with the initial conditions δg(1) = δg and λ̌j (1) = μλj .
Solving these equations gives the limiting large length-scale
(� → 0) behaviors

δg(�) � �ωδg (3.14)

and

λj (�) � �

{
λ̌j + aj,g δg �ω−1−1

ω−1 for ω �= 1,

λ̌j + aj,g δg ln � for ω = 1,
(3.15)

respectively. Thickness-dependent finite-size quantities such
as the excess free energy (2.5) at bulk criticality are expected
to have corrections to scaling linear in λ̌(1/μL). According
to Eq. (3.15), they become anomalous at d = 3, involving
L−1 ln(μL) contributions.

This concludes the general part of our discussion of correc-
tions to scaling. We next turn to the numerical determination
of the large-n solutions.

IV. PARTIALLY DISCRETIZED MODEL

In order to determine the solutions of the large-n equa-
tions (2.19) and (2.20) as well as the excess free energy
density (2.5) by numerical means, a discretization of the
model (2.1) is needed. Here we describe our computations
based on the first of our discretization schemes where only the z

coordinate is discretized and the p integrals are dimensionally
regularized. To distinguish the so-defined discretized version
of our model (2.1) from the one obtained by means of a lattice
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discretization, we shall refer to the former and latter as models
A and B, respectively. The latter (model B) will be dealt with
in Sec. V.

We discretize z in units of a lattice constant a. Thus
model A consists of N layers located at z ≡ (l − 1

2 )a, with
l = 1, . . . ,N ≡ L/a. We now need the discrete analog of
the Schrödinger operator −∂2

z + V (z) in Eq. (2.19) subject
to the boundary conditions (2.14). To determine it, let us
temporarily consider a lattice model of n-vector spins sx

interacting via ferromagnetic bonds which we assume to take
the values K1, K2, and K (in units of kBT ) for all NN bonds
in the layers l = 1,N , and elsewhere, respectively, where
x = ( y,z) are the sites on a simple cubic lattice ⊂ (aZ)d .
Upon introducing Lagrange multipliers λz for the constraints∑

y s2
y,z/

∑
y 1 = n, we arrive at the Hamiltonian

Hlat = 1

2

∑
x,x′

(2λz δx,x′ − Kx,x′ ) sx · sx′ , (4.1)

where Kx,x′ represents the NN bonds and vanishes otherwise.
We divide the part of Eq. (4.1) depending on the interaction
constants K , K1, and K2 into contributions involving (sx −
sx′)2 and a site-diagonal remainder. The latter involves the
sums of all bonds connected to site x. For the chosen NN
bonds of our model, these sums yield identical results for
all sites belonging to the interior layers l = 2, . . . ,N − 1, but
different ones for the boundary layers l = 1 and l = N . In
terms of the dimensionless enhancement parameter (cf. [64]
or Eq. (2.18) in [22])

c̊j a = 1 − 2(d − 1)(Kj/K − 1), (4.2)

the result becomes∑
x′

Kx,x′/K = 2d − a(δl,1 c̊1 + δl,N c̊2). (4.3)

The contributions involving (s y,z − s y,z′ )2 in adjacent layers l

and l′ yield the quadratic form K
∑N

l=1(s y,z − s y,z′ )2.
Upon introducing φz( y) dd−1(y/a) = K1/2s y,z, we can

now go over to a continuum description with respect to y.
The discrete analog of the Schrödinger operator in Eq. (2.19)
becomes the N × N matrix

H = −D2 + V + (c̊1a − 1)|1〉〈1| + (c̊2a − 1)|N〉〈N |, (4.4)

with the diagonal potential matrix V = diag(V1, . . . ,VN ) and
the tridiagonal matrix

D2 =

⎛
⎜⎜⎜⎜⎝

−2 1

1
. . .

. . .
. . .

. . . 1
1 −2

⎞
⎟⎟⎟⎟⎠. (4.5)

To confirm the consistency with the continuum equa-
tions (2.19) and the boundary conditions (2.14), let us compute
the action of H on a state vector with components 〈l|ϕ〉 = ϕl .
We find

〈l|H|ϕ〉 =
⎧⎨
⎩

(−d+ + ac̊1 + V1)ϕ1, l = 1,

(d− + ac̊2 + VN )ϕN, l = N,

(−d2
c + Vl)ϕl, 1 < l < N,

(4.6)

where d+, d−, and d2
c denote the forward, backward, and

second-order central difference operator, respectively, which
act as

d±ϕl = ±(ϕl±1 − ϕl), d2
c ϕl = ϕl+1 − 2ϕl + ϕl−1. (4.7)

From the exact results (2.28) we can infer that Vl should
vary ∝ (z/a)−2 on scales a � z � L,a|τa2|−ν . Hence we
expect that a−2 Vl approaches a smooth function V (z) in the
continuum limit a → 0, as our results below will confirm.
With this assumption, the limit a → 0 of the last line of
Eq. (4.6) yields indeed the Schrödinger equation (2.19). The
a → 0 limits of the first and last lines give us the boundary
conditions. If we assume that V1/a → v1 and VN/a → v2

with v1 = v2 = 0, we recover the boundary conditions (2.14)
of the continuum theory. Nonvanishing values v1 and v2 could
be absorbed by a redefinition of the enhancement variables c̊1

and c̊2.
We now return to the (d = 3)-dimensional case. Owing to

the absence of a special transition at T > 0, the choice of the
enhancement variables c̊j should not be crucial. For simplicity,
we choose

c̊1a = c̊2a = 1 (4.8)

so that the matrix operator (4.4) reduces to H = −D2 + V.
To understand this choice, recall that 1/c̊j has the meaning of
an extrapolation length: the linear extrapolation of a function
ϕ(z) which satisfies the boundary condition ∂z ln ϕ|zj

= c̊j at
z = a/2 and z = L − a/2 vanishes at z = a/2 − 1/c̊1 and
z = L − a/2 + 1/c̊2, respectively. For the choice (4.8), this
vanishing occurs at the fictitious boundary layers z = −a/2
and z = L + a/2, respectively. Using a−2D2 as a discrete
analog of ∂2

z therefore provides a lattice realization of Dirichlet
boundary conditions at the layers z − a/2 = 0 and z + a/2 =
L, a fact which is well known and exploited in the theory of
Feynman path integrals (see, e.g., [68]).

Note that the thickness of our discretized system is L −
a, L, or L + a depending on whether we take the first and
N th layer, the midplanes z = a/2 and z = L − a/2, or the
fictitious boundary layers l = 0 and l = N + 1 to bound it. In
our numerical analysis in Sec. VII we will account for such
potential microscopic thickness changes L → L ± a by the
introduction of a properly chosen effective thickness Leff . This
will enable us to absorb a substantial part of the corrections to
scaling mentioned above.

In the following, we will again set the lattice constant a to
unity, unless otherwise explicitly indicated, and hence identify
the thickness L with the number of layers N . Furthermore, we
shift the system by a/2 along the z direction, z → z + a/2, so
that l = z.

We proceed by computing the integral
∫ (d−1)

p in Eq. (2.26),
using dimensional regularization. The result

τ − Vz = g

6
Ad−1

L∑
ν=1

|ϕν,z|2
[
ε

d−3
2

ν − 2d �
(

d−2
2

)
8
√

π�
(

d−1
2

)
]

(4.9)

is UV finite at d = 3 and simplifies to

τ − Vz = g

24π

L∑
ν=1

|ϕν,z|2 ln εν = g

24π
〈z| ln H|z〉, (4.10)
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where εν are the eigenvalues and ϕν,z ≡ 〈z|ϕν〉 the components
of the associated orthonormalized eigenvectors |ϕν〉 of H.

