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Model to interpret pulsed-field-gradient NMR data including memory and superdispersion effects
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We propose a versatile model specifically designed for the quantitative interpretation of NMR velocimetry
data. We use the concept of mobile or immobile tracer particles applied in dispersion theory in its Lagrangian
form, adding two mechanisms: (i) independent random arrests of finite average representing intermittent periods
of very low velocity zones in the mean flow direction and (ii) the possibility of unexpectedly long (but rare)
displacements simulating the occurrence of very high velocities in the porous medium. Based on mathematical
properties related to subordinated Lévy processes, we give analytical expressions of the signals recorded in
pulsed-field-gradient NMR experiments. We illustrate how to use the model for quantifying dispersion from
NMR data recorded for water flowing through a homogeneous grain pack column in single- and two-phase flow
conditions.
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I. INTRODUCTION

Solute migration in porous materials results from random
molecular motions super-imposed to highly complex pore
scale velocity field [1]. Commonly, it is characterized by
tracer tests together with various dispersion models in order
to reproduce concentration profiles. With the same objective,
the pulsed-field-gradient (PFG) NMR technique, although
not new, is becoming more and more popular. Indeed, it
is a nonintrusive measurement method providing a unique
insight into molecular motion statistics without the need of
any tracer [2]. More specifically, pulsed-field-gradient NMR
velocimetry typically records signals proportional to the char-
acteristic function 〈e−ik�x〉 of water molecule displacements
�x in the mean flow direction (as studied by most authors, but
any other direction is also possible). Commonly, such signals
are usually Fourier transformed into propagators (distribution
of displacements) and their shape analyzed. Alternatively, the
empirical moment of order two (or up to three) can also be
calculated directly from the signal, but such functional does
not allow discriminating sometimes dramatically different
stochastic processes [3]. With such capabilities, the PFG-NMR
technique gives crucial information for stochastic models, but
to our knowledge, no in-depth interpretation of NMR signals
is available in literature. Here, we are seeking a versatile model
and numerical tool that can reproduce standard Gaussian
dispersion as well as non-Gaussian effects that are observed
in heterogeneous porous samples [4], or in homogeneous
samples but in two phase flow conditions [5]. Nonsymmetric
shapes of propagators do not necessarily mean anomalous
dispersion because an asymptotic regime may not be reached
when analyzing short time data. Nevertheless, assessing the
onset of asymptotic behaviors motivates studying shorter
displacements as well, by applying very accurate numerical
or experimental methods available at small scales (Refs. [6]
and [7]). Finally, another important feature of our approach is
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to avoid the difficulties related to Fourier transforms and calcu-
late the model parameters directly from the PFG-NMR signals.

Two main features are present in the non-Gaussian propa-
gators represented in Refs. [4] and [5]: nonsymmetric shapes
with a tail at large displacements, and in some cases small
peaks or humps present around zero displacement, suggesting
that some molecules may be stacked in nonflowing zones in
the porous media. Figure 1 displays some examples discussed
in Ref. [5] and measured in a porous column as summarized in
Appendix A. Asymmetric propagators disagree with any Gaus-
sian model, even associated to time-dependent second moment
as stretched Brownian motion [8]: most propagators portrayed
on Fig. 1 are reminiscent of stable process, whose displacement
distribution is easy to describe. However, stable processes do
not account for small humps as on Fig. 1 (right) for �t = 0.1 s.
We account for such features as well as for propagators
showing peaks [4] by means of a random time change based on
two independent sequences, Mn (mobile) and Wn (immobile),
representing time lapses during which a Lévy motion is
alternatively turned on and off. Using such time schedule
is supported by Lagrangian simulations of Navier-Stokes
equations between obstacles, evidencing intermittent time
lapses during which fluid particles take very low velocities [9].
Since we do not observe propagators showing tall peaks, we
disregard pausing times of infinite mean [10] and choose
exponentially distributed Mn and Wn [11]. The influence of
each such sequence is summarized by a random time change
replacing clock time t by the operational time Zt [12] that sums
up all mobile periods elapsed before. Such time change returns
nonsymmetric propagators by its own, even when applied to
Gaussian or more general stable symmetric processes. This
suggests comparing NMR signals with stochastic processes
deduced from general Lévy motions [13,14] by applying
the random time change: the immobile time sequence Wn

attempts representing the time each molecule spends in
nonflowing zones in the porous media or displacements in the
transverse direction to the mean flow. We demonstrate how
such comparison applies to experimental NMR signals.

The proposed model also includes existing ones. Indeed,
applying the above time schedule to any stable process Xt

yields a new process XZt
that belongs to the wide set of
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NÉEL, BAUER, AND FLEURY PHYSICAL REVIEW E 89, 062121 (2014)

0 0.05 0.1
0

25

50

Δx (cm)

Pr
op

ag
at

or
Δt=0.5s

Δt=0.7s

Δt=0.2s

−0.01 0 0.01 0.02 0.03 0.04
0

100

200

Δx (cm)

