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Nonequilibrium work relation beyond the Boltzmann-Gibbs distribution
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The presence of multiplicative noise can alter measurements of forces acting on nanoscopic objects. Taking into
account of multiplicative noise, we derive a series of nonequilibrium thermodynamical equalities as generalization
of the Jarzynski equality, the detailed fluctuation theorem and the Hatano-Sasa relation. Our result demonstrates
that the Jarzynski equality and the detailed fluctuation theorem remains valid only for systems with the Boltzmann-
Gibbs distribution at the equilibrium state, but the Hatano-Sasa relation is robust with respect to different stochastic

interpretations of multiplicative noise.
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I. INTRODUCTION

The calculation of free energy changes is a central endeavor
of nonequilibrium physics. A series of remarkable equalities,
such as the Jarzynski equality [1], the Hatano-Sasa relation [2],
and the fluctuation theorem [3-9], enables the calculation
of free energy changes from repeated nonequilibrium force
measurements [10—12]. However, a recent experiment for
a Brownian particle near a wall demonstrates that multi-
plicative noise alters measurements of forces on nanoscopic
objects [13]. The force-measurement process thus requires
multiplicative noise to be carefully taken into account. The
uncertainty caused by multiplicative noise can be traced to
the controversy over choosing the interpretation for stochastic
dynamics [14,15]. Therefore, how this uncertainty may affect
the calculation of free energy changes from nonequilibrium
force measurements is crucial to be explored.

In this paper, we provide a series of nonequilibrium ther-
modynamical equalities compatible for the general stochastic
interpretation of multiplicative noise. They can be regarded
as a generalization of the Jarzynski equality, the detailed
fluctuation theorem and the Hatano-Sasa relation. Our re-
sult (7) demonstrates that repeated nonequilibrium work
measurements with the Jarzynski equality does not lead to
the free energy change. Instead, it corresponds to a ratio
of generalized partition functions at the initial and final
equilibrium states. This generalized partition function can
quantify the effect of multiplicative noise and corresponds to
the Helmholtz free energy in the case of the Boltzmann-Gibbs
distribution as the equilibrium state distribution, where the
anti-Ito interpretation is preferable [15,16]. Otherwise, the
generalized Jarzynski equality is dependent on the diffusion
coefficient.

The generalized fluctuation theorem (9) can also reduce
to the conventional detailed fluctuation theorem for nonequi-
librium work distribution under the anti-Ito interpretation.
Interestingly, the generalized Hatano-Sasa relation (11) keeps
the same form as the conventional one even under the general
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stochastic interpretation. Because the Hatano-Sasa relation is
derived originally in the special case with additive noise [2], we
generalize it to systems with multiplicative noise compatible
with the general stochastic interpretation.

We consider the overdamped Langevin dynamics with
multiplicative noise as our model. The fluctuation theorems
derived for these dynamics were usually based on the path in-
tegral framework under Stratonovich’s interpretation [17,18],
or the Feynman-Kac formula under Ito’s interpretation [7].
Our derivation here is for the general stochastic interpretation
by applying a path integral formulation provided in the
Appendix A. It has significant differences compared with
the previous path integral formulas [19-22] and can lead
to correct transition probabilities for the general stochastic
interpretation [23]. With this path integral framework, we can
discuss whether the fluctuation theorems are affected by the
stochastic interpretation.

This paper is organized as follows: In Sec. II, we propose
the generalization of the Jarzynski equality, the detailed
fluctuation theorem, and the Hatano-Sasa relation. In Sec. III,
we give the detailed derivation of our main result by intro-
ducing the reverse process and the path integral framework.
In Sec. IV, we summarize our work. In the appendix, we
provide the construction of the path integral formulation from
the overdamped Langevin dynamics.

II. GENERALIZED NONEQUILIBRIUM
WORK RELATIONS

For the convenience of comparison, we first state the
Jarzynski equality:

Zy[M(tn)]
Z\[M(10)]’
where (---) denotes an ensemble average of measurements
of work, AF is the Helmholtz free energy change between
two equilibria, and Z;[A(zy)] is the partition function cor-
responding to the Helmholtz free energy. The Boltzmann
constant multiplying the temperature (1/8 = kgT) is set to
be a unit. In this equation, W denotes values of work defined
as Wl = f;}” dr3 )7 [1]. The system evolves as A(f) changes
according to a protocol, AF(¢) from time #, to ty, where

(exp(=W)) = exp(-AF) = )
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the superscript F' means the forward process. The system is
assumed initially to be in an equilibrium state distribution (e.g.,
Boltzmann-Gibbs distribution) with A(7) and converges to the
same form of equilibrium state distribution with A(¢y) after
the completion of the manipulation.

