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F. M. Zimmer,1 M. Schmidt,1 and S. G. Magalhaes2

1Departamento de Fı́sica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
2Instituto de Fı́sica, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
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The competition between cluster spin glass (CSG) and ferromagnetism or antiferromagnetism is studied in
this work. The model considers clusters of spins with short-range ferromagnetic or antiferromagnetic (FE-AF)
interactions (J0) and long-range disordered couplings (J ) between clusters. The problem is treated by adapting
the correlated cluster mean-field theory of D. Yamamoto [Phys. Rev. B 79, 144427 (2009)]. Phase diagrams
T/J × J0/J are obtained for different cluster sizes ns . The results show that the CSG phase is found below the
freezing temperature Tf for lower intensities of J0/J . The increase of short-range FE interaction can favor the
CSG phase, while the AF one reduces the CSG region by decreasing the Tf . However, there are always critical
values of J0 where AF or FE orders become stable. The results also indicate a strong influence of the cluster size
in the competition of magnetic phases. For AF cluster, the increase of ns diminishes Tf reducing the CSG phase
region, which indicates that the cluster surface spins can play an important role in the CSG arising.
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I. INTRODUCTION

Disorder in spin systems is a permanent source of chal-
lenging problems. The spin-glass (SG) state is one of the most
interesting examples showing that disorder can provide a new
physics. The SG state appears when disorder is combined with
competition between ferromagnetic (FE) and antiferromag-
netic (AF) interactions, which leads the magnetic moments to
a conflict situation. This avoids any conventional long-range
order, but raises a richness of physical properties [1–6]. Among
the current problems in disordered spin systems, an interesting
one occurs when there are clusters of spins instead of canonical
spins. (Here we use cluster to also denote nanoparticle.)
Recently, the competition between AF or FE orders and
cluster SG (CSG) behavior has motivated several experimental
studies [7–10]. In some of these systems, the effects of cluster
surface spins can play an important role to produce SG-like
behavior. This is a clear indication that alternative theoretical
approaches are still needed to account for the cluster effects in
disordered magnetism.

An earlier example of CSG theory at mean-field level
is the approach provided by Soukoulis and Levin [11–13].
In this approach, two distinct interactions are considered:
(i) a uniform intracluster short-range FE-AF one; (ii) a
disordered infinite-range intercluster one following a Gaussian
distribution as the SK model for canonical SG [14]. This
particular cluster mean-field theory has proved to be adequate
to include short-range FE-AF correlations in SG problems.
For instance, this approach was recently applied in different
problems, such as the inverse freezing transition [15,16], or
to account for the role of geometrical frustration in the SG
state [17]. However, in order to obtain long-range FE-AF
order competing with a SG state, the Gaussian distribution
for the disordered infinite-range intercluster interactions has to
be displaced from the origin. This procedure implies that the
intraclusters FE-AF interactions are completely disconnected
from the intercluster ones providing a rather artificial account
for the cluster problem. Moreover, this approach treats the
internal degrees of freedom of the cluster in such a way that
there is no difference between surface and bulk of the cluster.

Recently, Yamamoto has proposed the so-called correlated
cluster mean-field (CCMF) theory to improve the mean-field
approximation for the canonical spin systems [18]. This theory
divides the original spin lattice in clusters in such a way that
the resulting system of clusters follows the original lattice
symmetry. The presence of clusters in the CCMF approach
is, in fact, an artefact to incorporate spin correlations. In this
method, the internal field applied to a given cluster (called
central cluster) is produced by the remaining clusters and
it depends on the spin configuration of the central cluster
itself. Thus, the CCMF method is able to improve considerably
the mean-field description of thermodynamics, e.g., the Curie
temperature Tc and the magnetic susceptibility when compared
with the usual mean-field theory (see Ref. [18] and references
therein). It should be remarked that there is not any disorder
in the CCMF theory.

