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We study one-dimensional lattices of interacting spins- 1
2 and show that the effects of quenching the amplitude

of a local magnetic field applied to a single site of the lattice can be comparable to the effects of a global
perturbation applied instantaneously to the entire system. Both quenches take the system to the chaotic domain,
the energy distribution of the initial states approaches a Breit-Wigner shape, the fidelity (Loschmidt echo) decays
exponentially, and thermalization becomes viable.
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I. INTRODUCTION

In the broad field of nonequilibrium quantum physics, the
unitary evolution of isolated systems after an instantaneous
perturbation (quench) has become a prominent subject [1,2].
The enthusiasm is in part due to the development of com-
putational methods to study strongly correlated quantum
systems, such as density matrix renormalization group [3,4]
and numerical linked-cluster expansions [5,6], and to ongoing
experiments with nuclear magnetic resonance [7–9] and with
cold atoms in optical lattices [10–17]. In the latter case, the high
level of control and quasi-isolation allow for the experimental
analysis of coherent evolutions for very long times.

The studies of quench dynamics often distinguish global
from local perturbations. What is referred to as one or the other
presupposes a choice of basis representation. Local quenches
in space have been addressed in [17–29]. The experiment
in [17] analyzes the quantum dynamics of an excitation created
by flipping a single spin in the middle of a Heisenberg chain.
The case where two semi-infinite lines are joined at their end
points and subsequently evolved as a single infinite system
has received special attention because of the possibility of
achieving exact results using conformal field theory [18]. Other
theoretical studies include the quench of a local magnetic field
applied to few sites of a Heisenberg spin- 1

2 chain [22] and a
time dependent local quench of the transverse field in the Ising
chain [25]. The general expectation is that the effects of local
quenches be more limited than those of global quenches [23].

Here, we show that for the systems and initial states
considered, local and global quenches in space may in fact lead
to equivalent outcomes. The local quench that we investigate
is similar to the one treated in [22]. The system is initially
in an eigenstate of an initial Hamiltonian ĤI that describes
an integrable clean anisotropic Heisenberg spin- 1

2 chain with
only nearest-neighbor (NN) couplings, the so-called XXZ

model. We quench the amplitude of a magnetic field applied
to a single site from zero to a finite value, creating an
onsite defect (impurity). The consequences of such, at first
sight, minor perturbation are drastic. The interplay between
the defect and the interactions of the XXZ model takes
the system into the chaotic domain [30–32]. This reminds
one of the Sinai’s billiards, where the square table becomes
chaotic due to a circular obstacle of arbitrarily small radius
placed at its center [33,34]. We demonstrate that the local
quench of the magnetic field is comparable to a global quench
where couplings between next-nearest neighbors (NNN) are

suddenly included in the clean XXZ model. The frustrated
Heisenberg spin- 1

2 Hamiltonian that emerges with the addition
of NNN terms is also chaotic.

Depending on the amplitude of the onsite static field and
on the ratio between NNN and NN couplings, both final
Hamiltonians ĤF , for the impurity and frustrated chains, look
alike when written in the basis coinciding with the eigenstates
of ĤI . From this correspondence, a list of similarities between
both types of quenches follows. For initial states away from the
edges of the spectrum, the fidelity (Loschmidt echo), which
measures the probability of finding the initial state in time,
decays exponentially. The Shannon (information) entropy in
the basis of ĤI increases linearly in time. The comparison
between infinite time averages and microcanonical averages
for local and nonlocal few-body observables and different
system sizes indicates the viability of thermalization.

Our local and global quenches coincide in the limit of
intermediate perturbation. In this scenario, the energy distri-
butions of the initial states have a Breit-Wigner (Lorentzian)
shape [35–43], which leads to the exponential decay of the
fidelity mentioned above. By further increasing the ratio
between NNN and NN couplings, the frustrated system
eventually reaches the strong perturbation regime. At this
point, the initial states approach the maximum possible
level of delocalization available to a system with two-body
interactions, their energy distributions achieving a Gaussian
form and the fidelity decay becoming Gaussian [35,41–49].
Our studies suggest that this limit can not be reached by the
local quench.

This paper is organized as follows. Section II presents
the models and quenches studied. Section III compares the
Hamiltonian matrices for the impurity and NNN models, as
well as their eigenvalues and eigenstates. The results for the
fidelity decay and the evolution of the Shannon entropy are
given in Sec. IV. The viability of thermalization is discussed
and illustrated in Sec. V. Concluding remarks are presented in
Sec. VI.