To discover the effect of multiplicative noise on the
nonequilibrium work relations, we consider the overdamped
Langevin equation with multiplicative noise in one dimension
as our model:

X = fls0) + gx; ME®), 2

where x can denote the overdamped motion of a colloidal
particle or other system with a single continuous degree of
freedom, x denotes its time derivative, f(x;A) is the drift term
modeling a deterministic force, and g2(x; A)/2 is the diffusion
coefficient. The parameter A can denote a set of control
parameters reflecting such as the influence of an external force
on the system [1]. Here, £(¢) is Gaussian white noise with
(@) =0, (5(1)&(s)) = 8(t — s), where the average is taken
with respect to the noise distribution.

Avoiding mathematical complication, we restrict our dis-
cussion in this paper to the natural (free) boundary condi-
tion [24], which means that the probability current is zero
on the boundary. We do not discuss the periodic boundary
condition, e.g., the motion on a ring [17]. However, the calcu-
lation may be repeated for other boundary conditions [17,24].
Distinguishing the force and gradient of the potential function
is necessary only in the case of the periodic boundary condition
on a ring of finite length [9]. Besides, with recent works on a
decomposition of a dynamical system [25-27], the potential
function can be successfully constructed in systems with the
limit cycle [28,29].

For this Langevin equation, a freedom in choosing the
integration method leads to different stochastic interpreta-
tions [14], and a general notation is the so-called « in-
terpretation [30]: the values 0, 1/2, 1 of « correspond to
Ito’s, Stratonovich’s [14], and anti-Ito’s [16], separately. For a
given Langevin equation with multiplicative noise, a stochastic
interpretation needs to be specified to describe a real process.
The experiments also show different preferable stochastic
interpretations [13,31,32]. Another recent experiment on the
Stratonovich-to-Ito transition (« € [0,0.5]) [33] demonstrates
that the stochastic interpretation can be manipulated, and
different « values cause various concrete consequences in
real processes. Thus, if no prior knowledge is available for
the system under consideration, the stochastic interpretation
adopted should be determined by the available experimental
data. On the other hand, given a Langevin equation with
a specified stochastic interpretation, one can change the
interpretation by adding a corresponding drift term [14,20,30].
Thus, different stochastic interpretations can be transformed
from one to another in a mathematically consistent manner.

For the Langevin equation under the « interpretation, the
corresponding dynamical process for the probability distribu-
tion is given by the following Fokker-Planck equation [30]:

dp(x,t) = =3, [(f + ag'@)p(x,n] + 587[8°p(x,0)],  (3)

where the superscript prime denotes derivative to x. We assume
that the probability distribution described by the Fokker-

PHYSICAL REVIEW E 89, 062112 (2014)

Planck equation converges to the normalized distribution:

:Oeq(X;)") = Zah) exp[_Veq(-X;)\)]s 4
where the generalized partition function is
+00
2,09 = | explViy(iblar. )
—0Q

From the condition that the probability current in the Fokker-
Planck equation is vanishing under the natural (free) bound-
ary condition for the equilibrium state, j(x,r) =[f + (o —
Dg'glp(x,t) — (g2/2)d, p(x,t) = 0, the explicit form for the
“equilibrium state potential” is [15]

Veg(x31) = ¢(x; 1) + (1 — ) In g%(x; 1). (6)

Here, ¢(x; 1) denotes the potential function constructed in
the overdamped Langevin dynamics (2). It satisfies f(x; 1) =
—[g%(x;1)/218,¢(x; 1) with the help of the Einstein re-
lation [13,25,34]. It corresponds to the Boltzmann-Gibbs
distribution at the equilibrium state: pgg(x; 1) = exp[F(A) —
¢(x;1)], where F(L) is the Helmholtz free energy for the
canonical ensemble. For the system without detailed balance,
this potential function can also be constructed with the
aid of the generalized Einstein relation [26,27]. From the
point of view of a dynamical system, the potential function
¢ serves as the Lyapunov function guiding dynamics to
the attractor [28,29,35] and equals the Hamiltonian with
symplectic structure in a limiting case [25].