The calculation of the excess free energy is somewhat
lengthier but straightforward (see Appendix A). Both the bulk
and finite-L free energy densities fb and fL have poles at d = 3
with residua independent of and linear in τ . To eliminate these
UV singularities, we subtract from fb and fL/L the Taylor
expansion of fb to first order in τ ,

S(τ,g) = fb(0,g) + τ (∂τfb)(0,g), (4.11)

defining the renormalized free energy densities

f ren
b (τ,g) = fb(τ,g) − S(τ,g) (4.12)

and

f ren
L (τ,g,L) = fL(τ,g,L) − LS(τ,g). (4.13)

The subtractions cancel in fex. Thus

fex(τ,g,L) ≡ f ren
ex (τ,g,L) = f ren

L (τ,g) − Lf ren
b (τ,g). (4.14)

The calculation described in Appendix A yields1

f ren
L (τ,g) = 1

8π
tr[H(1 − ln H)] − 3

2g

L∑
z=1

(τ − Vz)
2 (4.15)

and

f ren
b (τ,g) = 1

8π

√
rb(4 + rb) − 2 + rb

4π
arsinh

(√
rb/2

)
− 3

2g
(τ − rb)2, (4.16)

where rb, the inverse bulk susceptibility, is given by

rb =
{
τ − g

12π
arsinh

(√
rb/2

)
for τ > 0,

0 for τ � 0.
(4.17)

As we have seen in Sec. III, the partially discretized and
dimensionally regularized model considered here (model A)
corresponds to the limiting case of a fixed point at g∗ = ∞.
This suggests considering the limit g → ∞ to gain higher
precision in the numerical calculation of scaling functions.
Since the potential V (z) must reduce to Bray and Moore’s
exact scaling result V ord

∞,c(z) given in Eq. (2.28a) on scales
1 � z � L,|τ |−ν , it is clear that V (z) has a finite and nonzero
g → ∞ limit. Directly at the bulk critical point τ = 0, the
renormalized free energy density f ren

L therefore simplifies to
the first term of Eq. (4.15) at g = g∗.

In order to study the temperature dependence of fex and
related quantities, we must make an appropriate g-dependent
rescaling of the linear scaling field τ so that it does not vanish
at g∗. A convenient way of doing this is to absorb ξ+(g) =
g/24π , the nonuniversal amplitude of the bulk correlation
length

ξ
(+)
b = r

−1/2
b � ξ+(g) τ−ν for T > Tc, (4.18)

in the temperature scaling field by introducing

t = 24πτ/g. (4.19)

1In the following, A + b ≡ A + b1.

In order that f ren
L and f ren

b have finite g → ∞ limits, we
subtract the divergent parts ∝ τ 2 (which cancel in fex) and
define

f ren
L (t) ≡ lim

g→∞

[
f ren

L (τ,g) + L
3τ 2

2g

]
τ=gt/24π

(4.20a)

and the associated bulk quantity

f ren
b (t) ≡ lim

g→∞

[
f ren

b (τ,g) + 3τ 2

2g

]
τ=gt/24π

. (4.20b)

We can now safely take the limit g → ∞ in the above
equations and explicitly solve Eq. (4.17) at g = ∞ for rb(t).
The resulting simplified g = ∞ analogs of Eqs. (4.14)–(4.17)
become

t = 〈z| ln H|z〉, (4.21a)

fex(t,L) ≡ f ren
ex (t,L) = f ren

L (t) − Lf ren
b (t) (4.21b)

with

f ren
L (t) = 1

8π
tr [H (1 + t − ln H)] − tL

4π
, (4.21c)

f ren
b (t) = 1

4π

{
sinh(t) − t for t > 0,

0 for t � 0,
(4.21d)

and

rb =
{

4 sinh2(t/2) for t > 0,

0 for t � 0.
(4.21e)

In deriving Eqs. (4.21c) and (4.21d) we used the identity tr[V −
H] = tr[D2] = −2L implied by Eqs. (4.5) and (4.21a).

We numerically determined solutions of both sets of
equations (4.14)–(4.17) and (4.21). Before turning in Sec. VII
to an exposition of the results, let us first explain how the
analysis gets modified if the lattice discretization of model B
is used instead.

V. LATTICE MODEL

The discretized version of the soft-spin model (2.1), which
we call model B, is defined through the Hamiltonian

Hl =
∑

x

[
1

2

d∑
i=1

(φx+ei
− φx)2 + τ̊

2
φ2

x + g

4!n
φ4

x

]
. (5.1)

Here x = ( y,z) ∈ Zd with 1 � xi � Ni , i = 1, . . . ,d labels
the sites of a finite simple cubic lattice whose lattice constant
we set to a = 1. In accordance with our previous conventions
we write z = xd and Nd = L. Each φx is an n-vector spin,
and ei denotes the unit vector along the xi direction. Periodic
boundary conditions are imposed along all xi = yi directions:

φx+Ni ei
= φx for i = 1, . . . ,d − 1. (5.2)

For simplicity, we do not consider here the possibility that the
coefficients of the three interaction terms of the Hamiltonian
take different values in the layers z = 1 and z = L. Accord-
ingly, we impose Dirichlet boundary conditions in the adjacent
layers z = 0 and z = L + 1, requiring

φ y,z = 0 for z = 0 and z = L + 1. (5.3)
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Proceeding as in Secs. II A and II B yields obvious analogs
of Eqs. (2.13) and (2.15), which involve a lattice field φx and
a site-dependent, yet y-independent extremum

i ψ y,z ≡ i ψ0,z = Vz − τ̊ . (5.4)

The reduced free energy per unit cross-sectional hyper-area
and number of components in the limit n → ∞ becomes

fL = 1

2A

∑
p

tr ln [H + εd−1( p)] − 3

2g
tr[(τ̊ − V)2] (5.5)

with A = N1 × · · · × Nd−1 and

εd−1( p) = 4
d−1∑
i=1

sin2
(pi

2

)
, (5.6)

where the components pi of the (d−1)-dimensional wave
vector p are restricted to the discrete values pi = 2πνi/Ni ,
νi = 0,1, . . . ,Ni − 1. Further, H = −D2 + V is the previ-
ously used matrix operator defined by Eqs. (4.4) and (4.5)
with K1 = K2 = K . Note that fL now depends additionally
on all finite-size parameters Ni , i = 1, . . . ,d − 1.

The self-consistency equation for Vz implied by the station-
arity condition ∂fL[V]/∂Vz = 0 for the functional fL[V] now
takes the form

τ̊ − Vz = − g

6A

∑
p

L∑
ν=1

ϕν,zϕ
∗
ν,z

εν + εd−1( p)
. (5.7)

Variations V → V + δV with δV = diag(δV1, . . . ,δVL) about
the solution V of this equation imply the linear change

δεν =
L∑

z=1

ϕν,zϕ
∗
ν,z δVz (5.8)

of the eigenvalues. The Hessian form describing the deviation
of fL[V] to second order in δV can be computed in a
straightforward fashion. One obtains

δ2fL[V; δV] = − 1

2A

∑
p

tr[H + εd−1( p)]−1δV]2

− 3

g
tr[(δV)2]. (5.9)

Since it is negative definite, the solution V of Eq. (5.7)
corresponds to a maximum.

We now take the thermodynamic limit N1, . . . ,Nd−1 →
∞. Equation (5.7) becomes

τ̊c + τ − Vz = −g

6

L∑
ν=1

Wd−1(εν)|ϕν,z|2

= −g

6
〈z|Wd−1(H)|z〉, (5.10)

where Wd−1(λ) denotes a Watson integral defined in Eq. (3.5).
From the bulk limit L → ∞ of the foregoing equation, or
equivalently from Eq. (2.23), we see that the bulk critical value
τ̊c is given by

τ̊c = −g

6
Wd (0). (5.11)

The value of the integral on the right-hand side required for
our study of the (d = 3)-dimensional case is given in Eq. (3.8).

