
PHYSICAL REVIEW E 89, 062113 (2014)

Emergence of patterns in random processes. II. Stochastic structure in random events
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Random events can present what appears to be a pattern in the length of peak-to-peak sequences in time series
and other point processes. Previously, we showed that this was the case in both individual and independently
distributed processes as well as for Brownian walks. In addition, we introduced the use of the discrete form of
the Langevin equation of statistical mechanics as a device for connecting the two limiting sets of behaviors,
which we then compared with a variety of observations from the physical and social sciences. Here, we establish
a probabilistic framework via the Smoluchowski equation for exploring the Langevin equation and its expected
peak-to-peak sequence lengths, and we introduce a concept we call “stochastic structure in random events,” or
SSRE. We extend the Brownian model to include antipersistent processes via autoregressive (AR) models. We
relate the latter to describe the behavior of Old Faithful Geyser in Yellowstone National Park, and we devise a
further test for the validity of the Langevin and AR models. Given our analytic results, we show how the Langevin
equation can be adapted to describe population cycles of three to four years observed among many mammalian
species in biology.
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I. INTRODUCTION

When we view time series or other point process data, we
try to identify a pattern in what we see, but ultimately we must
address the question of whether the pattern is real or illusory.
We usually expect that “random uncorrelated events,” in space
and/or time, should be devoid of any underlying order.

A classic example emerges in wildlife management, where
the population of various animal species in different locations
is tracked on an annual basis. Cole [1] presented data gathered
by many others relating to the Arctic fox and wolf populations
in Canada. He looked for apparent regularity in population
peaks, which he and others before him identified using the
years in which the population was greater than the population
in both the previous and succeeding years. Cole and others
observed what appeared to be a three- to four-year cycle. This
ostensible cycle was, in part, the basis for research over many
decades on predator-prey cycles plus a host of environmental
influences, including spatial variability, etc. However, as Cole
noted, he was able to observe a similar three- to four-year cycle
in plotting random numbers from published tables that were
in common use at that time.

His mathematician colleague, Mark Kac, provided a simple
argument establishing that three-year or three-event “cycles”
would emerge for random events, i.e., an independent and
identically distributed (i.i.d.) time series such as Gaussian
white noise. Kac’s argument, presented as a brief footnote,
was essentially that the probability that a given point is a
peak requires that you compare its value with its immediate
predecessor and successor. For i.i.d. random variables, the
likelihood that it is a peak is therefore 1/3. Hence, if 1/3 of all
events are peaks, then there must be on average three events
per peak-to-peak sequence.

Newman et al. [2] succeeded in finding the distribution
of peak-to-peak sequences for i.i.d. random variables as a
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function of the number of intervening events. They went on
to show that a pure “Brownian walk” would also manifest
similar cyclical or clustering behavior. In a Brownian walk,
the amplitude of the middle of the three events mentioned
above is assumed to have the same value as the preceding
event plus a randomly selected addition. Further, we assume
that the final event has the same value as the middle one
plus another randomly selected addition. Assuming that the
distribution of the additive random variable has a vanishing
median, the probability of each of those two independent steps
is 1/2, making the likelihood that the central point is a peak
1/4. Hence, there must be on average four events per peak-to-
peak sequence. Newman et al. [2] also succeeded in finding
the distribution of peak-to-peak sequences for Brownian walk
associated random variables as a function of the number of
intervening intervals.

Newman et al. [2] went on to consider a family of models
that interpolate smoothly between the i.i.d. case and the
Brownian walk situation. This is elaborated in [2] and is
intimately related to the discrete form of the Langevin equation
encountered in statistical mechanics [2–4], namely

xn+1 = αxn + ηn. (1)

The fundamental equation (1) is shown above, where the
parameter 0 � α � 1. Here, we observe that α = 0 corre-
sponds to the i.i.d. problem while α = 1 corresponds to the
Brownian walk problem. The case α = 1 is a special and
singular case, and its formal treatment is sometimes referred
to as “renewal theory” [5–7] and requires specialized methods
for its treatment. The fundamental results emergent from that
case for peak-to-peak cycles were derived in [2]. In the original
formulation of the Langevin problem, it was generally assumed
that the distribution function describing the random step ηn had
a thermodynamic origin and, hence, a Maxwell-Boltzmann
distribution, i.e., a Gaussian.