Taking into account multiplicative noise, we obtain the gen-
eralized the Jarzynski equality for the overdamped Langevin
dynamics:

Zo[AM(1N)]
Zo[M10)]

where W denotes values for the work along a single trajectory,
which is defined as

~ w3V,
wh = / i by 7y 8)
o ENS

(exp(—=W)) = @)

The work defined by Eq. (8) is the external work done on the
system [7]. It is physically measurable in experiments, and
repeated measurements on it for the nonequilibrium process
leads to the free energy difference between equilibria [11,36].
An interesting special case is when the diffusion coefficient
is independent of the control parameter, i.c., when g(x,2)
becomes g(x). In this situation, the work WT is equivalent
to f,f)” AF(d¢p/ar)dt [27], and W = W for the system gov-
erned by the Hamiltonian even under the general stochastic
interpretation.

Under the anti-Ito interpretation (¢ = 1), Z,(X) becomes
the conventional partition function corresponding to the
Helmholtz free energy: F(A) = —1In Z;(A) [27]. The value
o = 1 is also verified as the proper choice for calculations on
the mesoscopic forces in a recent experiment [13]. The reason
is that the anti-Ito interpretation leads to the Boltzmann-Gibbs
distribution at the equilibrium state [15], i.e., p.(x;1) =
ppc(x;A). In this case, Eq. (7) reduces to Eq. (1). As a result,
Eq. (7) demonstrates that the free energy difference could be
accurately calculated by nonequilibrium work measurements
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using the Jarzynski equality only for the system with the
Boltzmann-Gibbs distribution at the equilibrium state. For
general cases, In(exp(—W)) does not corresponds to the
Helmbholtz free energy difference between two equilibriums.

The above result (7) is obtained from the generalized
fluctuation theorem:

prV) _ ZulMen)]
PR=W) — Zali(t0)]

with the detailed derivation through the path integral frame-
work in the following. Similarly, only when o =1 does
Eq. (9) reduce to the detailed fluctuation theorem for the
nonequilibrium work distribution [3]:

pF (W)
pR(=W)
The generalized Jarzynski equality describes the relation
between the free energy change and the work. Another equality

about the equilibrium state distribution p., is given by the
generalized Hatano-Sasa relation. To see this, we can rewrite

Eq (7) as

Note that Eq. (11) is the same as the conventional Hatano-Sasa
relation [2,11] even for the general stochastic interpretation.
Thus, Eq. (11) shows that the Hatano-Sasa relation is robust
with respect to the stochastic interpretation.

The previous work on nonequilibrium work relations for
systems with multiplicative noise [17] is derived by the path
integral formulation under Stratonovich’s interpretation. Their
work is different from our result of « = 1/2 but holds the same
form as that of o« = 1. Besides, our work is a generalization
of the previous work about the generalized Jarzynski equality
based on the Feynman-Kac formula in the inhomogeneous
diffusion process [7]. The diffusion process considered there
is under Ito’s interpretation. In addition, our result is consistent
with the work by studying the Liouville-type equation with the
Feynman-Kac formula [36].

xp(W), 9)

=exp(W — AF). (10)

III. DETAILED DERIVATION OF MAIN RESULT

In this section, we demonstrate how to derive Eq. (9) by first
introducing the reverse process. For the dynamics described
by Eq. (3), we take the reverse process governed by the reverse
protocol AR(t) = Af(—t) and the following transformation
T [34,37]:

f—=f—00-2wg's. (12)

The idea of the construction of this transformation is as
follows: First, we let t — —t, and then we need @ — (1 — @)
to ensure that our observation of the trajectories for the forward
and the reverse processes is at the same series of points on the
time axis. Second, after replacing o by 1 — «, the equilibrium
state distribution for Eq. (3) is changed. To guarantee that the
reverse process subjects to the «-interpretation Fokker-Planck
equation with a reverse current [only with # — —¢ in Eq. (3)],
we should also modify the drift term accordingly, which leads
to the transformation 7 . Thus, this transformation ensures that
the forward and the reverse processes converge to an unique

t—> —t, a— (1 —0a),
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form of the equilibrium state distribution, and we will use this
property in the following derivation. In a recent experiment
realizing the Stratonovich-to-Ito transition [33], the drift part
added with the term ag’g (« € [0,0.5]) can be implemented.
Therefore, the the reverse process given by the transformation
7T is achievable experimentally.