In this work, we propose an improvement for the CSG
mean-field theory. The basic innovation is to adapt the CCMF
theory to reformulate the earlier cluster mean-field theory
introduced by Soukoulis and Levin [11–13]. Therefore, FE-
AF long-range orderings competing with CSG state can be
developed directly from short-range intracluster FE-AF inter-
actions. The CSG phase is still obtained from the intercluster
disordered interactions, which are given as the van Hemmen
(vH) model for canonical spins [19]. It is important to remark
that the van Hemmen model avoids the use of the replica
method being, therefore, the main reason for using it in the
present report. Albeit, the van Hemmen model represents a
limit of weak frustration in the sense that not the entire spins of
the system are frustrated, the model still retains the important
signatures of the SG phase transition, such as the behavior
of the susceptibility and the specific heat as a function of
temperature. It should be noticed that in this new approach,
the freezing temperature can be dependent on the cluster size.
For the AF intracluster interaction, it would be an indication
that the cluster surface can play a role in the appearance of
CSG phase.

The paper is organized as follows: in Sec. II, the model and
the method are presented and exploited in order to produce
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phase diagrams and susceptibility behavior. In Sec. III, a
detailed discussion of the numerical results is presented. The
last section is reserved for the conclusion.

II. MODEL

We start from the Ising model that is divided into clusters
with ns spins each:

H = −
Ncl∑
νλ

ns∑
ij

J νλ
ij σνi

σλj
−

Ncl∑
ν

ns∑
i,j

J ν
ij σνi

σνj
, (1)

where σνi
= ±1 is the spin of site i of cluster ν and Ncl is the

number of clusters. The first and second terms of Eq. (1) corre-
spond to intercluster and intracluster interactions, respectively.
The intracluster interactions are assumed to be short-range
couplings J ν

ij = J0, while the intercluster interactions J νλ
ij

consider two types of couplings: an infinite-range disordered
among all pairs of clusters (J νλ) and the short-range between
nearest-neighbor spins of neighbor clusters (J0).

The resulting model can be expressed as

H = −
Ncl∑
νλ

J νλSνSλ −
∑

(νi ,λj )

J0σνi
σλj

−
Ncl∑
ν

J0

ns∑
(i,j )

σνi
σνj

,

(2)

where (· · · ) represents nearest neighbors and Sν = ∑
i σνi

is
the total magnetic moment of cluster ν. In particular, the
disorder acts between total magnetic moment of different
clusters. It means that the disorder determines the cluster-like
behavior in this approach.

For the intercluster disorder the SG van Hemmen inter-
action is assumed as follows [20]: J νλ = J

Nclns
(ξνηλ + ξλην),

where ξν’s and ηλ’s are independent random variables that
follow identical Gaussian distributions with variance one. J is
associated with the strength of disorder. This kind of disorder
allows us to write the first term of Eq. (2) in a separable form:

Ncl∑
νλ

J νλSνSλ = J

Nclns

⎧⎨
⎩

[∑
ν

(ξν + ηλ)Sν

]2

−
(∑

ν

ξνSν

)2

−
(∑

ν

ηλSν

)2

− 2
∑

ν

ξνηλ

⎫⎬
⎭ . (3)

The partition function for a particular set of fixed distribu-
tion of {ξ,η} can be obtained as

Z(ξ,η) = Tre−βH (ξ,η)

=
∫

Du exp

{
−N

[(
q2

3 − q2
1 − q2

2

)
2βJ

− 1

N
ln Tr exp(−βHeff)

]}
, (4)

where Du ∝ dq1dq2dq3 with {qn(ξ,η)} (n = 1, 2, and 3)
is introduced to linearize the terms of Eq. (3) and Heff =
−J

∑Ncl
ν [(ξν + ην)q3 − ξνq1 − ηνq2]Sν + AJ0 .AJ0 represents

the last two terms of Eq. (2). The functional integrals over
{qn(ξ,η)} in Eq. (4) can be solved by using the steepest descent
method in the thermodynamic limit (Ncl → ∞), which gives

q3 = q1 + q2, q = q1 = q2. The SG order parameter q is
obtained from [19,20]

q = 1

N

〈
Tr

∑
ν

(ξν+ην )
2 Sνe

−βHeff

Tre−βHeff

〉
ξ,η

, (5)

where

Heff =
Ncl∑
ν

⎡
⎣−J (ξν + ην)qSν − J0

∑
(i,j )∈ν

σiσj

⎤
⎦

−
∑

(νi ,λj )

J0σνi
σνj

, (6)

and 〈· · · 〉ξ,η represents the average over the random variables
ξ and η.