Pr
op

ag
at

or

Δt=0.4s

Δt=0.1s

Δt=0.7s

FIG. 1. Example of NMR propagators measured in a 30-μm grain pack column [5] in single-phase flow (left) and two-phase flow conditions
(right). Note the nonsymmetric shape especially obvious in two-phase flow conditions

subordinated Lévy motions. In the particular case when Xt is
Gaussian, XZt

coincides with the stochastic version [11,15,16]
of the mobile-immobile model (MIM) [1,17–19], used to
describe tracer dispersion in natural porous materials. MIM
accounts for tracer particles that can be found in two states,
mobile and immobile. It consists of a mass conservation
equation based on Fickian fluxes deduced from the density
of mobile particles, while exchanges with the immobile fluid
fraction being described by first-order kinetics. In the more
general case of any stable process Xt , XZt

represents the
motions of walkers that follow the sample pathways of its
parent Xt , but are found at location XZt

instead of Xt , at clock
time t . Thus associating a stable process to MIM’s operational
time yields a wide class of models that contains the stochastic
analog of the classical MIM: following Ref. [11] we call its
elements stochastic mobile immobile models, noted SMIM.
Since XZt

is a subordinated process, it is not Markovian, and
the distribution of its increments [20] is not so simple as for
the parent or for any system with independent increment as in
Ref. [8]. However, the operational time Zt is the hitting time
of a compound Poisson process (CPP), an increasing process
with independent increments [21]. Taking advantage of this,
we compute exactly the increment characteristic function of
XZt

. Hence, we have a direct and quantitative comparison
with NMR experiments that sample function 〈e−ik�x〉, and this
will prove very useful when calculating the model parameters
from NMR data using inversion methods. Moreover, applying
later this approach to any Lagrangian description of dispersion
[22–26] will be very easy, and permit comparisons between
models.

We first remind how the SMIM is deduced from a stable
parent process by changing its time schedule. Then, the
characteristic function of SMIM’s displacements is given
an analytical expression based on probabilistic arguments,
corroborated by numerical proof. Finally, we demonstrate how
we use the analytical expression for inverting laboratory NMR
signals recorded in a sand column in single- and two-phase
flow conditions.

II. THE STOCHASTIC MOBILE-IMMOBILE MODEL

We describe here two essentials of the SMIM, i.e., stable
process and time schedule.

A. Stable processes

Stable processes [13,14] generalize Brownian motion but
include skewness and possibly diverging second-order (and
even first-order) moments. As for Gaussian processes, each
stable process L

α,β,D,v
t has independent stationary increments

(i.e., is a Lévy process [21]): for each dt > 0, L
α,β,D,v

t+dt −
L

α,β,D,v
t is distributed (

d=) as the righthand side of

L
α,β,D,v

t+dt − L
α,β,D,v
t

d= vdt + (Ddt)
1
α Lα,β, (1)

the stable random variable Lα,β being briefly described in
Appendix B (with α ∈ [0,2] and β ∈ [−1,1]). When the
stability exponent α takes its maximal value 2, L2,β is exactly
a normal variable, L2,β,D,v

t is a Gaussian process, and the value
of β has no influence. Otherwise nonzero β values correspond
to skewed probability density functions (p.d.f.) represented
in Appendix B. For α > 1, the mathematical expectation of
Lα,β is equal to zero (otherwise, it is infinite). In this case,
which attracts our attention, L

α,β,D,v
t describes individual

motions of walkers of average velocity v. Parameter D is
a scale factor of dimensionality [L]α

[T ] , generalizing the usual
diffusivity or dispersion in the Gaussian case (α = 2). We will
use the characteristic function 〈e−ikL

α,β,D,v
t 〉 = e−t[ikv+Dϕα,β (k)],

whose exponential rate ϕα,β is detailed in Appendix B: due to
Eq. (1), Lα,β,D,v

t1+�t − L
α,β,D,v
t1 has a characteristic function equal

to e−�t[ikv+Dϕα,β (k)], for each pair (t1,�t) of positive numbers.
SMIM’s sample paths are deduced from those of any stable

process L
α,β,D,v
t by applying the random time change Zt

defined below: this means that we consider walkers whose
location at time t is described by L

α,β,D,v

Zt
instead of L

α,β,D,v
t ,

as on Fig. 2.

B. Random time change accounting for pausing
times of finite average

We define here the operational time Zt that describes
the evolution of the accumulated mobile time along sample
sequences (Mn,Wn) of successive independent mobile and
immobile steps, which define the classical MIM. Then, we
briefly recall mathematical properties linking Zt to an other
process [T (z)] that helps us describing the increments of the
former, which are neither independent nor stationary.
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FIG. 2. Sample paths of the SMIM and of its parent process.
Dotted and full lines represent trajectories of stable parent L

α,1,D,v
t

and subordinated process L
α,1,D,v
Zt

, for α = 1.7, D = 0.1, v = 0.1,
K = 0.5, and ω = 1 (ω and K being defined in Sec. II B).

In the SMIM as in the MIM, each walker performs random
motions restricted to time intervals whose lengths form a
sequence Mn [11], each of them being followed by a random
pausing time Wn. These variables are mutually independent,
with exponential distributions of average 1

Kω
for the Mn and

1
ω

for the Wn: parameter K is the average rest time divided
by the average mobile time. Moreover, the Mn and Wn are
independent of the stable parent L

α,β,D,v
t . Inserting a pause

of duration Wn between each two successive intervals of
length Mn and Mn+1 yields a process, whose each time t

value depends on the total amount of time Zt spent moving
before that instant. More specifically, on each sample path
of the (Mn,Wn) sequence the operational time Zt takes a
value entirely determined by the sample path itself, and by t ,
as follows. If we call this value z, it is z = M1 + · · · + Mn

if the walker is immobile at time instant t . During the
mobile time interval of rank n + 1, by contrast, z satisfies
z = M1 + · · · + Mn + θ with 0 < θ < Mn+1: θ = 0 at the
beginning of the current mobile period, and θ = Mn+1 at its
end. In between, θ is equal to the increase of clock time
t since period began. Square and circle mark time instants
realizing first and second possibility, respectively, on Fig. 3.
This defines process Zt itself. In view of being able to describe
its increments (neither independent nor stationary), we now
relate it to another process that has independent stationary
increments.