We next give the detailed derivation of Eq. (9) through
calculating the ratio between the transition probabilities of
the forward dynamical process and the corresponding reverse
process. To guarantee that the forward and the reverse
processes are described by the same set of sampling points, the
fluctuation theorem for the overdamped Langevin dynamics
with multiplicative noise was usually based on the path integral
under Stratonovich’s interpretation [17,18]. Our derivation of
the fluctuation theorem here is for the general stochastic inter-
pretation by applying the path integral formulation provided in
the appendix. It follows the path integral formulation recently
developed for the overdamped Langevin dynamics without the
control parameter [23].

According to the path integral formulation derived in the
appendix, the conditional probability of observing a specific
trajectory {x(¢)|fy < t < ty} in the forward process is

PP (xytylxoty) = exp {— /[N 5+[x(f),x(f);)»F(f)]dl},
' (13)
with
Silx(0),x(0); 2" 0] = [ — f — (@ — 1/2)¢'g]*/(2¢%)
+(g/DIf/g + (@ —1/2)8T
—(@Ing/an)AL 2.

Here, we do not write down the measure and will add them
when doing the ensemble average over trajectories.

Next, let the corresponding reverse trajectory 1is
{xT(®)|xT(t) = x(—1)}. Then, the conditional probability of this
reverse trajectory is

PR(xin,lxgtg) =exp {— / ! S_[x(2),x(2); AF(t)]dt},
' (14)

where S_[x(2),%(t); AF ()] = TS, [x(1),%(t); AF(+)]. Under
the transformation 7, the term g[f/g + (@ — 1/2)g'1'/2 is
invariant. We thus have

Sp(ex; 1) — S (x,x517)
= %3¢ — Qu — 1)xg'/g — (D Ing/dr)AL.

The ratio between the conditional probabilities is

Xp {— /ZN )'c|:8x¢ — Qo — l)gE,i|dt

W alng .
AFde . 15
+/,0 " } (15)

PP (xyty|xoto)
PRl 1xb )

The ratio between the unconditional probabilities is ob-
tained by multiplying the initial distributions. When we choose
Peq as the form of the initial distributions for both the forward
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and the reverse precesses, we have

Pi(x)  glaw,A(n)]
PR(xT)  glxo,A(t0)]
To ensure the normalization condition for the probability,

the measure for the initial distribution should be given
according to p.,. Thus, the measure for the forward process is

xp(W5). (16)

/Dx — ﬂ lim lﬁ[L
 Za[Mt)] N S 2T g [x At

For the reverse process, the corresponding measure can be
written as follows:

a7)

N
dxn

/D P dx,
Zy ()\(to)) N_wo,, | V2wTg xn’)\(t

N-1 d

Z [)‘-(tN) N_)OOH V T8 xnv)\(tn)]

where we have used the conjugate relation for the forward and
the reverse traJ ectories.

Let of(W) denote the distribution of W values by a
realization through the path integral for the forward _pro-
cess, and ,oR(W) for the reverse process. We define WER =
f N AR(B Veq/9A)dt. Then, W is odd under the time reversal in
the sense that WR(x!) = —W ¥ (x). Combing Egs. (16)—(18),
we have

(18)

pf (W) = / Dx PF(x)8(W — W (x))

= ex <~>Z alAx)] / Dx! PRGHSW + WR(xT)
o[A(20)]
~ Zo[M1tn)] R
= W)———— W 19
exp(W)— Z. ] (=W), (19)

which leads to Eq. (9).

IV. CONCLUSION

We have obtained a series of nonequilibrium work re-
lations as a generalization of the Jarzynski equality, the
detailed fluctuation theorem, and the Hatano-Sasa relation
for the overdamped Langevin dynamics with multiplicative
noise. Our result has demonstrated that, in the presence
of multiplicative noise, the free energy change calculated
by nonequilibrium work measurements using the Jarzynski
equality remains valid only for the system with the Boltzmann-
Gibbs distribution at the equilibrium state. For systems with
general stochastic interpretations of multiplicative noise, the
generalized Jarzynski equality has provided a connection
between the nonequilibrium work measurements and the
generalized partition function. The robustness of the Hatano-
Sasa relation with respect to the stochastic interpretation
has also been shown. The nonequilibrium thermodynamical
equalities derived here remain to be tested experimentally.