The intercluster disorder has been evaluated within a usual
mean-field treatment in Eqs. (4)–(6). However, there is still
a short-range coupling (FE or AF) between neighbor clusters
[see last term of Eq. (6)]. In the present work, this interaction
between spins in different clusters is treated in the framework
of the CCMF approach. The CCMF method allows us to
decouple the clusters by treating the remaining interactions
with simplicity and good accuracy in determining the critical
temperature [18]. In the following, we analyze disordered
cluster systems with ferromagnetic and antiferromagnetic
short-range interactions.

A. Ferromagnetic short-range interactions

We consider FE short-range interactions in a square lattice
that is divided into clusters with four sites (ns = 4). The
resulting one-cluster model can then be written as

Heff = −J (ξ + η)q
∑
i∈ν

σi −
∑

(i,j )∈ν

J0σiσj −
∑
i∈ν

heff
i σi, (7)

where the effective field heff
i acting on spin σi is introduced

as in the standard routine of CCMF [18]. In this approach,
heff

i = J0(mσiσj + mσiσk ) [see Fig. 1(a)], in which the mean
fields mσiσj and mσiσk are strongly dependent on the spin states
of site i (σi) and its nearest neighbors (σj and σk) belonging

(a) (b)

FIG. 1. Schematic representation for a square lattice divided into
clusters with ns = 4. The mean fields are pointed by arrows that
represent (a) the interactions between cluster ν with its neighbors and
(b) the interactions on ν ′ used to evaluate the mss′

. For the AF case it
is considered two sublattices that are represented by solid and open
circles.
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to the same cluster ν. For instance, mσ1σ2 can assume four
different values: one for each spin configuration of the pair of
sites 1 and 2 (σ1σ2 = + + , + −, − +, − −).

The mean fields are obtained by considering the nearby
connected clusters [18]. Explicitly, mss ′

is determined from
the connected cluster ν ′ when the states of sites 1 and 2 of the
cluster ν assume spins s and s ′, respectively [see Fig. 1(b)].
The values of mss ′

are numerically computed by solving the
self-consistently set of equations

mss ′ =
〈

Trσk′ exp(−βH ′
eff)

Tr exp(−βH ′
eff)

〉
ξη

, (8)

where k′ = 3′ is the site of cluster ν ′ that is neighbor of site
i = 1 of cluster ν. The Hamiltonian of cluster ν ′ is given by

H ′
eff = J (ξ + η)q

∑
i∈ν ′

σi − J0

∑
(i,j )∈ν ′

σiσj

−
∑
i∈ν ′

{i}�={3′,4′ }

heff
i σi − J0sσ3′ − J0s

′σ4′ , (9)

in which it is considered the spin configurations assumed by
sites 1 and 2 (s and s ′) of cluster ν. Furthermore, it is important
to remark that the set of equations for the mean fields does
not depend on a specific site due to the symmetry of ns = 4
square-shape cluster.

In particular, this problem differs from the original CCMF
method. Here, we have also to consider the configurational
average and solve Eqs. (5) and (8) self-consistently, where
Heff in Eq. (5) is given by Eq. (7). One can now obtain the SG
order parameter [see Eq. (A1)] and the magnetization:

m = 1

ns

〈
Tr

∑
i∈ν σi exp(−βHeff)

Tr exp(−βHeff)

〉
ξη

. (10)

B. Antiferromagnetic short-range interactions

Disordered clusters with AF short-range interactions are
analyzed for clusters of small size (ns = 4). To this purpose,
the system is first divided into two sublattices: A and B
(see Fig. 1). The disorder treatment follows the same procedure
as before, resulting in Eqs. (5) and (6) with the sublattice
structure. The CCMF can also help us obtain an effective one-
cluster problem. However, the cluster model has to consider
explicitly the distinction between the sublattices, which results
in the effective Hamiltonian

H AF
eff = −

∑
(i,j )∈ν

J0σ
p

i σ
p′
j −

∑
p

∑
i∈ν,p

(
J (ξ + η)q + heff

p,i

)
σ

p

i ,

(11)
where p = A or B (p′ = B or A) indicates the sublattice.