Equation (1) also appears in a classic problem of time-
series and spectral analysis, where it is known as a (first
order) “autoregressive” (AR) model [8–10]. This model is
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commonly used in a variety of signal processing applications in
circumstances where −1 � α � 1. As we will shortly see, we
will now extend the domain of interest for α to include negative
values that are smaller than unity in magnitude. While α > 0
intuitively relates to situations in which there is some memory
present or “persistence” of the preceding event, it follows that
α < 0 relates to “antipersistent” issues or negative feedback.
Assuming that the process that produces ηn is stationary, i.e.,
invariant over time, it is immediately observed that we can
estimate α according to

α = E(xn+1xn)

E
(
x2

n

) = E(xn+1xn)

E
(
x2

n+1

) , (2)

where we have used E(· · · ) to designate the mean or expected
value with respect to the quantity enclosed in parentheses.
The properties of Eq. (1) depend critically on the inequality
present in our description of α since this variable appears in
infinite sums of the form 1 ± α + α2 ± α3 . . . as well as other
expressions where α = ±1 would result in divergent results.
Hence, the methods of renewal theory are very different from
those that we apply here for |α| < 1. We will return to the
issue of estimating α later in this paper.

Newman et al. went on to compare the statistics of
observed complex phenomenon, including the magnitudes and
time intervals between great earthquakes, the time intervals
between auroral electrojet index events as a measure of the
Earth’s magnetospheric response to solar activity, the time
intervals between successive eruptions of Old Faithful Geyser
in Yellowstone National Park, and the Standard and Poors
500 relative change in daily closing stock market prices.
Agreement between these natural and social phenomena with
the theory presented in [2] varied from excellent (earthquakes)
to poor (Old Faithful Geyser), and it provided an empirical
basis for a methodology that we presently call “stochastic
structure in random events” (SSRE). We will return later to
the situation presented by Old Faithful and show that it is
consistent with antipersistent behavior.

Newman et al. performed Monte Carlo simulations assum-
ing an underlying uncorrelated Gaussian random variable to
develop an appreciation for the variability of the cycle or
sequence length as a function of 0 � α � 1. What we observed
in [2] validated our conjecture that random events could
manifest in patterns or structures despite having an underlying
stochastic character. In this paper, we approach the problem
of establishing the mean peak-to-peak sequence length as a
function of α using analytic methods derived from probability
theory, especially the Smoluchowski equation. The outcome
of the present investigation is that we have a closed-form
expression for the cycle length as a function of α that smoothly
interpolates between the two extremes, and it agrees within
the expected statistical error with the Monte Carlo simulation
results presented in Fig. 7 in [2]. Moreover, it extends the
range of α to negative values, thereby providing insight into
peak-to-peak cycles that will be observed in antipersistent
phenomena. As an illustration, we will apply our analytic
results to the Old Faithful Geyser data considered in Newman
et al. We now claim that the results presented here and in
[2] demonstrate SSRE, the concept that random processes can
manifest what appears to be organized behavior.

II. SMOLUCHOWSKI AND FOKKER-PLANCK
EQUATIONS

Einstein [11] pioneered the theory underlying Brownian
motion. Later, Smoluchowski [12] extended the coordinate-
space definition of the problem to account for the influence
of an external force on the Brownian particle. Importantly,
he established a probabilistic approach to the problem. More
accessible treatments are available in textbooks [4,13]. The
problem at hand is more complicated than that which can
readily be expressed using his methodology. As we shall see,
we will need to address an infinite sequence of convolutions
that introduces a profound methodological barrier to solving
this problem. However, using the method of characteristic
functions [6,14,15] that exploit the properties of Fourier
transforms, these complications can be readily overcome, as
we show below.