At each stage, the number of mobile steps completed
when Zt takes the value z is equal to the largest integer i

satisfying M0 + · · · + Mi � z, where we set M0 = W0 = 0
for convenience. Since the Mi (except M0) are exponentially
distributed, this number is given by N (z), a Poisson process
of rate Kω: it takes each integer value n with probabil-
ity P{N (z) = n} = e−ωKz (Kωz)n

n! . All information concerning
each value z of Zt is deduced from another process that we
note T [11], defined by

T (z) ≡ z + W0 + · · · + WN(z). (2)

It is a compound Poisson process (CPP): it has independent
increments and is strictly increasing (hence we call it a Lévy
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FIG. 3. The values z and T (z) of the operational time Zt and of the
subordinator, on a sample path of the sequence of mobile or immobile
steps of the MIM. The time instant marked by a square belongs to the
immobile step of rank n = 3, during which z, N (z) (equal to n), and
T (z) are necessarily constant, whereas t increases continuously: T (z)
then represents the clock time of the end of the current step. The time
point marked by a circle belongs to the immediately following mobile
step, in the course of which z increases continuously, N (z) keeping its
value n, while T (z) [defined by Eq. (2)] coincides with the clock time
t . At the end of this step, i.e., when z passes M0 + · · · + Mn + Mn+1,
N (z) and T (z) suddenly increase by 1 and Wn+1, respectively.

subordinator) [21]. It is characterized by its Laplace transform
〈e−sT (z)〉 = e−zψ(s), with ψ(s) = s(1 + Kω

s+ω
).

On each sample path (as the one represented on Fig. 3), the
operational time Zt satisfies

Zt = inf{y/T (y) > t}, (3)

meaning that Zt is the hitting time of T (z) [11]. Associating
Eq. (3) to the fact that T (z) is a Lévy subordinator will give
us almost for free (in Sec. III) the increment characteristic
function of Zt , and of the SMIM, equal to parent process
computed operational time Zt .

C. SMIM’s trajectories

For each realization of the sequence (Mn,Wn), each sample
path of the parent L

α,β,D,v
t gives one sample path of xt =

L
α,β,D,v

Zt
. The (Mn) sequence divides the parent trajectory

into segments In ≡{(θ,L
α,β,D,v

θ )/
∑n−1

i=0 Mi � θ <
∑n

i=0 Mi},
limited by “×” symbols on Fig. 4. Due to delays W0, . . . ,Wn−1,
the mobile interval of rank n (�1) of the SMIM trajectory is
deduced from In by applying the time shift S	n−1 of amplitude
	n−1 ≡ W0 + · · · + Wn−1: shifted copies S	n−1 (In) are limited
by diamonds on the trajectory of xt represented on Fig. 4. Each
S	n−1 (In) is immediately followed by an immobile step I ′

n, of
duration Wn, during which xt stays fixed at L

α,β,D,v

M0+···+Mn
. Of

course, we have S	0 (I1) = I1, and the complete trajectory of
xt is the union of all S	n−1 (In) and I ′

n.

D. SMIM’s p.d.f.

The above description of the SMIM allows us using tools
developed within continuous time random walk (CTRW, see
Refs. [27,28]) framework. The SMIM is a correlated CTRW
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FIG. 4. (Color online) Mobile and immobile steps of a sample
path of the SMIM. The figure is a magnification of the three first
mobile steps of the sample path of L

α,1,D,v
Zt

(full line) whose global
view is displayed on Fig. 2. They are deduced from successive
segments of a sample path of the parent process (dotted line), by
applying time shifts dictated by the arrest durations represented
on Fig. 3. These durations determine the length of each plateau
connecting two successive mobile steps. Only the first mobile step
of the subordinated trajectory coincides with a segment of that of its
parent.

[29], since walkers perform random motions not independent
of the time lapses during which they occur. Adapting CTRW
tools to describe walkers that can be found in mobile or
immobile state, one retrieves the densities given in Ref. [11]
for these two populations. One thus shows that the p.d.f. P (x,t)
of xt satisfies

∂tP + Kωe−ωt ∗ ∂tP = AP, (4)

the star representing convolution, with

AP (x,t) ≡ ∂x[−vP ]

− D

2 cos πα
2

[(1 + β)Dα
−∞,x + (1 − β)Dα

x,+∞]P,

derivatives Dα
−∞,x and Dα

x,+∞ (of order α) being defined in
Appendix C for α < 2: in the limit case α = 2, A becomes
−v∂x + D∂2

x2 , and Eq. (4) is the classical version of the MIM.
Equation (4) would be very useful to interpret tracer tests,

with concentration instead of P . Here, we consider different
observables.

E. SMIM’s propagators

SMIM’s increments distributions are easily described by
means of random walks combining temporal disorder and
Lévy motion (the latter including the Gaussian case). For each
sample sequence (Mi,Wi), operational times Zt1+�t and Zt1

are determined as in Sec. II B. Drawing independent copies
of Lα,β then samples displacements xt1+�t − xt1 , distributed
as v(Zt1+�t − Zt1 ) + [D(Zt1+�t − Zt1 )]

1
α Lα,β due to Eq. (1).