The effective field heff
p,i = J0(m

σ
p

i σ
p′
j

p + m
σ

p

i σ
p′
k

p ) acting on
the site i of sublattice p depends on the states of site i

and its neighbors j and k of the same cluster. However,
the sites j and k belong to the sublattice p′. Therefore,
there are eight possible mean fields (four for each sublattice):

m
σA

i σB
j

A and m
σB

j σA
i

B . Nevertheless, we can explore the symmetry
between the sublattices to reduce the number of independent
mean fields: mss ′

p = −ms̄s̄ ′
p′ , where s = −s̄ and s ′ = −s̄ ′ (e.g.,

m+−
A = −m−+

B ). It means that only four mean-fields have

to be evaluated as in the FE case. Following the procedure
introduced in Ref. [18], the mean fields are obtained from

mss ′
A =

〈
TrσB

3′ exp
(−βH ′AF

eff

)
Tr exp

(−βH ′AF
eff

) 〉
ξη

= −ms̄s̄ ′
B , (12)

where the Hamiltonian of cluster ν ′ is given by

H ′AF
eff = −

∑
(i,j )∈ν ′

J0σ
p

i σ
p′
j +

∑
p

⎡
⎣J (ξ + η)q

∑
i∈ν ′,p

σ
p

i

−
∑

i∈ν ′,p
i �=3′ ,4′

heff
p,iσ

p

i

⎤
⎥⎥⎦ − J0sσ

A
4′ − J0s

′σB
3′ . (13)

The effective fields are obtained from the self-consistent
computation of Eqs. (5) and (12), where Hamiltonian Eq. (11)
is used in Eq. (5). The magnetization is then substi-
tuted by the staggered magnetization: ms = |mp − mp′ |/ns ,
where mp =< Tr

∑
i σ

p

i exp(−βH AF
eff )/Tr exp (−βH AF

eff ) >ξη

is computed as in Eq. (10) by considering only sites belonging
to the sublattice p.

III. RESULTS

Numerical results are obtained by solving the equations for
the magnetizations and the SG order parameter. For the FE
case (J0 > 0), Eqs. (5) and (8) are solved self-consistently.
After the magnetization Eq. (10) is obtained. To calculate the
traces, the Ising base of states is used. The CSG phase is
characterized by q > 0 with m = 0 and the FE order occurs
when q = 0 with m > 0. The case with AF interactions J0 < 0
follows an analogous procedure. The AF phase appears when
ms > 0 and q = 0. In particular, the limits J0 = 0 and J = 0
recover the results for the van Hemmen model without cluster
and the Ising model treated with CCMF, respectively.

The phase diagram in Fig. 2 exhibits the competition
between disorder and J0 interaction, where the range of
coupling J0 is from the AF (left side) to the FE (right side)
for a square-lattice cluster with ns = 4. This phase diagram
shows clearly that the freezing temperature Tf increases
with the FE short-range coupling. However, the FE phase
becomes the stable one for larger values of J0/J . It means
that the CSG phase is favored by the presence of clusters with
short-range FE interactions. On the other hand, FE interactions
can also introduce the FE long-range order. It depends on
the relation between intercluster disorder J and J0. To put it
another way, the magnetic moment of clusters increase with J0,
which can favor the intercluster disordered interactions and,
consequently, the CSG phase. But, for larger J0 the disorder
cannot be enough to bring the CSG phase and the FE order is
found. This phase diagram differs from that obtained by the
vH model without clusters, in which the Tf is independent of
J0 [20].

Disordered clusters with AF short-range interactions
present a phase diagram with a different behavior for the
PM-CSG transition [see left side of Fig. (2)]. The freezing
temperature is gradually reduced by increasing the strength
of AF interaction until the AF order is found. Therefore, the
AF cluster formation is contrary to the CSG phase. In fact, the
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FIG. 2. Phase diagram of T/J vs. J0/J for square-lattice clusters
with four spins. The FE order is found for large, short-range
interactions J0/J > 0, while the AF can appear at negative values
of J0/J . Solid and dashed lines indicate continuous transition and
spinodal of CSG phase, respectively. The cluster SG phase occurs for
small interactions J0/J .

total cluster magnetic moment is reduced by the AF couplings,
which can cause decreasing in the disordered intercluster
couplings. When the FE and AF cases are compared, we can
see that a small strength of AF coupling is already able to
destroy the CSG phase.