We shall assume that the probability density function p(ηn)
that describes the distribution of steps ηn taken is known. In
many instances, it can be regarded as normally distributed.
Moreover, it is stationary, i.e., it is independent of the step n

taken. Without loss of generality, we shall assume that it has a
zero mean and unit variance. We wish to obtain the relationship
between the probability density function fn+1(xn+1) given that
we know fn(xn) and p(ηn). We shall assume that we know the
original probability distribution function f0(x0). Further, we
shall assume that it is initially the same as the distribution
function for steps, namely

f0(x0) = p(x0). (3)

We have assumed that it has a mean of zero; as is well known
for the Langevin equation, the fluctuation-dissipation theorem
relates the variance of xn to that of η. Importantly, the variance
will remain finite as long as |α| < 1.

To find the functional relationship between the distribution
functions fn, we employ the method of characteristic func-
tions. To do this, we need to define Fourier transform pairs for
all relevant quantities, and we shall employ an overlying caret
to designate a transformed quantity. Hence, we have that

p̂(k) =
∫ ∞

−∞
dη p(η) exp(ikη), (4)

and so on. The inverse transform, in general, will satisfy

p(η) = 1

2π

∫ ∞

−∞
dk p̂(k) exp(−ikη). (5)

Since we are dealing with probability densities, it will
generally be the case that the transform evaluated at 0 will
be unity, e.g.,

p̂(0) =
∫ ∞

−∞
dη p(η) = 1. (6)

Accordingly, invoking Eq. (1), it follows that

f̂n+1(k) ≡
∫ ∞

−∞
dxn+1 fn+1(xn+1) exp(ikxn+1)

=
∫ ∞

−∞

∫ ∞

−∞
dxn dηn fn(xn) p(ηn) exp[ik(αxn + ηn)]

× f̂n(kα)p̂(k). (7)
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Before proceeding, we observe that the characteristic function
is the Fourier transform of a distribution function and,
accordingly, presents all moments of the distribution via the
associated powers of k. For example, we observe that

p̂(k) = E(exp ikη)η =
∞∑

�=0

i� k�

�!
E(η�)η. (8)

In principle, therefore, knowledge of all moments of a
distribution function allows us to reconstruct it exactly. In this
way, we are obtaining the relationship between the distribution
functions for all of our random variables.

Before proceeding, we wish to employ Eq. (7) to obtain a
general formula for f̂n(k). It follows immediately that

f̂1(k) = f̂0(kα)p̂(k) = p̂(kα)p̂(k), (9)

where we employed Eq. (3). Similarly, it follows that

f̂2(k) = f̂1(kα)p̂(k) = p̂(kα2)p̂(kα)p̂(k), (10)

and, by induction, that

f̂n(k) =
n∏

m=0

p̂(kαm). (11)

Since limk→0 p̂(k) = 1, we generally expect that the limit of
this sequence will exist for |α| < 1.

As an illustrative and commonly encountered example,
suppose that p(η) is a Gaussian with zero mean and unit
variance, say g(η) given by

g(η) =
√

1

2π
exp

(
−η2

2

)
. (12)

It is easy to show that

ĝ(k) = exp

(
−k2

2

)
, (13)

which is itself a Gaussian in k with zero mean and unit variance.
We can now calculate the corresponding value of f̂g in the limit
n → ∞ for |α| < 1, namely

f̂g(k) = lim
n→∞

n∏
m=0

exp

[
−k2 α2m

2

]

= exp

[
−k2

2

∞∑
m=0

α2m

]

= exp

[
− k2

2(1 − α2)

]
. (14)

This can be Fourier inverse-transformed immediately to give

fg(x) =
√

1 − α2

2π
exp

[
− (1 − α2) x2

2

]
. (15)

This latter result, valid for |α| < 1, will be employed in the
remainder of this paper.