Histograms of the latter approximate propagators.
Figure 5 displays examples of thus obtained propagators:

some of them resemble pictures represented on Fig. 1. Others
show peaks as on Fig. 1(b) of Ref. [4]. Values of α smaller
than 2 yield nonsymmetric shapes, provided β 	= 0. Large K

values yield peaks (especially when t1 is large) that result into
skewness even with α = 2. Nevertheless, such peaks fade out
when �t is increased: in fact, only skewness caused by α < 2
and β 	= 0 remains at large �t , though it is not obvious on
figures representing several propagators as Fig. 5, because of
scale effects.

The visual analogy with experimental propagators moti-
vated our interest in the SMIM. Yet, featuring propagators
necessitates inverse Fourier transform, which causes a lot of
approximations and errors that we avoid by directly comparing
NMR signal with increment characteristic function of model.

III. THE CHARACTERISTIC FUNCTION
OF THE INCREMENTS OF THE SMIM

For such comparison, we derive a closed form expression
for the characteristic function of the increments of xt . Such
expression is much more comfortable to handle than a partial
differential equation (p.d.e.), and allows us using efficient
optimization to guess SMIM’s parameters that fit experimental
data. Because Zt and L

α,β,D,v
t are independent, the charac-

teristic function 〈e−ik[xt1+�t−xt1 ]〉 of xt1+�t − xt1 is deduced
from the Laplace transform 〈e−η[Zt1+�t−Zt1 ]〉 of Zt1+�t − Zt1 .
Its mathematical expression will confirm trends noticed in
Sec. II E, regarding the influence of K and �t .
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FIG. 5. Some examples of propagators, deduced from the SMIM with β = 1. Some of them resemble experimental propagators of Fig. 1,
and we also observe a propagator showing a peak, reminiscent of Fig. 1(b) of Ref. [4]. For all parameter values, streaking features observed at
small displacement duration �t become less visible when this quantity is increased.
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A. From the characteristic function of Zt1+�t − Zt1

to that of xt1+�t − xt1

Indeed, process L
α,β,D,v
t having independent increments,

conditioning on the value of Zt1+�t − Zt1 shows that the
characteristic function 〈e−ik[xt1+�t−xt1 ]〉 of xt is exactly

〈e−ik[xt1+�t−xt1 ]〉 = 〈e−η[Zt1+�t−Zt1 ]〉,
with η = ikv + Dϕα,β (k) [30,31]. Now, it turns out that the
Laplace transform 〈e−η[Zt1+�t−Zt1 ]〉 of Zt1+�t − Zt1 has an
analytical expression, Eq. (D4), detailed in Appendix D. This
implies

〈e−ik[xt1+�t−xt1 ]〉 = F (α,β,v,D,ω,K,e−ω(K+1)t1 ,k,�t) (5)

with

F (α,β,v,D,ω,K,M,k,�t)

≡ η

K + 1
× [(H− +GM)er−�t − (H+ + GM)er+�t ], (6)

functions r±, H± and G (of α,β,v,D,ω,K) being de-
fined in Appendix D. Equation (5) is demonstrated by
Fig. 6, which compares F (α,β,v,D,ω,K,e−ω(K+1)t1 ,k,�t)
with Monte Carlo simulations of 〈e−ik[xt1+�t−xt1 ]〉.
Because of the time change, L

α,β,D,v

Zt
is not a Markovian

process: we see from Eq. (5) that the distribution of its
increments is influenced by t1, the age of each walker when
displacements begin being measured. It coincides with clock
time if all walkers start at a given time origin. In numerical
experiments, we easily impose a common time origin to all
walkers. Real experiments, differently, record displacements
of molecules that may have been launched in the device at
different times: then, t1 must be regarded as a random variable

-300 -100 100 300k

<
ex

p[
-ik

Δx
]>

Δt=0.02
Δt=0.1
Δt=0.2

0

0.9

FIG. 6. Numerical demonstration of Eq. (5). Monte Carlo sim-
ulation of 〈e−ik[xt1+�t −xt1 ]〉 (symbols) are obtained in two steps.
Step 1 consists in sampling Zt1 and Zt1+�t by drawing se-
quences Mn and Wn, which yields the z values corresponding
to clock times t1 and t1 + �t , as described in the legend of
Fig. 3. Step 2 then uses Eq. (1) with dt = Zt1+�t − Zt1 to sample
xt1+�t − xt1 . The thus obtained characteristic function coincides
with F (α,β,v,D,ω,K,e−ω(K+1),k,�t) (lines), whose real (imagi-
nary) part is represented by solid (dashed) line. Parameters are
(α,β,v,D,ω,K,t1) = (1.6, 1, 0.025, 0.001, 1000, 0.0001, 2)

instead of a deterministic parameter, especially when walkers
are fluid molecules in an open-flow experiment.

B. Walker age distribution

In general, instead of 〈e−ik[xt1+�t−xt1 ]〉 we measure

〈e−ik�x〉 =
∫ +∞

0
〈e−ik[xt1+�t−xt1 ]〉p(t1)dt1, (7)

p(t1) being the fraction of walkers of age t1 in the population of
particles whose displacements are actually recorded. Though
we may have few information on p, t1 is only involved in the
item M = e−ω(K+1) of Eq. (6), and we still have

〈e−ik�x〉 = F (α,β,v,D,ω,K,M,k,�t), (8)

provided we set

M =
∫ +∞

0
e−ω(K+1)t1p(t1)dt1 (9)

instead of M = e−ω(K+1)t1 that holds when p is a Dirac atom,
as when all walkers start the random walk at the same time
origin. Even if we do not know function p in practice, the
parameterM involved in Eq. (8) can be deduced from 〈e−ik�x〉
records, as other parameters.