Note also that the coefficient of the
√

λ term of the known
expansion [69]

W3(λ) − W3(0) = − 1

4π

√
λ + O(λ) (5.12)

is consistent with Eq. (3.1) since it is −A3. Upon substituting
this result into the bulk equation

τ − rb = −g

6
[Wd (rb) − Wd (0)], τ � 0, (5.13)

with d = 3, one can immediately convince oneself that the
results (4.18) for the asymptotic behaviors of ξb and rb as
τ → 0+ carry over to model B.

The free energy fL can be conveniently written in terms of
integrals of Watson functions, namely

Ud (λ) ≡
∫ π

0

dq1

π
· · ·
∫ π

0

dqd

π
ln

[
λ + 4

d∑
i=1

sin2
(qi

2

)]
,

(5.14)

which satisfy

U ′
d (λ) = Wd (λ). (5.15)

One finds

fL(τ,g) = 1

2

L∑
ν=1

Ud−1(εν) − 3

2g

L∑
z=1

(τ̊ − Vz)
2

= 1

2
tr[Ud−1(H)] − 3

2g
tr[(τ̊c + τ − V)2] (5.16)

and

fb(τ,g) = 1

2
Ud [rb(τ )] − 3

2g
[τ̊c + τ − rb(τ )]2, (5.17)

where rb(τ ) is the solution to Eq. (5.13) or zero, depending on
whether τ > 0 or τ � 0.

The function U2(λ), which is needed for our analysis of the
(d = 3)-dimensional case, can be computed from

W2(λ) = 2

π (λ + 4)
K

(
4

λ + 4

)
. (5.18)

Here

K(λ) =
∫ 1

0

dx√
(1 − x2)(1 − λ2 x2)

= π

2
2F1

(
1

2
,
1

2
; 1; λ2

)
(5.19)

is a complete elliptic integral of the first kind, where pFq

denotes the generalized hypergeometric function. Integration
of this equation leads to [cf. Eq. (48) of [46] and [69]]

U2(λ) = −2

(λ + 4)2 4F3

[
1,1,

3

2
,
3

2
; 2,2,2;

(
4

λ + 4

)2]
+ ln(λ + 4). (5.20)

To harmonize with our analysis of model A, let us introduce
renormalized free energy densities f ren

b and f ren
L by analogy

with Eqs. (4.12) and (4.13), even though this would not
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be necessary since both quantities are now UV finite. The
subtraction function becomes

S(τ,g) = 1

2
Ud (0) − 3

2g
τ̊ 2

c − 3τ

g
τ̊c. (5.21)

A straightforward calculation yields the analogs of Eqs. (4.15)
and (4.16), namely [62,70]

f ren
L (τ,g) = 1

2
tr[Ud−1(H)] − L

2
Ud (0)

− 3

2g
tr[(V − τ )2] + 3

g
τ̊c tr[V] (5.22)

and

f ren
b (τ,g) = 1

2
[Ud (rb(τ )) − Ud (0) − rb(τ ) U ′

d (0)]

− 3

2g
[τ − rb(τ )]2. (5.23)

According to Eq. (3.6), the coefficient w3 takes the negative
value w

(c)
3 for our lattice-discretized model B. Therefore, we

cannot set g to the special value 6/w
(c)
3 to suppress corrections

to scaling. However, we can still consider the limit g → ∞ to
look for simplifications of the above self-consistent equations,
even though we should expect more corrections to scaling to
remain than for model A at g = ∞. To this end, we define the
g = ∞ functions f ren

L (t) and f ren
b (t) as in Eq. (4.20). As an

analog of the set of equations (4.21) we obtain

− t

4π
= 〈z|Wd−1(H)|z〉 − Wd (0), (5.24a)

f ren
L (t) = 1

2
tr[Ud−1(H) − Ud (0)]

+ 1

2

[
t

4π
− Wd (0)

]
tr[V], (5.24b)

f ren
b (t) = Ud (rb) − Ud (0)

2
+ rb

2

[
t

4π
− Wd (0)

]
, (5.24c)

and

− t

4π
= Wd (rb) − Wd (0) , t � 0. (5.24d)

The numerical solutions of the above equations for model
B will be discussed and compared with those for model A in
the next section.

VI. SURVEY OF SOME EXACTLY KNOWN PROPERTIES

Before we turn to these numerical results, it will be helpful
to collect our knowledge of some analytical properties of the
scaling functions �(x) and ϑ(x). In Appendix C, we use
the mapping of our models A and B in the low-temperature
limit (described in Appendix B) to gain information about the
asymptotic behaviors of the functions �(x) and ϑ(x) in the
limit x → −∞. For the (d = 3)-dimensional case, we find
that the function �(x) should behave as

�(x) �
x→−∞ −ζ (3)

16π

(
1 − 2 ln |x| + d1

x

)
. (6.1)

Our perturbative approach used in Appendix C leaves the value
of the universal number d1 undetermined; its exact analytical
determination is beyond the scope of the present paper.

The result (6.1) implies that the associated Casimir-force
scaling function

ϑ(x) = 2�(x) − x �′(x) (6.2)

varies asymptotically as

ϑ(x) �
x→−∞ −ζ (3)

8π

(
1 − 3 ln |x| + 3d1/2 − 1

x

)
. (6.3)

Some other interesting analytical results have been ob-
tained recently [71] by exploiting consequences of short-
distance expansions (SDE) and boundary-operator expansions
(BOE) [22,57,65,72,73]. To explain these results and their
consequences, it is necessary to give some background. Recall
that a scaling operator O( y,z) with scaling dimension �[O]
can be expanded for small distances from the boundary plane
z = 0 in terms of boundary scaling operators O(s)

j ( y) as

O( y,z) �
z→0

∑
j

CO,j (z)O(s)
j ( y), (6.4)

where CO,j (z) are c-number functions. If O(s)
j has scaling

dimension �
(s)
j , then CO,j (z) must scale ∼ z�

(s)
j −�[O]. The

potential V (z) corresponds to the expectation value of the
energy-density operator. Hence, the BOE can be applied to
it. There is convincing evidence that the leading boundary
operators O(s)

j contributing to the BOE of the energy-density
operator ε( y,z) = φ2 at the ordinary transition are the unity
operator 1 and the zz component Tzz of the stress-energy
tensor. The contribution from the former yields the critical
potential V ord

∞,c(z) given in Eq. (2.28a). Away from Tc, the
corresponding c-number function has temperature-dependent
corrections. Since this function is a short-distance property, it
is expected to be analytic in t . The stress tensor Tzz, on the other
hand, scales ∼ zd with its engineering dimension d, and hence
yields a leading thermal singularity ∼ tdν [57,65,74,75]. The
upshot is that the self-consistent potential V (z|t,L) for L = ∞
should behave as

V (z|t,∞)

V ord∞,c(z)
� 1 + a1(d) t (z/ξ+)1/ν + O(t2)

+ b0(d) (z/ξ+)d tdν + · · · (6.5)

on long scales, where the ellipsis represents terms ∼ O(t)tdν

and corrections due to other boundary operators.
Upon including the term ∝ a1(d) in the Ansatz for

V (z|t,∞), one can determine a1(d) from the self-consistency
equations. The result for a1(3) found in [71] is

a1(3) = − 16

π2
. (6.6)

It turns out that the coefficient a1(3) agrees up to a factor
with the amplitude of the leading thermal singularity ∼ t2 ln |t |
of the surface free energy fs. This logarithmic anomaly of fs

arises by a familiar mechanism [76] from the interference of the
regular contribution f

(s)
2 t2 with the singular one A

(s)
± |t |ν(d−1) ∼

t2+O(d−3), where the subscripts ± as usual indicate that the
critical point is approached from positive or negative values
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of t . The d-dependent amplitudes of both terms have pole
terms ∝ (d − 3)−1, which cancel to produce a finite t2 ln |t |
singularity at d = 3. Noting that the contribution ∝ a1(3) in
Eq. (6.5) appears in the integral

∫∞
0 dz . . . giving the excess

energy density ∂fs/∂τ , one sees that the above residues are
proportional to a1(3) and can determine the proportionality
constants [71]. One finds that the sum of the leading singular
contribution and the regular one have the limit

lim
d→3

[
A

(s)
± (d)|t | d−1

d−2 + f
(s)
2 (d) t2

] = t2

[
A

(s)
0,± + a1(3)

64π
ln |t |

]
.