We now wish to inverse-transform Eq. (7) to obtain our
desired result in the original domain, in contrast with its
Fourier representation. Accordingly, let us inverse-transform

the following relation:

fn+1(y) = 1

2π

∫ ∞

−∞
dk f̂n+1(k) exp(−iky)

= 1

2π

∫ ∞

−∞
dk f̂n(kα)p̂(k) exp(−iky). (16)

We now introduce the relationship between the Fourier
transform of fn and p into the latter to obtain

fn+1(y) = 1

2π

∫ ∞

−∞
dk exp[−iky]

( ∫ ∞

−∞
fn(x) exp[ikαx]

)

×
( ∫ ∞

−∞
p(η) exp[ikη]

)
. (17)

We perform the k integral first and employ the usual
relations for Dirac δ functions, namely

fn+1(y) =
∫ ∞

−∞

∫ ∞

−∞
dx dη fn(x) p(η)

× 1

2π

∫ ∞

−∞
dk exp[ik(αx + η − y)]

=
∫ ∞

−∞

∫ ∞

−∞
dx dη fn(x) p(η)δ(αx + η − y)

= 1

α

∫ ∞

−∞
dη fn

[
y − η

α

]
p(η). (18)

This is the usual formulation of the Smoluchowski relation
[13], sometimes called the Fokker-Planck equation [4]. As
α → 0, the 1

α
fn[ y−η

α
] term effectively turns into a Dirac δ

function making fn(x) essentially the same as p(x). This
seeming singularity can be eliminated by a simple variable
transformation, namely

x ≡ y − η

α
; (19)

this can be turned around and written as

y = αx + η, (20)

which is our original Langevin equation. Thus, this behaves
like the mapping that takes us from x due to the random step
η to our new value y. With this transformation, it follows that

fn+1(y) =
∫ ∞

−∞
dx fn(x) p(y − αx). (21)

Unlike the usual expression of the Smoluchowski recursion
Eq. (18), this expression is strictly valid for 0 � |α| � 1, al-
though the case α = ±1 does not admit a limiting distribution
as n → ∞. As we have already observed, the application
of Fourier transforms, thanks to the convolution theorem,
dramatically simplifies the calculation of the infinite sequence
of fn(y) distribution functions.

III. CONDITIONAL PROBABILITIES AND MEAN
PEAK-TO-PEAK SEQUENCE LENGTH

In the previous sections, we have introduced the linear
stochastic model Eq. (1) and, using the method of characteristic
functions exploiting Fourier transformations, obtained the
Smoluchowski relation Eq. (21). The latter expression could
have been derived using Bayesian conditional probability
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arguments, but that would have left us with the problem
of calculating the fn(y) as n approached infinity. We have
already observed the utility of our Fourier-based methodology
and exploited it in obtaining both the Smoluchowski relation
and the evolution in time n as well as limiting values of the
probability distribution.

Now, in order to evaluate the likelihood that the nth event is
a peak, we need to calculate the probability that xn−1 < xn >

xn+1. Given the Langevin equation (1), it follows, given that
we know xn−1, that we must consider the admissible range of
the random variables ηn−1 and ηn, since we must have

xn = α xn−1 + ηn−1 > xn−1 and xn+1 = α xn + ηn < xn.

(22)

(We are ignoring the possibility of equal xn values inasmuch
as they would normally constitute a set of measure zero.)
For notational convenience, we shall eliminate the role of the
subscripts and employ the random variables x, y, and z in
place of xn−1, xn, and xn+1. In this way, we are appropriately
introducing the role of conditional variables into this problem,
and this can now be directly introduced into our Smoluchowski
relation (21).

In particular, we will restrict our range of integration to
assure that xn+1 < xn (i.e., z < y) after first evaluating the
probability density for xn > xn−1 (i.e., y > x). In this instance,
we replace n by n − 1 in Eq. (21) and limit the range of
integration for x to (−∞,y). We will call this new conditional
probability f c

n (y), which is given by

f c
n (y) =

∫ y

−∞
dx fn−1(x) p(y − αx). (23)

For the Gaussian case described earlier in Eq. (15), we then
obtain the closed-form result

f c
g (y) =

∫ y

−∞
dx fg(y) g(y − αx)

=
√

1 − α2

8π
exp

[
−(1 − α2)

y2

2

]
erfc

[
−(1 − α)

y√
2

]
.