C. The behavior of F(α,β,v,D,ω,K,M,k,�t)
when �t and K are varied

Experimental propagators displayed on Fig. 1 correspond to
parameter values satisfying ω > 1 > K , D and v being small.
With such parameters and with η = ikv + Dϕα,β (k), wave
numbers k that are not too large satisfy |η|

ω(K+1) 
 1: according
to Appendix D, F (α,β,v,D,ω,K,M,k,�t) is dominated by

an expression proportional to e−�t
Dϕα,β +ikv

K+1 when �t is large.
One thus obtains signals very close to those of stable process

L
α,β, D

K+1 , v
K+1

t , provided |η|
ω(K+1) is small. We only have a

tight approximation, not a limit, and this results into SMIM
propagators (as on Figs. 9 and 11) resembling the p.d.f. of a
stable random variable (see Fig. 13) when �t is increased.

Decreasing to zero the immobile time per mobile time
(K), differently, makes the SMIM tend to a stable process:
for each fixed (k,t1,�t), F (α,β,v,D,ω,K,M,k,�t) tends to
the characteristic function e−�t[Dϕα,β (k)+ivk] of L

α,β,D,v

�t when
K → 0 if, moreover, Kω remains finite.

Beyond featuring these general trends, exact Eq. (8) gives
us the opportunity of finding the parameters of SMIM model
that allow it representing at best any rich enough given set of
experimental data.

IV. COMPARING DATA AND SMIM

We first describe an inversion method for obtaining param-
eters (α,β,v,D,ω,K,M). Then, we show the results using
data previously published in Ref. [5] in single- and two-phase
flow conditions, in the same grain pack. The single-phase
flow conditions indicate a slight super-dispersion behavior
in the quasiasymptotic regime, while for the two-phase flow
conditions, propagators are more obviously non-Gaussian.
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FIG. 7. The SMIM-based normalized objective function E/σ 2

for a range of stability exponents (single-phase flow conditions).
The overall minimum of E is reached at α = 1.91 (β = 1). Other
optimized parameters are D = 1.5×10−4 cmα/s, v = 0.101 cm/s,
ω = 10.4 s−1, K = 0.05.

A. Principle of an inverse method for displacements
characteristic function

The NMR signal S(k,�t) representing the characteristic
function 〈e−ik�x〉 of displacements �x during a series of
time lapses of durations �t (m) is acquired at discrete values
k(m)
n (signals recorded for different �t (m) may be acquired at

different wave numbers). To find the best parameters fitting
the data, we build an objective function E equivalent to the
squared deviation between analytical characteristic function
F (α,β,v,D,ω,K,M,k(m)

n ,�t (m)) and data S(k(m)
n ,�t (m)) and

find its minimum using standard optimization routine [32].
However, the optimization is performed in two steps: the
objective function E is first minimized with respect to param-
eters (v,D,ω,K,M) for a fixed set of (α,β) values, returning
a partial minimum E

α,β

min. Then, the above minimization is
repeated for different (α,β) values, and the overall minimum
of all the E

α,β

min gives the best (α,β) values. For example,
the curve shown in Fig. 7 indicates an overall minimum
of E around 1.91 when β = 1. With the data analyzed
here, we found that the overall minimum of E is always
achieved for β = 1. Moreover, we normalized E with σ 2 =
�n,m[|S(k(m)

n ,�t (m))| − |S(−k(m)
n ,�t (m))|]2, a lower bound of

measurement errors since the modulus of any characteristic
function must be an even function of the wave number.

In the inversion method described above, it is important
to take into account several NMR signals at different time
durations �t , because parameters K and ω reflect the influence
of �t . In addition, since the derivatives of E with respect
to v,D,ω,K,M are deduced analytically from Eq. (6), the
occurrence of local minima is severely reduced compared to
finite difference calculations. It is also a very fast calculation
without any limit on the number of time durations that can be
considered. Note also that we let the parameter M depend on
�t rather than being unique for the entire data set, because
the population of walkers present in the measurement volume
during a time interval of length �t may be influenced by this
quantity.
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FIG. 8. Real and imaginary NMR signals (symbols), and best fit
using NMR data collected at time intervals �t = 0.4,0.5,0.7,0.8,

and 1 s. Only the data at 0.4 and 1 s are shown. The sample is a
30-μm grain pack in which water is flowing at a rate of 700 ml/h.
For these conditions, a quasiasymptotic dispersion regime is reached.
The fitted parameters are: v = 0.101 cm/s, D = 1.50×10−4 cmα/s,
ω = 10.4 s−1, K = 0.05, 〈M〉 = 0.57, α = 1.91.

B. Using SMIM to characterize dispersion in porous media

We use the inversion method described above to analyze
experiments performed in a 30-μm grain pack of uniform
porosity 0.42 [5]. The flow is performed in a long column but
only a slice located in the middle is probed. We concentrate
our attention on two series of signals, recorded either in single-
phase or in two-phase flow conditions.