(6.7)

Note that the amplitudes A
(s)
0,± are nonuniversal. However,

their difference

�A
(s)
0 = A

(s)
0,+ − A

(s)
0,− (6.8)

is given by the O[(d − 3)0] term of the universal ratio
A

(s)
+ (d)/A(s)

− (d) and hence universal. To determine �A
(s)
0

exactly, one must go beyond the analysis of [71]. As will
be shown elsewhere [58], this can be achieved by using
inverse-scattering-theory methods [77]. One finds

�A
(s)
0 = 1

16π

∫ ∞

0
du

coth u − u−1

u2 + (π/2)2

= 0.00944132 . . . . (6.9)

From the above results interesting properties of the scaling
functions �(x) and ϑ(x) follow as a consequence of analyticity
requirements. To see this, note that the system does not have a
phase transition for finite thickness L. Hence, the free energy
density must be regular at t = 0 when L < ∞. Thus both
the thermal singularity of the bulk contribution LfL and the
thermal singularity of the contribution 2fs to fL must get
canceled by corresponding ones contained in L−2 �(tL). This
idea can be exploited in a straightforward fashion [71] to
conclude that the function �(x) must behave as

�(x) = �C +
∑
k>0

αkx
k + x2 ln |x|

2π3

− 2x2 H (x)

(
�A

(s)
0 + x

48π

)
, (6.10)

where H (x) denotes the Heaviside step function. Substituting
this result into Eq. (2.10) with d = 3, one finds that the
second derivative ϑ ′′(0) of the associated Casimir force scaling
function ϑ(x), Eq. (6.2), takes the universal value

ϑ ′′(0) = − 1

π3
. (6.11)

The BOE used above can also be applied to V (z|0,L). It
gives

V (z|0,L)

V ord∞,c(z)
� 1 + B(d) (z/L)d . (6.12)

Here the term ∼B(d) describes the effect of the far boundary
plane z = L on V (z) near the z = 0 plane. The coefficient
B(d), called distant-wall correction amplitude, is proportional
to 〈Tzz〉t=0,L/n = (d − 1)�C [78,79]. From [78] it is known
that the ratio B(d)/�C agrees (up to known factors) with
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FIG. 1. (Color online) Effective amplitude �̃C(g,L) for differ-
ent g = 1,2,4, . . . ,512,∞. Note the strong corrections present at
small g.

the SDE coefficient BT
ε of the energy-density operator ε( y,z)

associated with Tzz. According to [71], this coefficient can be
gleaned [80] to determine the ratio B(d)/�C. The resulting
value of the distant-wall amplitude for d = 3 is

B(3) = −1024

π
�C. (6.13)

The above results (6.3), (6.11), and (6.13) will be checked
and confirmed by our numerical results below.

VII. NUMERICAL ANALYSIS

A. Model A at τ = 0

In the numerical analysis of model A we first focus on the
critical point τ = 0, where Eqs. (4.10)–(4.14) simplify to

fex(0,g,L) = 1

8π
tr[H(1 − ln H)] − 3

2g
tr[V2], (7.1a)

Vz = − g

24π
〈z| ln H |z〉. (7.1b)

We solved the self-consistency equation Eq. (7.1b) numeri-
cally for different values of g and L. From the corresponding
results for fex(0,g,L), Eq. (7.1a), we derived a first estimate
for the Casimir amplitude �C, Eq. (2.11), using

�̃C(g,L) = L2 [fex(0,g,L) − fs(0,g)] , (7.2)

where the surface contribution, Eq. (2.6), was determined
graphically for simplicity. The results are shown in Fig. 1. Ob-
viously, the convergence is very unsatisfactory for the case g =
1 (red circles). The corresponding results for L � 100 seem to
approach an incorrect value of approximately −0.0266. Only
for large L � 100 the effective Casimir amplitude approaches
the correct limit2 �̃C(1,∞) = −0.0108(1).

2Note that in [54], which only considered the case g = 1, the less
accurate result �C = −0.012(2) was obtained.
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FIG. 2. (Color online) Crossover in Vz at criticality for L = 128
and different values of g = 1,2,4, . . . ,128.

The convergence is much better for g � 1. Those curves
in Fig. 1 that pertain to the results for g = 64, . . . ,512 show a
considerably smoother approach to the limit L → ∞, and do
not pass through a minimum. The nonmonotonic or monotonic
L dependence of �̃C(g,L) when g is small or large corresponds
to a crossover in Vz. This is illustrated in Fig. 2, where we
depict the crossover scaling function V × of Vz, fulfilling

Vz � g2V ×(gz). (7.3)

The Vz curves start out for small gz with a slope of −1 and
then bend over to a slope representing the correct asymptotic
behavior Vz ∼ −1/4z2 [51]. This happens at the crossover
point z× ≈ 40/g, which is the intersection of the two dotted
asymptotes. Since the considered system is symmetric about
z = (L + 1)/2, we expect the crossover to occur at L× ∼
2z× ≈ 80/g, which is indeed the position of the minimum
of �̃C(1,L) in Fig. 1.

Calculating fex(0,g,L) for g = 32 and different L gives
the results listed in Table I. These values are analyzed with the
Ansatz

fex(0,g,L) = fs(0,g) + �C L−2 +
m∑

k=3

fk(g)L−k (7.4)

using m successive values of fex(0,g,L). In this simplified pro-
cedure we neglected logarithmic terms of the form L−k ln L.
The resulting estimates of �C for m = 6 are also given in
Table I.

We now turn to the case g → ∞, where Eqs. (4.21) simplify
to

fex(0,L) = 1

8π
tr[H(1 − ln H)], (7.5a)

0 = 〈z| ln H |z〉. (7.5b)

Analyzing fex(0,∞,L) in the same way as fex(0,32,L) above,
we found a much faster convergence of �C with increasing L,
as can been seen from the numbers reported in the last column
of Table I. This fact indicates that for g → ∞ logarithmic

FIG. 3. (Color online) Scaled potential v(ζ ), Eq. (7.9), as a
function of ζ = zeff/Leff at criticality, calculated with model A at
g = ∞ and different values of L = 24,25, . . . ,212. The dotted line is
an extrapolation to L → ∞ (see text).

corrections are absent, as predicted in Sec. III. Motivated by
this success, we generated data for a larger set of thicknesses L

(see [81]). These numerical calculations were performed with
33 digits precision, yielding about 30 significant digits in fex.
To analyze this extended set of data we define the effective
thickness

Leff = L + δL +
m∑

k=1

bkL
−k. (7.6)

The estimates of �C and δL are then determined by analyzing
fex(0,L) for different L = 1600, 1800, . . . , 3800, 4096 with
the Ansatz

fex(0,L) = fs(0) + �CL−2
eff . (7.7)

Our final results

�C = −0.01077340685024782(1), (7.8a)

δL = 0.7255032704723(3) (7.8b)

were obtained by using m = 5 and the largest thicknesses L

available. As a benchmark for the errors, the variations of the
estimates resulting from analogous analyses with m = 4 were
used. We could verify that in the limit g → ∞ no logarithmic
corrections were present, as predicted in Sec. III.