In Fig. 3 the magnetic susceptibility χ indicates a typical
canonical SG behavior for J0/J = 0 (without cluster), in
which χ presents a cusp at Tf and it is independent of the
temperature inside the SG phase [3,19]. However, this behavior
changes when J0/J > 0. χ becomes temperature dependent
for T < Tf increasing as T diminishes. In specific, the χ

FIG. 3. Magnetic susceptibility χ as a function of the temperature
for several values of J0/J . The inset exhibits χ vs. J0/J for low
temperatures. The increase of ferromagnetic short-range interactions
destroys the CSG phase introducing the FE order.

FIG. 4. χ versus T/J for AF J0/J values. The inset exhibits the
behavior of 1/χ .

dependence on J0/J shows a divergence inside the SG phase
as J0/J increases [see the inset of Fig. (3)]. This indicates
that the ferromagnetic interactions progressively overcome the
CSG phase at low temperatures, where the FE long-range order
is found for larger J0/J . This divergence is used to locate the
stability limit of the CSG phase, which is indicated by the
dashed line in Fig. 2.

For AF interactions (J0/J < 0), the magnetic susceptibility
also presents a discontinuity at Tf (see Fig. 4), but the χ shows
a different behavior inside the CSG phase when compared with
the FE case. χ follows practically temperature independent
in the CSG phase and it decreases as the strength of AF
interactions increases. It also exhibits an AF Curie-Weiss
coefficient as can be observed in the inset of Fig. 4. The AF
characteristic increases with the intensity of J0 and χ shows
a typical Ising AF behavior for high enough values of J0 (see
Fig. 4 for J0/J = −0.20), where only a PM-AF transition is
observed.

A. Clusters with large size

The effects caused by increasing the cluster size are now
analyzed. We first discuss the original CCMF theory for square
lattice clusters with more than four sites. In this case, the
number of mean fields increases considerable. For instance, a
cluster with 16 sites (see Fig. 5) has four border sites with 24

spin possible configurations. It means that we should evaluated
25 mean fields (24 for the corner spins and 24 for other spins in
the cluster border). However, we assume a new approach for
the CCMF in order to allow a solution with a smaller number
of mean fields, which we call adapted CCMF. We suggest that
only the state of the site i and its nearest neighbors in the same
frontier of cluster ν are taken into account to obtain the mean
fields that act on the site i. In this case, there are four possible
mean fields acting on the corner site clusters and eight possible
mean fields if the site i is not on the corner.

For instance, let us consider a square lattice cluster with
16 sites (Fig. 5). The mean-field that acts on site 2 (mσ1σ2σ3 )
depends on the spin states of sites 1, 2, and 3, while the mean
fields on site 1 (mσ1σ2 and mσ1σ5 ) depend on the spin states of
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FIG. 5. Schematic representation for a cluster with ns = 16. It is
used in the same convention as described in the legend of Fig. 1.

sites 1 and 2, and 1 and 5. Therefore, instead of computing 25

mean fields in the original CCMF approach, we can decouple
the clusters evaluating at maximum 12 mean fields with the
present adapted CCMF. This condition for the number of mean
fields is also valid to large clusters. It means that in the adapted
CCMF the number of mean fields is limited to 12 no matter
the cluster size.

This procedure is also used to deal with the cluster SG
model when ns > 4. The long-range disordered interactions
are treated introducing the SG order parameter as before.
However, the interactions J0 between neighbor clusters are
approached as described above by the adapted CCMF. The
effective one-cluster model can then be written as

Heff = −J (ξ + η)q
∑
i∈ν

σi −
∑

(i,j )∈ν

J0σiσj −
∑
i∈ν̄

heff
i σi,

(14)

where ν̄ represents border sites of cluster ν. The effective field
heff

i = J0(mσiσj + mσiσk ) if the site i belongs to the corner of
cluster ν or heff

i = J0m
σkσiσj for others sites of ν̄ (j and k are

the nearest neighbors of site i belonging to the border). For
example, we consider below clusters with ns = 16 for both
cases: FE and AF short-range interactions.