Single-phase flow. In single-phase flow conditions, first, the
data considered were collected at a flow rate of 700 ml/h and
time duration �t up to 1 s (see Fig. 7 in Ref. [5]). However,
at short time or short average displacement 〈�x〉 compared
to grain size dg , displacement distributions are signatures of
a preasymptotic regime in which the flow field around the
grains and diffusion play an important role, as described by
Ref. [6] and observed by Ref. [7]. Hence, we concentrate
our attention on NMR data acquired in the quasiasymptotic
regime such as 〈�x〉/dg > 10, corresponding to time duration
�t > 0.4 s. The experimental data points can be fitted with
great accuracy (Fig. 8). Indeed, the normalized objective
function based on all time durations above 0.4 s (six values)
has a minimum of 2.4 (Fig. 7); i.e., the error between the
model and the data is only 2.4 times the lower error bound σ 2.
Using signals acquired at �t < 0.4 s significantly raises the
objective function E. By contrast, restricting the set of signals
involved in the optimization process by removing data at �t

between 0.4 s and �t (1) yields estimated α values that remain
constant when �t (1) is increased, provided we still consider
several displacement times. We mentioned above that the latter
condition is necessary for a robust parameter estimation. Note
that we use general stable laws to build a model for small-scale
motions. Since we have data with very small noise, Fig. 7
shows that restricting the model to the particular Gaussian case
α = 2 would increase the objective function. This confirms
the slight super-dispersion suggested by Ref. [5], not revealed
by a simple look at propagator shape (Fig. 9). SMIM-based
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FIG. 9. Single-phase flow propagators calculated from the SMIM
model after fitting the NMR data presented in Fig. 8.

inversion quantifies abnormalities much more accurately than
empirical second moments or visual inspection of propagators,
and confirms the asymmetric trend observed by Ref. [7] in
other porous media, in the quasiasymptotic regime.

The parameter values found in the optimization procedure
are also of interest (see the caption of Fig. 8). First, the
velocity v in the SMIM model represents the average velocity
of the water molecules while they are moving along mean
flow direction, i.e., during a fraction of the total time equal
to 1/(K + 1). Indeed, the disordered time schedule of the
MIM is quantified by parameters ω and K: the optimized K

value of 0.05 suggests that longitudinal small-scale motions
occupy 1/(K + 1) = 95% of the total time, while transverse
motions and/or arrests represent 5%. The resulting average
displacement by unit time is v

1+K
= 0.096 cm/s, very close

to the classical estimate q/� = 0.096 ± 0.003 cm/s based on
Darcy flow rate q and porosity � (average pore velocity).

Two-phase flow. The SMIM model also mimics signals
recorded in two-phase flow conditions (in a water-oil mix-
ture saturating the grain pack), for which classical analysis
suggested strong dispersion. In this case, we analyze small-
scale displacements of water wetting the grains, while oil is
nonwetting and not detected. Due to experimental constraints,
the flow rate was limited to 50 ml/h yielding an average
pore velocity of 0.0175 cm/s, about 5 times smaller than
in single-phase flow conditions. Although the criterion for
qualifying the dispersion regime has to be redefined to include
the effect of saturation, the data analyzed here are most
likely in an intermediate regime between preasymptotic and
asymptotic. Nevertheless, we took four time intervals between
0.3 and 0.7 s and found a much lower value of α (1.77),
suggesting a super-dispersion effect. The quality of the fit is
similarly very convincing (Fig. 10), although the minimum
of the normalized objective function is higher (4.7). In this
case, propagators are clearly nonsymmetric, and this is well
reproduced by the SMIM model at all times (Fig. 11). Beside
a low value of α compared to single-phase flow conditions,
the parameter K increased considerably (0.74), meaning that
the time spent not moving (in mean flow direction) is much
larger. As a consequence, the fitted average velocity while
moving (0.033 cm/s) is much larger than the average pore
velocity (0.0175 cm/s). This is in agreement with the intuitive
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FIG. 10. Real and imaginary NMR signals (symbols) and best
fit using NMR data collected at time intervals �t = 0.3,0.4,0.5,

and 0.7 s. Only the data at 0.5 s are shown. The sample is a 30-
μm grain pack in which water and oil are flowing simultaneously
(only the water signal is detected). The water saturation is 0.42.
The fitted parameters are: v = 0.033 cm/s, D = 1.67×10−4 cmα/s,
ω = 7.9 s−1, K = 0.74, 〈M〉 = 0.44, α = 1.77.

idea that velocity contrast may increase when water saturation
decreases.

V. CONCLUSION

We have illustrated how to combine the remarkable infor-
mation of PFG NMR measurements with the analytical form
[Eq. (8)] of the increment characteristic function of the SMIM
in order to characterize the flow in a porous column in single-
and two-phase flow conditions.

To this goal, we first investigated the increments of stochas-
tic process SMIM that combines finite memory temporal disor-
der with dispersion or super-dispersion, i.e., two principles that
separately allow nonsymmetric propagators. This transport
model is deduced from a stable process by imposing to each
sample path a random time schedule composed of mobile steps
alternating with immobile steps, all having random durations
drawn from two exponential probability laws. As a result, the
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FIG. 11. Two-phase flow propagators calculated from the SMIM
model after fitting the NMR data presented in Fig. 10.
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SMIM does not have the Markov property, hence its one-time
distribution does not describe the statistics of its increments.
Moreover, the SMIM includes stable variables more general
than normal law to describe the amplitude of random motions.
However, normal law is not excluded. This model has six
parameters: the stability exponent α of the Lévy law, its
skewness β that takes its maximum value of 1 on our data, the
generalized dispersion coefficient D, the characteristic time
1/ω of the exponential distribution describing the immobile
time steps, the ratio K of average immobile and mobile times,
and the average velocity of particles when they are moving.
The auxiliary parameter M accounts for the distribution
of the time that each particle has been following SMIM’s
time schedule when its displacement begins being measured.
The analytical Eq. (8) has then been used to simultaneously
analyze pulsed-field-gradient NMR signals acquired at differ-
ent time intervals, with a robust parameter estimation based
on standard optimization routine.