Finally, we turn to the scaled critical potential

v(ζ ) = L2 V (z) � L2
effVz, ζ = z

L
� zeff

Leff
, (7.9)

with zeff = z − 1/2 + δL/2, which is the numerically exact
solution of the continuum model, Eq. (2.26). In Fig. 3 we
present an analysis of v(ζ ), written as a sum of the half space
contribution

v0(ζ ) = − 1

4ζ 2
− 1

4(1 − ζ )2
+ 1

4
(7.10)

062123-13



H. W. DIEHL et al. PHYSICAL REVIEW E 89, 062123 (2014)

TABLE I. fex(0,g,L) and estimates of �C for g = 32 (left) and g → ∞ (right) using Eq. (7.4). Numerical results for a larger set of
thicknesses L are given in the Supplemental Material [81]. The results quoted for L → ∞ and g → ∞ were obtained by analyzing this larger
set of data and the Ansatz (7.7).

g = 32 g → ∞
L fex(0,32,L) �C fex(0,∞,L) �C

22 0.03398692308 0.0434426464161452635463
23 0.03473050738 0.0437917553127071125807
24 0.03494050671 0.0438954577901547944617
25 0.03499017981 0.0439239629614105308154
26 0.03500115237 0.0439314545835357953778
27 0.03500359692 −0.011062 0.0439333762480393760327 −0.01077336957148
28 0.03500415930 −0.010913 0.0439338629673000452260 −0.01077340534297
29 0.03500429253 −0.010842 0.0439339854485286044466 −0.01077340679713
210 0.03500432476 −0.010808 0.0439340161698739302592 −0.01077340684854
211 0.03500433267 −0.010791 0.0439340238628944026765 −0.01077340685020
212 0.0439340257877384528963 −0.01077340685025

∞ 0.03500433527(1) −0.01077(1) 0.04393402642965613777877(1) −0.01077340685024782(1)

and a power series about the center of the slab,

v(ζ ) = v0(ζ ) +
m∑

k=0

ṽ2k

(
ζ − 1

2

)2k

, (7.11a)

with coefficients

ṽ0 = −0.075075422685740932(1),

ṽ2 = 0.2358287616270474(1),

ṽ4 = 0.213346985127(1),

ṽ6 = 0.15090606(1),
(7.11b)

ṽ8 = 0.09356(1),

ṽ10 = 0.054(1),

ṽ12 = 0.03(1).

In particular, in the center of the film we found
v(1/2) = −7/4 + ṽ0 = −1.825075422685740932(1). These
coefficients were determined by first fitting the potential Vz for
fixed L using Eq. (7.11a) and then extrapolating the resulting
values to L → ∞. Remarkably, we again find the same value
of δL as given in Eq. (7.8b).

The consistency of this fit can be checked by comparing it
with the exact limiting form

v(ζ ) − v0(ζ ) =
(

1

2
+ 256�C

π

)
ζ + O(ζ 2) (7.12)

implied by Eq. (6.13). The fit complies with this predicted
asymptotic behavior within the error bars.

B. Model B at τ = 0

Next we analyzed the numerical results that we obtained
for model B at τ = 0. Again, we solved the self-consistency
equation iteratively. Following our discussion in Sec. III, we
expect that the leading bulk corrections to scaling do not vanish
for any value of g. However, since they are minimal at g = ∞,
we shall focus on this case.

Since leading bulk corrections turned out to be present,
we analyzed our data with Ansätze that contain logarithmic
corrections. For example, in the case of the excess free energy
per area, we used

fex(0,g,L) = fs(0,g) + �CL−2
eff , (7.13)

where the effective thickness of the film is given by

Leff = L + a0 ln L + δL +
m∑

k=1

(ak ln L + bk)L−k. (7.14)

Note that this choice is a bit ad hoc since for k > 0 one might
suppose that the contributions ∝ L−k with k � 0 also involve
powers (ln L)l with l > 1. However, the analysis of the data
and, in particular, the coincidence of the results for both models
and different values of g justify this choice.

We computed the excess free energy fex for L = ...,800,
900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1800, 2000,
2200, 2500, 2700, and 3000 for g = ∞ (see [81]). Analyzing
these data we found

fs = 0.04757956639699206805522(1),

�C = −0.010773406850249(2),
(7.15)

a0 = −0.123903101(1),

δL = 0.81422072(1).

The numbers were obtained via the Ansatz (7.13) with m = 3.
The error was estimated by comparing with the results obtained
for m = 2 and m = 4, and by varying the thicknesses L that
are included in the analysis. The result for �C is less precise
but fully consistent with the one for model A at g = ∞ given
in Eq. (7.8a).

Next, we analyzed the potential in the middle of the film,
obtaining

v(1/2) = −1.82507542268(1),

a0 = −0.12390312(1), (7.16)

δL = 0.901646(1).
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FIG. 4. Casimir force scaling function ϑ(x) (left) and residual free energy scaling function �(x) (right) determined from data for g → ∞
and L = 65,97,129,193,257 (model A) and L = 97,129,193,257 (model B). The dotted curves represent the asymptotic x → −∞ forms (8.6).
For further explanations, see main text. The data for the scaling functions are included in the Supplemental Material [81].

We found that the value of v(1/2) coincides with the one
obtained for model A. The value of a0 is the same as the one
obtained from the analysis of the excess free energy. The two
values of δL are similar but definitely not identical.

The analysis of our data for the minimum of the scaling
function ϑ(x) discussed below corroborate these findings. For
xmin as well as ϑ(xmin) we got values of a0 that are consistent
with those obtained for x = 0 here, while those of δL are
comparable though not identical. We conclude that the value
of a0 is the same for all quantities we considered. However, in
contrast to model A at g = ∞, δL does depend on the quantity
that is considered. The fact that the values of δL do not vary
much might be attributed to the fact that the amplitude of the
leading bulk correction is small for model B at g = ∞.

Next we studied the dependence of a0 on g. Theoretically
we expect that a0 is proportional to the amplitude of the leading
bulk corrections,

a0(g) = a∗
0

(
6

g
− w3

)
, (7.17)

with w3 from Eq. (3.6). In order to obtain a0(g), we analyzed
our data for the excess free energy generated for various values
of g. Throughout we got consistent, although less precise,
results for the Casimir amplitude �C. In order to compare also

TABLE II. Results for the amplitude of leading logarithmic
corrections for both models.

model g a0(g) a∗
0

A 32 −1.90987(1) −10.18597(5)
B 60 −1.1424950(4) −10.185918(2)
B 240 −0.37855103(4) −10.1859169(5)
B 600 −0.22576227(2) −10.1859166(4)
B 1200 −0.174832685(3) −10.1859164(1)
B ∞ −0.123903101(1) −10.1859163(1)
(7.18) −10.18591635...

with model A, we reanalyzed the results obtained for g = 32,
using the Ansatz (7.14) this time. Our estimates for a0(g) are
summarized in Table II together with the estimated value of
the universal corrections to scaling amplitude a∗

0 . From the
numerics we conjecture the exact value

a∗
0 = −32

π
(7.18)

for the corrections amplitude.

VIII. RESULTS FOR FINITE τ

Figure 4 shows the scaling functions ϑ(x) (left) and �(x)
(right) of the Casimir force and the residual free energy that
we obtained in the following way from our numerical results
for both models A and B. We first calculated the derivative of
the excess free energy with respect to L according to Eqs. (2.9)
numerically as

βFC(t,L) = −fex(t,L + 1) − fex(t,L − 1)

2
+ O(L−5)

(8.1)

and then determined the scaling function

ϑ(x) � L3
eff βFC(t,L), (8.2)

using Leff from Eq. (7.6) with m = 0 for model A, while for
model B we took Leff from Eq. (7.14) with m = 0, a0 from
Eq. (7.15), and δL = 1. This procedure gave the excellent data
collapse shown in Fig. 4 (left).

