PHYSICAL REVIEW E 89, 062111 (2014)

Boltzmann distribution in a nonequilibrium steady state: Measuring local potential by granular
Brownian particles
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We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on
vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the
granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at
equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the
platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object
under an effective potential that equals the gravitational potential along the platform surface. The potential energy
is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the
granular temperature is found to be higher than the effective temperature associated with the average potential
energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.
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The Boltzmann distribution, which relates the probability
of finding an equilibrium system with a certain energy, is
a central result from the theory of equilibrium statistical
mechanics [1]. For example, for a colloidal particle trapped
by an optical tweezer in a fluid of temperature T, the
probability of finding the particle at position 7 is proportional
to e PV with U(F) being the potential due to the focused
laser beam, —1 = kT the inverse temperature, and kp the
Boltzmann constant [2]. Hence a Brownian particle can be
used to probe the local potential by examining its equilibrium
position probability distribution. However, is this also true for
aparticle in a nonequilibrium steady state (NESS) instead of an
equilibrium state [3,4]? Observations of Boltzmann [5-9] and
non-Boltzmann [10-13] statistics in driven NESSs have been
reported in the past. The key difference between an equilibrium
state and a NESS is the presence of nonvanishing fluxes in
the latter. For instance, to sustain a dissipative system in a
NESS, energy has to be supplied from the environment to
compensate the dissipation. If the system has more than one
degree of freedom, there may be energy equipartition among
different degrees of freedom [14]. Finding out how energy
flows among different degrees of freedom in a NESS will help
us to understand the physical behaviors of the system [15,16]
and to predict whether or not the Boltzmann distribution and
energy equipartition are valid.

In this paper, we report experimental studies of a dissipative
system in a NESS—a granular object (millimeter-sized poly-
hedron) bouncing on a platform of different shapes. Since the
contact force between a granular object (GO) and the platform
is inelastic, the kinetic energy of the GO will be dissipated
and it will eventually rest on the platform. If the platform
performs vertical oscillations, the GO will oscillate vertically
and it will also acquire horizontal motion from collisions.
Because of the stochastic nature of collisions, the motion of
the GO on the platform resembles that of a Brownian particle
in two dimensions [17]. Our data show that the NESS position
distribution of the GO is indeed related to its local potential,
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determined by the shape of the platform. We also find that
the ratio between the potential and kinetic energies does
not follow the prediction from the equilibrium equipartition
theorem. The possibility of heat flow from kinetic energy to
potential energy is discussed based on the measured granular
temperature and the effective temperature associated with the
averaged potential energy.

The experimental setup is shown in Fig. 1(a). A circular
aluminum platform of radius R = 150 mm with a curved
surface that is 10 mm deep is mounted on an electromagnetic
vibration system (VR) which oscillates the platform sinu-
soidally up and down at 30 Hz and amplitude a. The equation
of the platform with a conical surface [Fig. 1(d)] is given by
z = sir with 51 = 1/15 where z is the vertical position from
the bottom of the platform and r is the radial distance from
the platform center. Similarly the equation for the parabolic
platform [Fig. 1(e)] is z = sor? with s, = % mm~!. A GO,
which is a regular Teflon tetrahedron of edges 10 mm and mass
m = 284 mg, is put on the vibrating platform. Unlike a sphere,
the tetrahedron, which has edges and corners with radius of
curvature 0.3 mm, induces random forces during collision
with the platform and eliminates the regular modes that exist
for spherical objects [18]. A programmable fast camera (CA)
is used to capture images [see Fig. 1(b)] from above. We
program the fast camera to take 10 frames at 100 frames/s
within each second for at least 3000 s. In this way, we capture
dynamics in two different time scales: 0.01 s and 1 s. From
each fast image sequence, we locate the position of the object
by computer codes modified from standard image analysis
software [19] and calculate the average position ¥ = x£ + y3
and velocity U = v,& + v, within a time interval of 0.1 s.
Figures 1(f)- 1(h) show the positions of the tetrahedron on
platforms of different shapes. They are evenly distributed for
the flat platform while those for the conical and parabolic
platforms concentrate around the center.