We were able to determine the appropriate (generalized)
dispersion coefficients (D, v, α) as well as the parameters re-
lated to the classical MIM model (ω, K), often used to interpret
tracer tests in soils or partially saturated media. In single-phase
flow conditions, we determine a stability exponent slightly
different from 2 (α = 1.91), for displacements long enough
to belong to the quasiasymptotic dispersion regime observed
by Ref. [7], in agreement with the slight super-dispersion
observed in Ref. [5]. Such small deviations might be hard to
detect on displacement distributions (propagators), necessarily
computed from measured characteristic functions [4]. In two-
phase flow conditions, the stability exponent deviates further
from 2 (α = 1.77), again in agreement with the strong super
dispersion observed in Ref. [5].
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APPENDIX A: MOLECULAR DISPLACEMENTS
RECORDED BY NMR

Pulsed-field-gradient NMR is a nonintrusive measurement
technique that investigates molecular displacements in fluid
flows and is especially useful in porous materials. This nonin-
trusive technique enables the measurement of the characteristic
function 〈e−ik�x〉 of the displacements of water molecules
(described in details in the textbook [2]).

us media considered here is a long (30 cm) sand pack col-
umn of uniform porosity placed in a NMR apparatus (Fig. 12;
see also Ref. [5] for more details). The investigated volume is
a (8-mm-thick) slice S of the column, located at midheight, far
from inlet and outlet. It is submitted to a constant magnetic field
of intensity B0 in the �z direction generated by two permanent
magnets. A magnetization is created inS by sending a selective
excitation pulse at the Larmor frequency (20 MHz), using the
NMR antenna. After this pulse, the magnetization M in the
sample is precessing around the direction �z at the Larmor
frequency. To encode the positions of the spin bearer molecules
in a similar way as in imaging techniques, two opposite
gradient pulses separated by a time interval �t are used, such

FIG. 12. NMR set-up for measuring water molecule displace-
ments; a long plastic column (30 cm) that can be filled with sand is
placed in the NMR apparatus comprising essentially two permanent
magnets generating a permanent magnetic field B0 and a NMR
antenna (not shown). An imaging technique allows selecting a slice
of thickness 8 mm within the column and far from the inlet and outlet,
in which measurements are performed. The column allows injecting
a steady flow of water from the bottom to the top.

that the magnetic field seen by a water molecule during each
gradient pulse at a location �r is B0 + �g · �r . As a result, after
the first pulse, the magnetization M has a phase encoding
γ d �g · �r depending on location, where d and γ are the duration
of the gradient pulse (d 
 �t), and the proton giro magnetic
ratio. For the same water molecule now at position �r + −→

�r ,
the second (opposite) pulse generates a net phase change
−γ d �g · −→

�r depending on displacements �r . In the present
situation, the gradient direction is chosen parallel to the column
axis in order to analyze the displacements of water molecules
projected to the mean flow direction (�x). Noting k = γ dg with
g being the amplitude of the gradient pulse, the magnetization
from all molecules present in the slice is then of the form of
M = M0e

i�0〈e−ik�x〉, where �x is the displacement during
the time interval �t , in the �x direction. In practice, the signal
M is recorded for a set {kn} of k values at a fixed time interval
�t , and this is repeated for other values of �t .

To compare the NMR data with models, the signal M is
first normalized by M0, and then rephased to yield 〈e−ik�x〉,
a complex valued function of k and �t whose real part is
symmetric. We call S(k(m)

n ,�tm) finite sequences of complex

number 〈e−ik
(m)
n �x〉 at different �t values: wave-numbers k(m)

n

correspond to different �t (m). Usually, about 40 k(m)
n values

are used to sample the signal down to the noise level for each
time interval �tm, typically varying between 0.1 and 1 s (see
details in Ref. [5]). Applying the inverse Fourier transform
to each experimental series S(k(m)

n ,�tm) returns tentative
approximations to the p.d.f. of �x, also called a propagator.

APPENDIX B: STABLE LÉVY LAWS

The shortest definition of standard Lévy variables Lα,β

[33–36] can be given in terms of their characteristic function

〈e−ikLα,β 〉 = e−ϕα,β (k), (B1)
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FIG. 13. Lévy variable densities. Lévy variables with 1 < α < 2
have p.d.f.s that asymptotically decrease as powers, except in the
maximally skewed case. For β = 1, the p.d.f. is proportional to
x−1−α at large positive x (as in the symmetric case) but decreases
exponentially at large negative values (as for normal law).

the Log-characteristic exponent being

ϕα,β (k) = |k|α
[

1 + iβ
k

|k| tan

(
πα

2

)]
for α 	= 1. (B2)

These Lévy variables are indexed by two parameters: the
stability index α belongs to [0,2]. It describes the asymptotic
decrease of the density ∼ x−α−1 (except for xβ < 0 and
β = ±1). The skewness parameter β ranges between −1 and
1. Figure 13 demonstrates its influence, by comparing the
p.d.f.s of Lα,β for β = 0 and β = 1. Large positive values
are enhanced by β = 1, large negative values are very rare in
this case, as rare as for normal law. Yet, this is compensated
by negatively pushing the most probable values.