The curve shows qualitatively the same behavior as for the
XY model (corresponding to n = 2) [25–27,82]. Using the
data from model A, we find a rounded minimum ϑ(xmin) =
−0.1268565841360(1) at xmin = −4.55702477008(1), while
the curve approaches the Goldstone value ϑ(−∞) =
−ζ (3)/8π for x → −∞. Note that for the XY model one
finds ϑn=2(xmin) ≈ −0.65 at xmin ≈ −5 [25–27], where we
included a factor 1/n in ϑn=2(x) because here all energies are
defined per spin component; see Eq. (2.3). While the values
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FIG. 5. (Color online) First and second derivative ϑ ′(x) (blue
solid line) and ϑ ′′(x) (red dashed line), determined from data for
g → ∞ and L = 257. The horizontal dashed line indicates the exact
value ϑ ′′(0) = −π−3 of Eq. (6.11).

of ϑ(xmin) differ by a factor of about 5, the locations xmin for
n = 2 and n = ∞ are fairly close. In the numerical analysis of
the minimum within model A we again found the same value
of δL, Eq. (7.8b), as at criticality.

To compute the scaling function �(x) from ϑ(x), we used
the representation

�(x) =
∫ ∞

1
ds s−dϑ(xs1/ν), (8.3)

which follows upon integration of Eq. (2.8) subject to the
condition �(∞) = 0. Note that a direct determination of �(x)
from fex would require the precise calculation of the surface
free energy fs(t) for many values of t , a step which is avoided
in our approach. The result is shown in Fig. 4 (right). It looks
quite similar to the Casimir force scaling function ϑ(x)/2
because the second term in Eq. (6.2) [involving �′(x)] is one
order of magnitude smaller than the first one.

In Fig. 5, our results for the first and second derivatives
of the Casimir force scaling function ϑ(x) are displayed. To
compute ϑ ′(x), we started from the excess internal energy

uex(t,L) ≡ −∂fex(t,L)

∂t
= 1

8π
(tr[V] − Lrb), (8.4)

and then used the scaling forms implied by Eqs. (2.7) and (2.8)
to conclude that ϑ ′(x) can be numerically computed as

ϑ ′(x) � −L2
eff

uex(t,L + 1) − uex(t,L − 1)

2
. (8.5)

Our considerations based on the nonlinear sigma model
(see Appendix C) revealed that the low-temperature limits
x → −∞ of the scaling functions �(x) and ϑ(x) involve
logarithmic anomalies of the form specified in Eqs. (6.1)
and (6.3), respectively. Guided by these findings, we analyzed
the x → −∞ limits of our numerical results for �(x) and ϑ(x)
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FIG. 6. (Color online) Asymptotic behavior of ϑ(x) for x →
−∞. The data are for model A, with L = 9, 17, 33, 65, 129, 193,
257, 385, 513, 769, 1025, 1537, and are plotted down to x = −L.
The dashed line is a fit based on Eq. (8.6b) to the data with m = 2,
c1 = 2.0(1), d1 = 1.0(1), c2 = −17(2), and d2 = 16(2). The dotted
line with the slope −3c1/2 = −3 is a guide to the eyes (see text).

in terms of the Ansätze

�(x) � −ζ (3)

16π

(
1 −

m∑
k=1

ck ln |x| + dk

xk

)
, (8.6a)

ϑ(x) � −ζ (3)

8π

(
1 − 3c1 ln |x| + 3d1 − c1

2x

− 4c2 ln |x| + 4d2 − c2

2x2

)
. (8.6b)

In Fig. 6 the quantity

ϒ(x) = x

[
1 − ϑ(x)

ϑ(−∞)

]
(8.7)

is shown, which becomes a straight line with slope −3c1/2 in
the limit x → −∞ when plotted versus − ln |x|. The data for
various system sizes L lie on the asymptote down to x ≈ −L

and then bend off to larger values. Hence large values of L are
required to determine the correct asymptotic form and it is not
possible to get the correct low-temperature scaling behavior
by an expansion about T = 0 at constant L as has been done
in Ref. [11] (for details, see [83]).

From these results we deduce the parameters c1 = 2.0(1)
and d1 = 1.0(1).3 The former is in accordance with Eq. (6.3).
The determination of the exact analytical value of the latter
is beyond the scope of the present paper and will be left to a
forthcoming paper [58].

Note that for low temperatures the smallest eigenvalue
becomes exponentially small, L2ε1 ∼ |x| exp(x). Therefore,
its direct numerical determination becomes impossible for

3Note that in [9] incorrect values c1 ≈ 1.1 and d1 ≈ 5.5 were given,
as only data for x � −25 were available; see Fig. 6.
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x � −30. However, one can bypass this problem because its
logarithm can be expressed in terms of the logarithms of all
other eigenvalues. To see this, note that Eq. (4.21a) implies the
sum rule

x = tr ln H =
L∑

ν=1

ln εν, (8.8)

which we enforced in a standard manner by means of a
Lagrange multiplier. In this way, the given large values of
−x could be reached without numerical problems.

Finally, we determined the universal amplitude ratio

�A
(s)
0 = −1

4
lim

x→0+
[�′′(x) − �′′(−x)]

= 0.009441(1) (8.9)

as well as the universal constant

ϑ ′′(0) = −0.03225(1), (8.10)

which are in good agreement with Eqs. (6.9) and (6.11).

IX. SUMMARY AND CONCLUSIONS

In this paper we presented a detailed analysis of the
exact large-n solution of the O(n) φ4 model on a (d = 3)-
dimensional strip of width L bounded by free surfaces. Our
main aim was to determine the scaling functions �(x) and ϑ(x)
of the residual free energy fres(t,L) and the fluctuation-induced
(Casimir) force βFC(t,L) for all temperatures t .

Our motivation to study the exact large-n limit is explained
in the Introduction. Multicomponent vector models whose
Hamiltonians have a continuous internal symmetry such as
O(n) are notoriously difficult to handle in a three-dimensional
strip geometry bounded by free surfaces. The usual challenges
one is faced with when dealing with near-critical behavior of
systems in such strip geometries is that bulk, boundary, and
finite-size critical behavior must be appropriately dealt with,
along with the dimensional crossover of the large-scale behav-
ior in a d-dimensional system to that in an effectively (d−1)-
dimensional system. The additional complication which arises
at d = 3 in the continuous-symmetry case is that also the
low-temperature behavior crucially matters since it prevents
the presence of long-range order at T > 0 when L < ∞.
This combination of challenging and intriguing problems one
encounters at d = 3 quite generally for any n � 2 persists
in the limit n → ∞. An appealing feature of this limit is
that all mentioned difficulties can be successfully tackled in
a mathematically controlled fashion by means of a single
approach.

Upon solving the required self-consistency equations nu-
merically, we obtained very accurate results for the scaling
functions �(x) and ϑ(x) shown in Fig. 4. These exhibit all the
qualitative features (p1)–(p5) mentioned in the Introduction
and known from experiments on the thinning of 4He wetting
films [23,24] and Monte Carlo simulations of XY models [25–
27]. Furthermore, they nicely agree with the various exactly
known properties gathered in Sec. VI.

For large negative x we find logarithmic scaling behavior as
predicted by Eqs. (6.1)–(6.3), fulfilling the finite-size scaling
hypothesis, Eq. (1.1), as the scaling functions are solely

dependent on the scaling variable x. This is in contrast to
Ref. [11], where the existence of ln L contributions to the
scaling functions and a violation of the scaling hypothesis
was claimed. We could show that this discrepancy stems
from the incorrect data analysis done in Ref. [11], as the
authors utilized data where the condition |x| � L does not
hold and nonuniversal corrections to scaling become dominant,
leading to deviations from the scaling function as displayed in
Fig. 6 [83].