From the positions and their temporal changes, the velocity
probability densities Py(v) with v = v,,v, and the position
probability densities Py(q) with ¢ = x,y for the tetrahedron
moving on platforms with flat (s = f), conical (s = ¢), and
parabolic (s = p) platforms are measured. The results in
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FIG. 1. (Color online) (a) Photograph of the experimental setup.
(b) A typical image taken in the experiments. We perform experiments
using platforms with (c) flat, (d) conical, and (e) parabolic surfaces.
The positions of the GO are shown on (f) flat, (g) conical, and (h)
parabolic surfaces. The physical dimensions of (f)—(h) are 150 x
150 mm?2.

Fig. 2(a) show that P(v) in v, and v, are identical, as
expected from symmetry. Furthermore, P;(v) on flat, conical,
and parabolic platforms are similar to each other with their
root-mean-square velocities vy, increasing with vibration
amplitude as shown in the inset. In fact when the velocities are
scaled by vy, the normalized probability densities Py (v/vims)
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FIG. 2. (Color online) (a) Velocity probability densities P,(v)
with v = v,,v,. (b) Velocity probability densities Ps(v/vrms) nor-
malized by the corresponding root-mean-square values vyy. Insets in
(a) and (b) show, respectively, the v, and fitted stretched exponent
b versus a for flat (blue V), conical (red ¢), and parabolic (green
0) platforms. (c) Position probability densities P(g) with ¢ = x,y
for a tetrahedron on flat (s = f), conical (s = ¢), and parabolic
(s = p) platforms. The inset is a scattered plot of v, (0.1 m/s) versus
x (10 mm) for the parabolic platform. (d) Same as (c) but on a
semilogarithmic plot.
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FIG. 3. (Color online) Radial probability density (RPD) for a
tetrahedron on (a) flat, (b) conical, and (c) parabolic platforms. The
insets show the negative natural logarithm of the RPDs. (d) Schematic
diagram of collision dynamics.

collapse to a single curve as shown in Fig. 2(d). The
black dashed curve in the figure is the best Gaussian fit to
the collapsed data, suggesting that Ps(v) are non-Gaussian.
Nevertheless P;(v/vms) can be fitted to a stretched exponential
function exp(—A|v/vms|?) with A = 0.68 as indicated by the
solid red curve. The inset shows that the stretched exponent b
varies between 1.6 and 1.8 at different vibration amplitudes. In
addition, there is no correlation between the velocity and the
position as demonstrated from the inset of Fig. 2(c). Hence,
the GO behaves like a molecule of a granular gas [15,20] in a
nonequilibrium steady state.

Unlike the velocity probability densities, the position
probability densities are qualitatively different for platforms
of different shapes as shown in Figs. 2(c) and 2(d). They
can be fitted to Py(x) o /1 — (x/ R)? for the flat platform,
P.(x) < exp[—+/1 + (x/x,)?] with x, = 11.2 mm for the
conical platform, and P,(x) exp(—sz) with B = 7.4 x
10~* mm~2 for the parabolic platform. These density functions
are, respectively, the expected forms for a uniform distribution,
and distributions with linear dependence on the radial distance
r = /x? + y? from the center and with quadratic dependence
on r. When the data are examined in polar coordinates (see
Fig. 3), the radial distribution functions Py(r) (s = f,c,p for
flat, conical and parabolic platforms, respectively), which are
the probability densities of finding the object at position r,
confirm the » dependence of P,(r).

Since the GO appears to be attracted to the center except on
the flat surface, an effective potential U(r) should be present.
To find the functional form of U(r), we assume that the
tetrahedron is at equilibrium with an effective temperature
bath. Then Pi(r) will be given by the Boltzmann distribu-
tion Py(r) = Ze PU") where B is the inverse temperature
of the effective bath and Z = (f;° e V" 27rdr)~" is the
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normalization constant. So we have

U(r)=InZ — T In P(r), (1)

where T = 87! is the effective temperature with kg taken as
1. Therefore, the effective potential U(r), when expressed in
units of 7', should have the same r dependence as —In Py(r)
except for the addition of the constant In Z. The insets of
Fig. 3 show the measured —In P(r) for the flat, conical, and
parabolic platforms, respectively. From symmetry arguments,
it is not surprising to find that —In P(r), and hence U (7), is
independent of » when the GO moves on the flat platform
as shown in this figure. On the other hand, U(r) for the
conical platform increases linearly with » while that for the
parabolic platform increases quadratically in r. The finding
that the effective potential experienced by the GO follows the
shape of the platform is also observed when the tetrahedron is
replaced by a cube and at different vibration amplitudes.