(24)

To complete this problem, we must now require that ηn be
such that z < y as in Eq. (22); hence, we require that ηn <

(1 − α)xn or η < (1 − α)y, where we have introduced y and,
for convenience, omitted the subscript from η. We can now
calculate the probability P that the intermediate event y is a
peak. In particular,

P =
∫ ∞

−∞
dy f c

n (y)
∫ (1−α)y

−∞
dη p(η). (25)

While this result does not appear to have an immediate
simplification, the Gaussian case remarkably does simplify
and the associated probability of there being a peak Pg can be
expressed after some algebra as a single integral,

Pg = 1

4
√

π

∫ ∞

−∞
dζ exp(−ζ 2) erfc2

(√
1 − α

1 + α
ζ

)
. (26)

For the case α = 0, we can employ the derivative relationship
between the exponential that appears in the former expression
and the (complementary) error function, and we obtain 1/3,

FIG. 1. Expected mean number of points per cycle N (α).

as expected. For the case α = 1, the error function term
becomes 1 and, following some trivial algebra, we obtain
1/4 as expected. Similarly, for α = −1, the error function
term becomes 0 for ζ > 0 and becomes 2 for ζ < 0, and we
obtain 1, implying a mean peak-to-peak length of 2. Intuitively,
this latter result follows from Eq. (1), since we expect that
E(|xn|) � 1 for large n, which converts a peak into a valley
and a valley into a peak presenting an average cycle length of
2. Finally, by taking its derivative with respect to α, we observe
that the expression for Pg is strictly monotone decreasing in
the interval [0,1]. Our integral Eq. (26) seemingly lacks a
simple analytic expression [16].

To illustrate this behavior, we have numerically evaluated
the integral in Eq. (26) and plotted its reciprocal, which we
call N (α) against α. In addition, we have compared our results
with the Monte Carlo simulations we reported in [2], and we
observed, to the requisite numerical accuracy, that they are the
same.

Returning to our [2] formal treatment of Yellowstone’s Old
Faithful Geyser [17–20], with data extracted from [21], the
observed mean peak-to-peak cycle length of 2.6685 implies
using Fig. 1 that α ≈ −0.42, while from Eq. (2) for the
time series α ≈ −0.313. While qualitatively similar, the two
estimates differ quantitatively. By examining the empirical
distribution function for the raw data, it is observed to be
“long-tailed” and is far from a normal distribution; hence,
the departure between the two estimates can be appreciated.
The mechanism underlying the geyser phenomenon is not
understood in detail, although some progress has been made
[18–20]. It involves the filling and subsequent evaluation of a
subterranean reservoir. If, following an eruption, the reservoir
does not fill completely before its next eruption, i.e., the time
to eruption is less than average, we expect a longer than
average time for the reservoir to fill prior to the following
eruption, and vice versa. Hence, we anticipate an alternation
between shorter and longer time-to-eruption intervals, which
is manifestly antipersistent.

To better visualize the outcome of the Langevin and
first-order autoregressive equation (1), we present in Fig. 2 a
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FIG. 2. (Color online) Realization of the discrete Langevin equa-
tion or first-order autoregressive process (1) for α = 0.42,0.00, and
−0.42, from top to bottom.

realization of the process for three values of α. In each instance,
we allowed the system to evolve from x0 = 0 over an extended
period of time, i.e., for n = 1, . . . ,1000, so that initial condi-
tions would be infinitesimal and employed a normally dis-
tributed pseudorandom generator with unit variance. We show
in each case only the last 50 data points. (For clarity of pre-
sentation, the means of each data set have been shifted by four
units. As a consequence of the fluctuation-dissipation theorem,
the rms amplitudes of the nonzero α realizations have increased
10%.) The middle of these, shown in black, corresponds to
α = 0 and an i.i.d. process. This is the situation described by
Kac mentioned earlier, and we observe that the peak-to-peak
cycle length is approximately 3. The lower one of these, shown
in blue, corresponds to α = −0.42, the parameter that best
fits the apparent cycle length in the Old Faithful Geyser data
displayed by NTM [2] as well as in the preceding paragraph.
Antipersistence is evident. The upper realization, shown in red,
corresponds to α = 0.42 and a peak-to-peak cycle of approxi-
mately 3.37. We will argue shortly that this could be significant
in some biological problems. The cycle length here is more
or less typical of many animal populations, although the
supporting data are not especially strong. With this perspective,
we now proceed to consider the implications of these results.