II. SYSTEM MODELS AND QUENCHES

We investigate a one-dimensional spin- 1
2 system with L

sites and open boundary conditions. Spin- 1
2 systems are the

prototype of realistic quantum systems with interactions.
They describe real magnetic compounds [50–52], crystals of
fluorapatite [7–9], and can also be simulated with optical lat-
tices [14–17]. The model we consider contains only two-body
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interactions and is described by the following Hamiltonian:

Ĥ = εJ Ŝz
1 + dJ Ŝz

�L/2� + ĤNN + λĤNNN, (1)

where

ĤNN = J

L−1∑
i=1

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1 + �Ŝz
i Ŝ

z
i+1

)
, (2)

ĤNNN = J

L−2∑
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Ŝx
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i Ŝ

z
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Above, � = 1 and Ŝ
x,y,z

i = σ̂
x,y,z

i /2 are spin operators acting
on site i, σ̂

x,y,z

i being the Pauli matrices. Ŝx
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y

i Ŝ
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i+2) is the flip-flop term and Ŝz
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z
i+1 (Ŝz

i Ŝ
z
i+2)

is the Ising interaction between NN (NNN) spins. J is the
exchange coupling constant, � is the anisotropy parameter,
and λ refers to the ratio between NNN and NN couplings.
These three parameters are assumed positive, thus favoring
antiferromagnetic order.

In this work, we compare the properties of the spin- 1
2 model

above in two chaotic limits. For the signatures of quantum
chaos to be revealed, the spectrum needs to be separated
according to symmetry sectors. If energies from different
subspaces are mixed, such signatures (discussed in Sec. III B)
may be concealed even when the system is chaotic [53,54].
At the same time, good statistics requires large subspaces.
Thus, a good strategy is to prevent the emergence of too
many symmetries. In our case, Hamiltonian (1) conserves total
spin in the z direction Ŝz = ∑

i Ŝ
z
i for any chosen parameters,

but other symmetries are avoided as follows. (i) Translational
symmetry is avoided by choosing open boundary conditions.
(ii) By working outside the Sz = 0 sector, we avoid spin
reversal symmetry, that is, invariance under a π rotation
around the x axis. We choose to deal with the subspace that
has L/3 up spins, which still has a large dimension D =
L!/[(2L/3)!(L/3)!] for the largest system sizes that can be
handled with exact diagonalization. We consider L = 12,15,
and 18. (iii) When the Ising interaction is present, we use
� = 0.48. This is sufficiently away from the midpoint � = 1

2 ,
where the system develops additional nontrivial symmetries
(see references in [55]), and it prevents conservation of total
spin S2 = (

∑L
i=1

�Si)2, which happens at � = 1. (iv) To avoid
reflection symmetry, we add a small impurity of amplitude εJ

on the first site of the chain. It can be generated by applying
a local static magnetic field in the z direction. We fix ε = 0.1.
This defect does not break the integrability of the system [56].
Notice that it also weakly breaks the symmetries described in
(i)–(iii).

A second local magnetic field may be placed close to the
middle of the chain, on site �L/2�, leading to the Zeeman
splitting dJ . Depending on the values of the parameters �,d,
and λ, the chain may be integrable or chaotic:

Integrable XX model: �,λ = 0. This Hamiltonian is solved
with the Jordan-Wigner transformation, which maps the
system onto a model of noninteracting spinless fermions [57].

Integrable XXZ model: � �= 0 and d,λ = 0. This model is
solved by means of the Bethe ansatz [58].

Notice that we call XX and XXZ the clean models (d = 0)
with NN couplings only (λ = 0).

Chaotic impurity model: �,d �= 0 and λ = 0. The addition
of a single impurity close to the middle of the chain in
the presence of NN couplings can bring the system into
the chaotic domain [30–32]. The onset of chaos is caused
by the interplay between the Ising interaction and the impurity.
In contrast, the addition of d to the XX model does not affect
its integrability. In the interacting system, chaoticity requires
d � 1. If the defect becomes too large, it splits the system
in two independent and integrable chains. This motivates our
choice of d = 0.9 in most of the work.

Chaotic NNN model: �,λ �= 0 and d = 0. The addition
of couplings between second neighbors breaks integrabil-
ity [54,59,60]. There are different combinations of parameters
that can lead to chaos [32,54]. We consider the complete case
where both NN and NNN flip-flop and Ising terms are present.

As discussed in Sec. III, the two chaotic models above show
very similar properties when λ is relatively small (e.g., when
λ ∼ 0.4), but differences become noticeable when λ → 1.

A. Local and global quenches

Our system starts in an excited eigenstate of the initial
Hamiltonian corresponding to the integrable XXZ model with
a small defect on site 1:

ĤI = εJ Ŝz
1 + ĤNN. (4)

We analyze the short time dynamics and infinite time averages
after the following two instantaneous perturbations.