It is possible to understand why the effective potential
should follow the shape of the platform on which the GO
moves. Consider a typical collision between the object and
the platform surface as shown in Fig. 3(d). Let the velocity
of the object before the collision be u. The object receives an
impulse that imposes a change in velocity Ai along the unit
vector /i normal to the surface at the point of contact. It is easy
to show that A = —A(ii — u,) - AR where iy, is the velocity
of the platform and A = (1 4+ o) with « being the restitution
coefficient. (For elastic collisions, « = 1 and A = 2.) Then the
component along the radial direction in the horizontal plane is

(Ail), = —Asin®Ou, 4+ A(u. — awsin wt;)sin O cos O

~ —\tan’ Qu, + A(u, — awsinwt;) tan @,

2)

where u, and u, are respectively the velocity components
along the radial and vertical directions of the object; w is the
angular frequency of the platform oscillation; and ¢; is the time
of impact when the object hits the platform. Here we use the
small-angle approximation such that sin 6 & 6 & tan # which
is the gradient k« = dz/dr of the platform surface. Note that the
quantities u, and #; are stochastic. In addition, the presence of
corners and edges as well as the unknown angular momentum
of the polygonal object contribute extra randomness ¢ in the
collision process. Hence, we have

Au, = —rktu, + Mu, —awsinwt;)k + ¢. 3)

Let the time between successive collisions be t. This can
be approximated by (2|u.|)/g with g =9.81 m/s®> as the
acceleration due to gravity. Since the vertical velocity of the
object at impact is mostly downward, we have (u,/|u.|) ~ —1.
Then the average acceleration is

<Au,> ~ _<kk2u,> +<Ax(uz —aa)sina)t;)> N <£>’
T T T T
which can be approximated to
du, Aku, A
. (u,) =_<m K°u >+<m /cuz>+<m_§>
dt 2ul/g 2u.l/g T

(8N 2y, y - Ame dz | [mE
(o= 55 (]

du, !
dr

= —y{u,) — “)

Effective temperature (10'61)
5
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FIG. 4. (Color online) (a) Variation of effective temperature T
with vibration amplitude a. (b) Variation of (U);; and (Ei,);; with
a. Here the subscript i (¢ for conical, p for parabolic) indicates the
platform shape and j (¢ for tetrahedron, ¢ for cube) represents the
object shape. (c) Change of (U) with respect to 7. (d) Change of
(Exin) With respectto T'.

with y = (mgi?/lucl), & =m(g¢/Qlucl), and U, =
(A/2)mgz. This is a Langevin equation that describes the
dynamics of an object moving with drag coefficient y in
a potential U, = (A/2)mgz. Since z = s5r° for the conical
(6 = 1) and the parabolic (6 = 2) platforms, the observed r
dependence of the effective potentials U(r) from the position
distribution can be explained by setting U (r) = U.,.

The above analysis reveals how energy is supplied from
the platform to sustain the motion of the GO. The stochastic
force and the drag force act like a temperature bath that
maintains the GO at effective temperature T = (£2)/2y.
Although evaluating T from (£2)/2y is difficult, T can be
measured from the observed position distributions by matching
the effective potential to the gravitational potential of the object
along the platform surface. According to Eq. (1), the slope in
the graph of —In P,(r) versus r® equals (A/2)mgss/T, with
8 = 1 for the conical and 2 for the parabolic platform.