APPENDIX C: FRACTIONAL DERIVATIVES

Riemann-Liouville derivatives Dα
a,x and Dα

x,b that appear in
operator L and system Eq. (4) are defined by

Dα
a,xf (x) = K+

α

(
d

dx

)α′′ ∫ x

a

f (y)

(x − y)α′ dy,

Dα
x,bf (x) = K−

α

(
d

dx

)α′′ ∫ b

x

f (y)

(y − x)α′ dy,

provided α is not an integer, with K±
α = (±1)[α]+1

�([α]+1−α) , α′′ =
[α] + 1, and α′ = α − [α] [37].

APPENDIX D: THE LAPLACE TRANSFORM
OF THE INCREMENTS OF Zt

Hitting times of general Lévy subordinators are studied in
Ref. [30]: Zt being the hitting time of the Lévy subordinator
T (z) of Laplace transform 〈e−sT (z)〉 = e−zψ(s), the Laplace
transform fω,K (η,t1,�t) = 〈e−η(Zt1+�t−Zt1 )〉 is of the form of

〈e−η(Zt1+�t−Zt1 )〉 = 1 − η[R(t + t1) ∗ G(t)](�t), (D1)

where function R is defined by its Laplace transform 1/ψ(s).
Moreover, function G is G(t) = [��0(−η)nRn∗(·) ∗ 1](t), the
superscript n∗ representing n times iterated Laplace convo-
lution, and in our case function ψ satisfies ψ(s) = s(1 +
Kω
ω+s

) (Eq. (15) of Ref. [11]). This implies R(t) = 1
K+1 [1 +

Ke−ω(K+1)t ], and

G(t) = r+etr+ − r−etr−

r+ − r−
+ ω(K + 1)

r+ − r−
[etr+ − etr− ].

The roots r±(ω,K,η) of polynomial s2 + s[η + ω(K + 1)] +
ηω satisfy

r±(ω,K,η) = − 1
2 [η + ω(K + 1)] ±

√
δ(ω,K,η), (D2)

with

δ(ω,K,η) = (η + ω(K + 1))2 − 4ηω. (D3)

Hence, the characteristic function (in Laplace form) of
Zt1+�t − Zt1 is

fω,K (η,t1,�t)

= η

K + 1
[(H− + GM)er−�t − (H+ + GM)er+�t ], (D4)

where we have set

M = e−ω(K+1)t1 , (D5)

with

H±(ω,K,η) = A±(ω,K,η)

r±(ω,K,η)

A±(ω,K,η) = ω(K + 1) − η

2
√

δ(ω,K,η)
± 1

2
, (D6)

and

G(ω,K,η) = K√
δ(ω,K,η)

. (D7)

For |η|
ω(K+1) 
 1, Taylor expansion of (D2)–(D7) im-

plies η

K+1H+ ∼ −1 + Kη2

ω2(K+1)4 , η

K+1H− ∼ Kη2

(K+1)2 , and G ∼
− K

ω(K+1) . Hence, due to 0 < M � 1, r+ ∼ − η

K+1 and r− ∼
−ω(K + 1), so that −(H+ + GM) η

K+1er+�t dominates the
righthand-side of Eq. (6) when �t is not too small.
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87, 043007 (2013).

[6] R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J. F.
Peters, and H. T. Davis, Phys. Fluids 12, 2065 (2000).

062121-9

http://dx.doi.org/10.1103/PhysRevE.80.061122
http://dx.doi.org/10.1103/PhysRevE.80.061122
http://dx.doi.org/10.1103/PhysRevE.80.061122
http://dx.doi.org/10.1103/PhysRevE.80.061122
http://dx.doi.org/10.1063/1.2131871
http://dx.doi.org/10.1063/1.2131871
http://dx.doi.org/10.1063/1.2131871
http://dx.doi.org/10.1063/1.2131871
http://dx.doi.org/10.1103/PhysRevE.87.043007
http://dx.doi.org/10.1103/PhysRevE.87.043007
http://dx.doi.org/10.1103/PhysRevE.87.043007
http://dx.doi.org/10.1103/PhysRevE.87.043007
http://dx.doi.org/10.1063/1.870452
http://dx.doi.org/10.1063/1.870452
http://dx.doi.org/10.1063/1.870452
http://dx.doi.org/10.1063/1.870452
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of Lévy Processes with Applications (Springer, Heidelberg,
2006).

[22] T. Le Borgne, M. Dentz, and J. Carrera, Phys. Rev. E 78, 026308
(2008).

[23] T. Le Borgne, M. Dentz, and J. Carrera, Phys. Rev. Lett. 101,
090601 (2008).

[24] A. M. Tartakovsky, D. M. Tartakovsky, and P. Meakin,
Phys. Rev. Lett. 101, 044502 (2008).

[25] M. Dentz and D. Bolster, Phys. Rev. Lett. 105, 244301 (2010).
[26] M. Dentz, T. Le Borgne, and J. Carrera, Phys. Rev. E 77, 020101

(2008).
[27] B. Berkowitz and H. Scher, Phys. Rev. E 57, 5858 (1998).
[28] H. Scher, K. Willbrand, and B. Berkowitz, Phys. Rev. E 81,

031102 (2010).
[29] M. Montero and J. Masoliver, Phys. Rev. E 76, 061115 (2007).
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