Future work on near-critical Casimir forces of O(n) models
on d = 3 dimensional strips could benefit from the results of
this paper in several ways. First of all, to assess the quality of
approximate analytical theories such as [84] and [85], one
should apply them to the n = ∞ case and compare their
predictions with our extremely precise numerical results. The
same applies to potential future results obtained via appro-
priate extensions of the numerical functional renormalization
techniques used in [86] to investigate critical Casimir forces of
O(n) systems in slablike geometries subject to periodic bound-
ary conditions. We also believe that our results might provide
useful guidance in the development of improved analytical
approaches to the study of fluctuation-induced forces. As we
have seen, the large-n theory succeeds in handling dimensional
crossovers properly even in the particularly hard case of O(n)
system on (d = 3)-dimensional strips. Clearly, a crucial factor
for this capability is its self-consistent nature. This suggest
that it may be reasonable, if not indispensable, to incorporate
elements of self-consistency in improved analytic approaches
for finite n.
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APPENDIX A: BULK AND EXCESS FREE
ENERGIES OF MODEL A

The free energy density fL involves the dimensionally
regularized integral

∫ (d−1)
p ln(p2 + εν). To compute it, we

insert 1 = ∇ p p/(d − 1) in the integrand and integrate by parts.
We thus arrive at

fL = − Ad−1

d − 1

L∑
ν=1

ε(d−1)/2
ν − 3

2g

L∑
z=1

(τ̊c + τ − Vz)
2. (A1)

To derive the bulk free energy density (2.4) from this result, we
use L−1∑

ν −−−→
L→∞

∫ π

0 dk/π and substitute εν and Vz by their

respective bulk analogs εb(k) [Eq. (2.22)] and rb. The required
k integral is of the form

ID(r) ≡
∫ π

0

dk

π
[εb(k)](D−3)/2 (A2)
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with D = d + 2. It can be computed using MATHEMATICA [87].
One obtains

Id (r) = (r + 4)
d−3

2 2F1

(
1

2
,
3 − d

2
; 1;

4

r + 4

)
, (A3)

where 2F1(a,b; c; z) denotes the hypergeometric function. The
resulting bulk free energy density therefore becomes

fb(τ,g) = − Ad−1

d − 1
Id+2[rb(τ )] − 3

2g
[τ̊c + τ − rb(τ )]2,

(A4)

where rb(τ ) means the solution to Eq. (4.17). An analogous
calculation of the integral in Eq. (2.23) shows that the critical
value of τ̊ is given by

τ̊c = g

6
Ad−1 Id (0). (A5)

Since Ad−1 has a pole at d = 3,

Ad−1 = 1

2π (d − 3)
+ γE − ln(4π )

4π
+ O(d − 3), (A6)

where γE is the Euler-Mascheroni constant, we will need
the Taylor expansions of Id+2(r) and Id (0) to O(d − 3).
A convenient way to determine the O(d − 3) terms is to
differentiate the right-hand side of Eq. (A2) and exchange
the differentiation with the integration. One obtains

∂dId (r)|d=3 = arsinh(
√

r/2), (A7)

which, combined with Eq. (A3), yields

Id (0) = 1 + O[(d − 3)2]. (A8)

In a similar fashion one shows that

Id+2(r) = 2 + r + d − 3

2

{
(2 + r)[1 + 2 arsinh(

√
r/2)]

−
√

r(4 + r)
}+ O[(d − 3)2]. (A9)

The bare bulk free energy (A4) is not regular at d = 3.
Going over to the renormalized quantity f ren

b defined by
Eq. (4.12) eliminates its pole terms independent of τ and linear
in τ . A straightforward calculation shows that the limit

f ren
b (τ,g) = lim

d→3
[fb(τ,g) − fb(0,g) + Ad−1τ/2] (A10)

exists and yields the result given in Eq. (4.16).
The pole terms we found in fb must also appear in fL/L

and will get absorbed by the chosen bulk counterterms. In
general, fL can also have L-independent poles, which could
be eliminated by additive surface counterterms. This happens
indeed if we allow for arbitrary values Kj of surface bonds.
However, for our choice (4.8) corresponding to Dirichlet
boundary conditions on a lattice, such surface UV singularities
are absent. Consequently, all UV poles must cancel in the
excess free energy fex. To show this we substitute our above
results for fL and fb into the excess free energy (2.5) and

expand in d − 3. This gives

fex(τ,g,L) = 1

2
Ad−1

[
L∑

z=1

(Vz + 2) −
L∑

ν=1

εν

]

+ 1

8π

L∑
ν=1

εν(1 − ln εν) − 3

2g

L∑
z=1

(τ − Vz)
2

−Lf ren
b (τ,g) + O(d − 3). (A11)

The sole possible source of pole terms is the term proportional
to Ad−1. However, the term in square brackets vanishes
because both sums are equal to tr H. Thus the bare fex is regular
at d = 3 when expressed in terms of τ and g. It reduces to the
result given by Eqs. (4.14)–(4.16).

APPENDIX B: LOW-TEMPERATURE LIMIT AND
NONLINEAR σ MODEL

The purpose of this appendix is to derive from the n-vector
model (2.1) an effective low-temperature model which can
be used to gain information about the behavior of the scaling
functions �(x) and ϑ(x) of the residual free energy and the
Casimir force in the limit x → −∞. To this end, we follow
an established strategy; see, e.g., [88], [89], and Sec. VIII
of [90].

In the low-temperature limit, the dominant fluctuations are
those associated with the direction of the order parameter.
Fluctuations of the modulus M(x) ≡ |φ(x)| of the order
parameter get frozen in and less important. We therefore
decompose φ(x) into its modulus and a unit n-vector s(x),
writing

φ(x) = M(x) s(x), [s(x)]2 = 1. (B1)

We now wish to perform the radial integrations to obtain
an effective Hamiltonian that depends solely on s. To this
end it is useful to introduce the functional measure Dμ[M],
the partition function Zmod associated with the modulus and
corresponding averages via

Zmod ≡
∫

Dμ[M]

≡
∏
x∈V

{∫
M(x)�0

[M(x)]n−1 dM(x)

}
e−H[M] (B2)

and

〈. . . 〉mod ≡ Z−1
mod

∫
Dμ[M] . . . . (B3)

The partition function Z of Eq. (2.2) can now be written as

Z/Zmod =
∫

s2=1
D[s] e−Heff [s] (B4)

in terms of the effective Hamiltonian Heff[s] defined by

e−Heff [s] = 〈e− 1
2

∫
V

ddx[M(x)]2[∇s(x)]2〉mod. (B5)

To evaluate the functional integrals over M required for
Zmod and Heff[s] we consider the low-temperature limit τ̊ →
−∞, g → ∞, with τ̊ /g fixed, and use perturbation theory. At
zero-loop order, we must look for extrema of the integrands.
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The corresponding necessary condition yields in the case of
the second functional integral the classical equations of motion

[−∇2 + τ̊ + (∇s)2]M + g

6n
M3 − n − 1

ad
M−1 = 0 (B6)

with the boundary conditions

(∂z − c̊1)M|z=0 = (∂z + c̊2)M|z=L = 0, (B7)

where the term proportional to M−1 results from the measure
and a is a discretization length (“lattice constant”). The
analogous equations for the functional integral giving Zmod

differ from the above only in that the s-dependent term of
Eq. (B6) is absent.

The contribution ∝ M−1 in Eq. (B6) is subleading in the
above-mentioned limit and can be dropped. In the absence of
the (∇s)2 term, we must then look for a y-independent solution
M(z) of the equation[

− 1

|τ̊ |∂
2
z − 1 + g

6n|τ̊ |M
2(z)

]
M(z) = 0 (B8)

subject to the boundary conditions (B7). The prefactor of
∂2
z gives us a length ∝ |τ̊ |−1/2 which tends to zero as

τ̊ → −∞ and hence becomes much smaller than L in this
limit. Thus M(z) must take the bulk value Mb = √

6|τ̊ |n/g

outside a boundary region of thickness �0 ∝ |τ̊ |−1/2 for any
values of c̊j ∈ (0,∞). An easy way to see this is to recall
from [64] or from Eq. (2.36) of [22] that the solution for the
semi-infinite case reads M(z) = Mb tanh[(|τ̊ |/2)1/2(z + z0)]
with sinh[(2|τ̊ |)1/2z0] = (2|τ̊ |)1/2/c̊1. It follows that the excess
surface contribution

∫ �0

0 [M(z) − Mb]dz varies as |τ̊ |−1/2 and
hence vanishes in the limit τ̊ → −∞, g → ∞, with Mb fixed.