Figure 4(a) shows the measured 7 for the tetrahedron
on conical and parabolic platforms at different vibration
amplitudes a. Data for a Teflon cube of edge 5 mm and
mass 254 mg are included for comparison. One can see that T’
increases linearly with a with a rate ‘fl—z which is higher for the
cube than that for the tetrahedron. Presumably, a cube, which
is more symmetric than a tetrahedron, has higher efficiency
of converting the vertical motion to the horizontal motion
than that of a tetrahedron. There is a threshold amplitude
~0.37 mm at which the effective temperature vanishes. This
threshold amplitude is about 1.5g, which is approximately the
acceleration needed to fluidized most granular packing [21].

In general, T is related to the energy E = U + Ejj, in
which the potential energy U and kinetic energy FEy;, depend
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on the position and velocity, respectively. Since the position
and velocity are uncorrelated as illustrated by the inset of
Fig. 2(¢c), Exin and U should be independently populated [11].
Figure 4(b) indicates that their averages increase with a and
their values ((U),(Exin)) as well as their rates (%,%) are
larger on the conical platform than on the parabolic platform.
Note that the acquisition of energy in the horizontal plane from
collision with the platform increases with the gradient x = %.
It is easy to show that the average gradient experienced by the
GO on the conical platform is bigger than that on the parabolic
platform in our experiment. Hence the conical platform is
more effective in injecting energy to the GO than the parabolic
platform, so that the energies of the GO on the conical platform
are larger than those on the parabolic platform.

Quantitatively, the dependence of (U) and ( Eyi,) on object
and platform shapes is not obvious from Fig. 4(b). However,
when they are plotted against T, they collapse onto four lines
that depend only on the platform shape: (U) = CyT with
Cy = 0.9 and 2.0 for (i) parabolic and (ii) conical platforms
[Fig. 4(c)]; together with (iii) (Exn) = Cx T with Cx = 1.9
for the parabolic platform and (iv) (Eyyy) = CxT — 1.3 X
107° J with Cg = 3.0 for the conical platform [Fig. 4(d)].
Considering the conservative nature of potential energy, it
is not surprising to find that the measured values of Cy are
consistent with the equilibrium energy partition theorem for
linear (Cy = 2) and quadratic (Cy = 1) potentials [22]. On
the other hand, kinetic energy, which decreases upon inelastic
collisions, is not an equilibrium quantity. Hence, we do not
expect the measured values of Ck to be equal to that predicted
by equilibrium energy equipartition [14].

The GO is not at equilibrium because energy is needed to
keep the object moving. When the motion is analyzed in the
vertical and horizontal degrees of freedom separately, kinetic
energy in the horizontal direction (Ey;,) is supplied to the GO
by collision with the vertically moving platform. In between
collisions, the effective potential energy (U) changes due to
change in the horizontal position, while gravity increases or
decreases the vertical velocity and hence sets the horizontal

PHYSICAL REVIEW E 89, 062111 (2014)

position and the vertical velocity at the next collision. Direct
correlation between the fluctuations of Ey;, and U should be
absent due to the presence of randomness during collisions.
Nevertheless, energy may flow between Ey;, and U. Since
(Exin) can be interpreted as the granular temperature 7, in
our experiment [15,17,23], the fact that all the data points
in Fig. 4(d) are above the line (Ey;,) = T implies T, > T.
In other words, the granular temperature is higher than the
effective temperature which characterizes (U) and hence it is
plausible that energy, in the form of heat, may flow from the
kinetic part to the potential part. The existence and details of
such heat flow will be investigated in the future.

To summarize, we have studied the dynamics of a polygonal
object (a tetrahedron and a cube) moving on vertically
vibrating platforms of different shapes. In the horizontal plane
the object behaves like a Brownian particle under an effective
potential that follows the shape of the platform surface. A
simple theory based on collision dynamics is proposed to
relate the observed potentials to the gravitational potential
of the object along the surfaces. This result demonstrates
the capability of a GO as a probe to measure the local
potential from its position distribution in a nonequilibrium
steady state. We also find that energy equipartition between the
potential and kinetic parts is different from that predicted by
the equilibrium equipartition theorem. In addition, the granular
temperature is found to be higher than the effective temperature
associated with the potential, suggesting the possibility of
heat transfer from kinetic energy to the effective potential
energy of the GO. These findings, when properly understood,
will be useful in formulating a basic nonequilibrium steady
state theory that is applicable to dissipative systems in
general.
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