1. Ferromagnetic interactions

The fields mss ′
and mss ′s ′′

are evaluated by following an
analogous procedure as in Sec. II A. mss ′s ′′

is obtained from

mss ′s ′′ =
〈

Trσk′ exp(−βH ′
eff)

Tr exp(−βH ′
eff)

〉
ξη

, (15)

TABLE I. Comparison of the Tc/J0 obtained for the case without
disorder and several ns . The exact result is also exhibited.

ns 4 9 16 20 Exact

Tc/J0 2.362 2.362 2.361 2.358 2.269

where k′ = 14′ (see Fig. 5) and the Hamiltonian of cluster ν ′
considers that spins σ13′ , σ14′ , and σ15′ couple with spins s, s ′,
and s ′′ of cluster ν (sites 1, 2, and 3), respectively. Explicitly,

H ′
eff = −J (ξ + η)q

∑
i∈ν ′

σi −
∑

(i,j )∈ν ′
J0σiσj −

∑
i∈ν̄ ′

i �={13′ ,14′,15′ }

heff
i σi

− J0sσ13′ − J0s
′σ14′ − J0s

′′σ15′ . (16)

For computing mss ′
, we consider Eq. (8) with k′ = 13′ and

H ′
eff defined in Eq. (16), in which J0s

′′ is replaced by heff
15′ . In

this case, spins σ13′ and σ14′ couple with spins s (σ1) and s ′
(σ2), respectively.

It is important to observe that mss ′
, mss ′s ′′

, and q [see
Eq. (5) with Heff defined in Eq. (14)] have to be solved
self-consistently. After the magnetization can be obtained. The
results for clusters with ns = 4 are recovered (fields mss ′s ′′

are
not present).

This adapted CCMF treatment (without disorder) can im-
prove the results for Tc when ns increases. For example, Table I
shows the temperature Tc/J0 for PM-FE phase transition when
J = 0 with several ns . The Tc becomes closer to the exact result
for square lattice Ising model (Tc/J0 = 2.269) as ns increases.
However, the computational cost also increases with ns .

In this work, the main advantage of increasing the cluster
size is to study the competition between the ordered phases and
the CSG phase. For this purpose, we construct phase diagrams
of the critical temperatures as a function of J0/J when ns

is increased (see Fig. 6). We can clearly see that the CSG
phase is favored by increasing the cluster size. In particular,
the FE short-range interactions can increase the total magnetic
moment of clusters Sν , which is also affected by ns . For the
present approach, the increase of Sν can amplify the effect of
disordered interactions.

The Tf can also be located by using the expansion of the
Appendix, which helps to understand the relation between Tf

and the cluster magnetic moment. From Eq. (A3), Tf /J =
〈SνSν〉0/ns , where 〈SνSν〉0 is associated to the intensity of
cluster magnetic moment at the PM-CSG transition. The
correlation 〈SνSν〉0 increases with ns for FE short-range
interactions. As a result, the Tf can be displaced to higher
temperatures (see the inset of Fig. 6). However, there is always
a critical value of J0/J where the FE order becomes dominant.
On the other hand, the Tc/J is little affected by the increase
of ns . At the scale of Fig. 6 the Tc changed for different ns

becomes almost imperceptible.

2. Antiferromagnetic interactions

To study the AF-CSG competition for large ns we consider
a two-sublattice structure. Equations (14)–(16) are then written
with an explicit distinction between the sublattices, say A and
B. The symmetry of the mean fields can also be explored:
mss ′

A = −ms̄s̄ ′
B and mss ′s ′′

A = −ms̄s̄ ′ s̄ ′′
B . The numerical evaluations
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FIG. 6. Phase diagrams T/J vs. J0/J for several cluster sizes: 4,
6, 8, 9, 12, and 16. The inset exhibits Tf /J as a function of ns for
J0/J = 0.1. The Tf increases with ns and J0 at the same time that
the enhancement of J0 can stabilize the FE phase.

for the mean fields, SG order parameter, and staggered
magnetization follow analogous to the case treated in Sec. II B,
however, with the adapted CCMF for large clusters.