In the presence of the (∇s)2 term, the solution to Eq. (B6) is
a functional of (∇s)2. However, by expanding about the (∇s)2

independent solution, one sees that the contributions implied
by this term also vanish in the considered τ̊ → ∞ limit. We
thus arrive at a nonlinear σ model with Hamiltonian

Heff[s] = nρst

2

∫ L−�0

�0

dz

∫
dd−1y (∇s)2, s(x)2 = 1. (B9)

Here nρst, the reduced spin stiffness [18], is given by ρst =
M2

b /n = 6τ̊ /g according to our derivation. The length �0

serves as a cutoff to avoid UV singularities with support on
the boundary planes z = 0 and z = L (see Appendix C).

A nonlinear σ model of this kind could also be derived
from a classical fixed-length spin model on a lattice by
making a continuum approximation. For an O(n) spin model
of fixed spin length Mb on a simple cubic lattice with uniform
NN interaction constant J (measured in units of kBT ) and
lattice constant a one would obtain the approximate result
nρst = JM2

b a2−d . We wish to use this model to determine
the behavior on long length scales. As minimal length scale or
short-distance cutoff of the model (B9) we can therefore take a
coarse-graining length �0 much larger than the lattice constant
a. As spin-stiffness coefficient ρst we should therefore take
this quantity on the scale �0, i.e., determine it by integrating
out all degrees of freedom between a and �0. Rather than
pursuing such an ambitious goal, we shall take ρst as an
adjustable phenomenological parameter for which we will
make a reasonable choice.

The bulk stiffness coefficient ρst can be computed for τ̊ < τ̊c

exactly in a familiar manner in the limit n → ∞ from the
small-momentum behavior of the perpendicular correlation
function at h = 0 [17,35]. One finds

ρst = 6

g
(τ̊c − τ̊ ) = − 6

g
τ, (B10)

which becomes

ρst = − t

4π
(B11)

when expressed in terms of the temperature variable t

introduced in Eq. (4.19). In the low-temperature expansion
in inverse powers of ρst of the next appendix we will substitute
this result for ρst. As cutoff �0 we shall take the length

�0 = −(ct t)
−1 (B12)

where ct ≈ 1.

APPENDIX C: NONLINEAR σ MODEL APPROACH TO
THE LOW-TEMPERATURE LIMITS OF THE SCALING

FUNCTIONS �(x) AND ϑ(x)

In this appendix we will use the nonlinear σ model derived
in Appendix B to determine the asymptotic behavior of the
scaling functions �(x) and ϑ(x) in the limit x → −∞.

Supposing that a uniform magnetic field h acts along
the sn ≡ σ direction, we make the replacement (∇s)2 →
(∇s)2 − hσ in the action (B9) and decompose s = (π ,σ )
into an (n − 1)-dimensional transverse component π and a
one-dimensional longitudinal one σ = √

1 − π2. We now
expand the action in powers of π . From the Gaussian part
of the action we can identify the free propagator. It has a
mass squared equal to h and is subject to Neumann boundary
conditions. Expressed in terms of the bulk propagator Gb, it
reads

GNN(x,x′|L) =
∞∑

j=−∞
[Gb(x − x′ − 2jLez)

+Gb(x − x′ − 2jLez + 2z′ez)]. (C1)

At d = 3, the bulk propagator simply becomes

Gb(x) = exp(−|x|√h)

4πρst|x| , d = 3. (C2)

To gain information about the asymptotic behavior of the
scaling function �(x) in the limit x → −∞, we now set d = 3
and h = 0 and compute the Taylor expansion of fresL

2 to first
order in 1/ρst. The zeroth-order term is the known Casimir
amplitude �NN

G (d = 3) = −ζ (3)/16π of a Gaussian model
subject to Neumann boundary conditions. The term linear in
1/ρst results from the term (∇π2)2/8ρst of the action density
in Eq. (B9). It involves the integral

J�0 = 1

8ρst

∫ L−�0

�0

dz [∂zGNN(x,x|L)]2. (C3)

Using Eqs. (C1) and (C2), one easily computes

8πL2∂zGNN(x,x|L) = ψ ′(1 − ζ ) − ζ−2 − ψ ′(1 + ζ )

= f (1 − ζ ) − f (ζ ) (C4)

062123-19



H. W. DIEHL et al. PHYSICAL REVIEW E 89, 062123 (2014)

with ζ = z/L and

f (ζ ) = ζ−2 + ψ ′(1 + ζ ), (C5)

where ψ(ζ ) = �′(ζ )/�(ζ ) is the digamma function. Thus, J�0

can be written as

J�0 = 2

8ρst

1

64π2L3

∫ 1/2

�0/L

dζ [f (ζ ) − f (1 − ζ )]2. (C6)

A straightforward calculation yields

J�0 = ρ−1
st

256π2L3

[
L3

3�3
0

− 8

3
− 8ζ (3) ln

1/2

�0/L
+ 2K�0 + R�0

]
(C7)

with

K�0 =
∫ 1/2

�0/L

dζ
ψ ′(1 + ζ ) − ψ ′(1 − ζ ) − 2ψ ′′(1) ζ

ζ 2
(C8)

and

R�o
=
∫ 1/2

�0/L

dζ [ψ ′(1 + ζ ) − ψ ′(1 − ζ )]2. (C9)

Upon subtracting from the result the surface term J�0 |L=∞ =
[768π2ρst�

3
0]−1 along with a logarithm, we can take the limit

�0 → 0 to obtain

lim
�0→0

[
J�0 − J�0

∣∣
L=∞ − ζ (3)

32π2ρstL3
ln

2�0

L

]
= 1

256π2L3

−r0

ρst

(C10)

with

r0 = 8

3
− 2K0 − R0. (C11)

It follows that

fres L2 = −ζ (3)

16π
− 1

Lρst

[
ζ (3)

32π2
ln

L

2�0

− r0

256π2
+ o(L0)

]
+ o

(
ρ−2

st

)
. (C12)

The integrals K0 and R0 can be numerically computed. One
obtains

R0 = 1.7854912528 . . . , (C13)

K0 = −1.2806128714 . . . . (C14)

Upon substituting the above numerical results for K0 and R0

into Eq. (C11), we arrive at the value

r0 = 3.4424011568 . . . . (C15)

We can now substitute Eqs. (B11) and (B12) for ρst and
�0. The result tells us that the asymptotic form of the scaling
function �(x) for x → −∞ does indeed involve a leading
logarithmic anomaly of the form specified in Eq. (6.1). Since
the coefficient of the subtracted ln L term in Eq. (C12)
is independent of the precise choice of the cutoff length
�0, i.e., the amplitude ct in Eq. (B12), we can trust that
our perturbative approach here gives the precise value of
the universal coefficient of the x−1 ln |x| term in Eq. (6.1).
By contrast, the choice of the nonuniversal coefficient ct

affects the amplitude of the contribution ∝ x−1 in Eq. (6.1)
because of the �0 dependence of the term ln L

2�0
in Eq. (C12).

Substituting of Eq. (B12) for �0 we arrive at the ct -dependent
value

d1(ct ) = r0

4ζ (3)
− 2 ln(ct/2). (C16)

Thus the perturbative approach used here does not enable us
to safely determine the universal value of d1. We can at best
hope to get a rough estimate by making plausible choices for
ct . Two such estimates are d1(1) ≈ 2.102 and d1(2) ≈ 0.716.
Though not precise, they are not unreasonably far from the
value d1 ≈ 1.0 our numerical data suggest (cf. caption of
Fig. 6).
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