For the overdamped Langevin dynamics with multiplicative
noise, recent works on a decomposition of the dynamical sys-
tem [25-27] provide a constructive method to find the potential
function leading to the Boltzmann-Gibbs distribution. This
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framework assigns a specific stochastic interpretation for the
Langevin dynamics, which corresponds to anti-Ito’s in one
dimension and goes beyond the « interpretation when the
dimension is larger than one [38]. With this framework, how
to generalize our derivation here to systems without detailed
balance is an interesting topic to be explored.
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APPENDIX: THE PATH INTEGRAL FRAMEWORK

In this appendix, we provide the path integral formulation,
which is used to derive the generalized fluctuation theorem
in the main text. This formulation follows our previous work
on the path integral construction for the Langevin dynamics
without the external control parameter [23].

For the Langevin equation (2) under the « interpretation,
by modifying the drift term, we have the equivalent Langevin
equation under Stratonovich’s interpretation [14]:

X = fh)+ (@ —3)g'e0sh) + gl DEMD, (Al
where the superscript prime denotes the derivative with respect
to x. The advantage of using this Stratonovich’s form is that
ordinary calculus rule can be simply applied [34]. Then, this
equation can be transformed to be a Langevin equation with

a additive noise by a change of variable ¢ = H(x; ) with
H'(x;2) = 1/g(x; 1) [19]:

q —h(g;2) =§(), (A2)

where we have introduced an auxiliary function

FH ()M ( 1), 4
h(g:h) = 127 — =~ ) g (H (q): 1
(q; 1) g(H"(q);A)+ «—3 g(H™(g)2)
AH(H ' (q); 1) .
k. (A3)

To get the transition probability for Eq. (A2), we first
discretize the time into N segments: fp <t < -+ < fy_] <
ty with T =1¢, —t,_; small and let g, = q(,), A, = A(t,).
For the sake of consistency, as we have chosen the equivalent
Stratonovich form; the corresponding discretized Langevin
equation needs the midpoint discretization:

h(Qn, )\n) + h(CIn—l 5 )"n—l)
2

qn — 4n-1 — TZWn_Wn—l»

(A4)
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where W(t) is the Wiener process given by dW(r) = £(t)dt.
Thus, the Jacobian for the variable transformation between
q(t) and W(¢) is

N-1
Oh(gn; An
J%exp[—gz(q—)]

(AS)
~ g

Then, with the property of the Wiener process and the
Chapman-Kolmogorov equation [14], the path integral for-
mulation for Eq. (A2) is obtained:

P(gntnlgoty)

aw w1 1dh
= quxp{—/ [—(q—h)2+——i|dt},
/qo w L2 2 dq

(A6)
where fq‘f)” Dg = limy_, o \/# = s j%. The integral of

the action function in the exponent obeys ordinary calculus due
to the midpoint discretization and the last term comes from the
Jacobian.

By the reverse change of variables x = H~!(g; ) with
dx/dq = g(x; 1), we get the path integral for Eq. (2) under

PHYSICAL REVIEW E 89, 062112 (2014)

the « interpretation:

P(xytnlxoto)

- ool [T (o))

8(f 1\ ,\, 1dlng.
=| = - = - = Aldt g, A7
(G (-)e) 3% 1
where the measure is
w 1 R dx
Dx= lim — /1_____JL___.
%o N*“>v2ﬂngW;AN)£1 V2 Tg(Xn3 Ap)
(AB)

Although the Jacobian term comes from the measure transfor-
mation and does not belong to the conventional action part, it
is usually included in the action function for applications.

The path integral formulation derived in Ref. [23] has sig-
nificant differences compared with the previous path integral
formulas [19,21,22]. It shows that the path integral formulation
for the overdamped Langevin equation with multiplicative
noise is not unique but is o dependent and can generate the
a-interpretation Fokker-Planck equation [30]. It also leads
to transition probabilities obeying the conservation law for
general stochastic interpretations in examples.
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