For AF clusters without disorder, the TN gradually con-
verges to the exact result when ns increases as in the FE case
(TN presents the same values of Tc found in Table I). For AF
clusters with disorder, the effects of increasing ns and J0 on
the freezing temperature are presented in the phase diagrams
of Fig. 7. The CSG phase is always decreased by increasing
the AF coupling strength. As pointed before, this reduction
is attributed to the decreasing of the total magnetic moment
of clusters due to the presence of short-range AF interactions

FIG. 7. Phase diagrams T/J vs. J0/J for antiferromagnetic
interactions and several cluster size. The inset exhibits the behavior
of Tf when ns increases for a constant J0/J = −0.1.

(cluster with compensated spins). These interactions affect the
disordered intercluster coupling (see Appendix) at the same
time that can favor the AF order.

The increase in cluster size also reduces the CSG region.
However, different from J0, ns can increase the number of
spins that couple antiferromagnetically inside the clusters.
This situation can energetically favor cluster configurations
with a high number of AF spin couplings and low Sν .
As a consequence, the disordered intercluster interactions
are weakened and the CSG phase occurs only at lower
temperatures (see the inset of Fig. 7). It means that the increase
of ns intensifies the effects of J0 on the CSG phase. In addition,
for strong AF coupling, the AF order is found where the Néel
temperature is practically independent of the cluster size.

IV. CONCLUSION

We have presented a study of the competition between
cluster SG, FE, and AF. Ising spin clusters with vH type of
disorder and short-range interactions have been considered.
The disorder has been computed within the mean-field theory
without the replica trick, in which the CCMF treatment has
been used to decouple the FE-AF intercluster interactions.
The original CCMF theory has been adapted to consider the
AF case and several cluster sizes for the square-lattice.
The resulting effective one-cluster model was then evaluated
exactly.

The results show that the presence of FE interaction
inside the clusters favor the SG behavior. The short-range
FE interactions potentialize the disordered couplings between
magnetic moments of clusters, which brings the CSG phase
to higher temperatures. The increase of cluster size also plays
an analogous role. However, there is always a critical value of
J0/J in which the long-range FE order is found. In particular,
the increase of J0 introduces FE correlations that gradually
overcome the CSG phase.

The presence of short-range AF interactions reduces the
CSG phase. These interactions cause a spin-cluster compensa-
tion that decreases the cluster magnetic moment weakening the
intercluster disordered coupling. The CSG phase is replaced
by the AF order that becomes stable for small intensities
of J0/J . When the cluster size increases, the CSG region
diminishes. However, the critical temperature TN (and also Tc)
is weakly dependent of cluster size. The cluster interpretation
has meaning when the disordered interactions are able to
produce a SG behavior in the present approach. Furthermore,
the behavior of the freezing temperatures with ns suggests that
the cluster surface spins can be important to the disordered
intercluster couplings in order to introduce the CSG phase.

Although these results are obtained for a specific type of
cluster geometry and disorder, the present approach can be
extended for others types of cluster geometry and disorder.
Therefore, it can be useful to study problems where the effects
of surface of the cluster are relevant to the CSG behavior as
proposed in Refs. [7–10].
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APPENDIX: SG-PM PHASE TRANSITION

The SG order parameter, Eq. (5), can be expressed as

q = 1

ns

∫ ∞

−∞

dxe−x2/2

√
2π

Tr
√

2x
2 Sνe

−βHeff

Tre−βHeff
, (A1)

where the average over the Gaussian probability distributions ξ

and η were explicitly used and evaluated as an integral over x.
The continuous PM-CSG phase transition can also be

located by expanding the SG order parameter in powers of q:

q = 1

ns

〈Sν〉0 + βJ

ns

[〈SνSν〉0 − (〈Sν〉0)2]q + O(q2), (A2)

where 〈· · · 〉0 = Tr · · · e−βH 0
eff /Tre−βH 0

eff with H 0
eff = Heff (q =

0). At the PM-CSG phase transition, 〈Sν〉0 represents the
magnetization that is zero. Therefore, the freezing temperature
Tf (βf = 1/Tf ) for continuous PM-CSG phase transition can
be located by solving

1 − βf J

ns

〈SνSν〉0 = 0, (A3)

where 〈SνSν〉0 can be interpreted as the intensity of the total
magnetic moment of cluster.
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