IV. DISCUSSION

We have sought to expand the notion of patterns emergent
from randomness, which we call stochastic structure in random
events (SSRE), by exploring the mean number of events in a
cluster or cycle defined by the number of events separating
successive peaks. We have defined here a general probabilistic
theory, as well as explicitly evaluating the outcome that can
be expected for an underlying Gaussian distribution. We have
compared our closed-form theoretical results with the Monte
Carlo simulations shown in Fig. 7 of [2], and we observe
that they agree to the expected degree of accuracy presented
by the simulations. While the cases wherein α = 0 or 1
are independent of the underlying random step distribution
function p(η), the intervening range in α is not completely
generic. We have introduced the more general first-order

autoregressive model, allowing for the range of α to be
extended to include negative values −1 � α � 0 in order
to describe antipersistent phenomena, such as Old Faithful
Geyser eruptions. In that context, we have also introduced two
methods for empirically estimating α from observational data,
which can then be applied to processes with memory as well,
i.e., 0 < α < 1. We will focus on this situation in the remainder
of this discussion and its application to biological phenomena,
such as those described at the beginning of this paper.

Our model Eq. (1) could be relevant to a wide array
of problems, e.g., the seeming population cycles of many
mammal species living in radically different environments,
as implied by Cole and Kac [1]. Our model serves, at the
very least, as a null hypothesis in a statistical sense for
this phenomenon. Could there be a biologically compelling
underpinning for this? Imperial College, London, and its
NERC Center for Population Biology [22] has amassed a
very comprehensive set of population biology related data.
However, these data sets tend to be relatively short, particularly
in comparison with the earthquake and magnetic substorm data
presented in [2]. Biological environments and the processes
prevailing there are incredibly complex. One could draw an
analogy with a hydrodynamic system, which itself effectively
has an infinite number of degrees of freedom, yet is simpler—
due to its intrinsic homogeneity—than the biological case.
Nevertheless, a single dimensionless parameter, such as a
Reynolds number or a Taylor number, in hydrodynamic
problems can often provide important insights. Could this also
be true in the biological realm? How can Eq. (1), therefore,
be interpreted.

Building on our crude analogy with complex hydrodynamic
processes, let us assume that the ηn represents the number of
surviving births emerging from the nth generation. (Strictly
speaking, both ηn and xn in this application will represent
departures from their respective means.) While the mathemat-
ical biology literature is filled with extensive discussions of
this issue, represented in many instances via solutions to time-
delayed integral-differential equations, we will assume that a
“random” number of births is a not unrealistic metaphor for
the process. The variable xn, naturally, describes the number of
individual members of a given species included in the annual
census in year n. The parameter α, therefore, can be regarded
as the fraction of individuals in the nth generation who survive
and are present in the census performed in year n + 1. (This
conceptual framework excludes unexpected external events
such as environmental catastrophes, etc. In Fig. 2, the upper
or red realization could possibly apply to biological situations
in which, given the choice of α, approximately 42% of the
individuals survive from one generation to the next.) To
what extent, then, can the results obtained for an underlying
Gaussian process be an indicator of the behavior of our model
in such circumstances? Three factors argue for the behavior
being similar, albeit not precisely universal.

(i) The end points α = 0 and 1 yield the mean number of
events in a peak-to-peak sequence N (α) as being 3 and 4,
respectively, as shown in [2] in detail as well as here in a
simple manner for all distribution functions.

(ii) The Lindeberg-Feller theorem [23], a generalization of
the central limit theorem [6], assures under relatively general
conditions that fn will tend to a Gaussian. Hence, the integral
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(25) is not expected to depart substantially from Eq. (26).
Monte Carlo simulations, such as those performed in [2], can
be employed as a check.

(iii) The combined effect of the former items strongly sug-
gests that the relationship for N (α) will remain quantitatively
close to that depicted in Fig. 1.

By building upon these ideas, our application of the
Langevin model (1), as well as the autoregressive model, could
provide important insights into a wide arena of problems in the

physical, life, and social sciences that manifest stochastic
structure in random events.
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