(i) Local quench. The perturbation is localized on a single
site: dI = 0 → dF �= 0. ĤI is quenched to the chaotic impurity
model with NN couplings only,

Ĥ local
F = ĤI + dF J Ŝz

�L/2�. (5)

(ii) Global quench. The perturbation affects simultane-
ously all sites in the chain: λI = 0 → λF �= 0. ĤI is quenched
to the chaotic Hamiltonian with NNN couplings,

Ĥ
global
F = ĤI + λF ĤNNN. (6)

III. IMPURITY VERSUS NNN COUPLINGS

For appropriate values of dF and λF , the structure of the
Hamiltonian matrices of the impurity and NNN models and
the results for the signatures of chaos associated with their
eigenvalues and eigenstates become comparable.

A. Structure of the Hamiltonian matrices

A natural choice is to write the final Hamiltonians in the
basis corresponding to the eigenstates |n〉 of ĤI . These states
constitute the mean-field basis. We denote the nth eigenstate
of ĤI by |n〉. In this basis, the structure of the impurity and
NNN Hamiltonian matrices can be very similar, as seen in
Fig. 1. The diagonal elements 〈n|ĤF |n〉 ≡ Hn,n are large.
They are ordered in energy, from low to high values. The
off-diagonal elements 〈n|ĤF |m〉 ≡ Hn,m slowly fade away
as the distance |n − m| from the diagonal increases. The
decay of the off-diagonal elements is typical of systems with
two-(few-)body interactions and is in evident contrast with full
random matrices [61].
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FIG. 1. (Color online) Absolute values of the elements of the
impurity (left) and NNN (right) Hamiltonian matrices written in the
basis corresponding to the eigenstates of ĤI ; � = 0.48, dF = 0.9,
λF = 0.44, L = 18, D = 18 564. The basis is ordered in energy.
Lighter color indicates larger values.

The details of the matrices are better captured by Fig. 2.
Figure 2(a) shows the values of the diagonal elements, which
are very close for both models. Figure 2(b) presents the values
of the connectivity Mn of each line n. The connectivity is
the number of basis vectors directly coupled with each state
|n〉, that is the number of nonzero Hn,m for n �= m. Mn is
comparable for both models. It shows a smooth behavior with
n (or equivalently with Hn,n). It is large in the middle of the
spectrum, where the majority of the basis vectors are coupled,
and it decreases at the edges [62].

Notice that to count how many off-diagonal elements are
nonzero, we use a threshold below which the elements are
discarded. This is done because of our numerical procedure.
Initially, ĤF is written in the natural site basis corresponding
to product states of up and down spins. Subsequently, this
basis is transformed into the states |n〉, which results in the

FIG. 2. (Color online) Details of the Hamiltonian matrices of the
impurity (light points, dF = 0.9) and NNN (dark points, λF = 0.44)
models written in the eigenstates of ĤI ; � = 0.48, L = 18. Diagonal
elements (a). Connectivity (b). Averages of the absolute values of the
off-diagonal elements vs the distance k from the diagonal (c). Ratio of
the average coupling strength vn to the mean level spacing δn between
directly coupled states in each line n (d).

appearance of many tiny off-diagonal elements not associated
with any real coupling. We use as threshold the variance of the
absolute value of all off-diagonal elements.

In Fig. 2(c), we show the averages of the absolute values of
the off-diagonal elements

Hn,n+k =
∑D−k

n=1 |Hn,n+k|
D − k

(7)

versus the distance k from the diagonal. They are significantly
smaller than the diagonal elements and decay with k. The
absence of an abrupt drop implies that both Hamiltonians have
long-range although finite interactions in the basis |n〉. Both
kinds of perturbations to ĤI must therefore have nonlocal
effects on the initial state.

The similarity between Hn,n and Mn holds for both models
when dF ,λF � 1, but differences are visible in the values of the
off-diagonal elements. For parameters in the vicinity of those
chosen in Fig. 2(c), Hn,n+k is comparable for both systems
when k is small, but the decay is slower for the NNN model.
Moreover, by increasing � (dF can not be much increased
since we are already at the verge of splitting the chain), we can
only slightly increase Hn,n+k for the impurity model and are
unable to reach the large values achieved with λF → 1 (not
shown). In this limit, the NNN model can therefore lead to
stronger mixing of the basis vectors than the defect case.

To get an idea of how effective the off-diagonal elements
are, we compare their average strength

vn =
∑

m�=n |Hn,m|
Mn

(8)

with the mean level spacing δn between directly coupled states.
The latter is computed as

δn = (Hm,m)max
n − (Hm,m)min

n

Mn

, (9)

where (Hm,m)max
n [(Hm,m)min

n ] is the largest (smallest) diagonal
element where Hn,m �= 0. As seen in Fig. 2(d), vn/δn is
similar for both models for the parameters considered. The
ratio can be significantly increased by increasing λF , but it
is hardly affected by larger combinations of � and dF (not
shown). We can therefore distinguish between two limits:
the intermediate perturbation regime, where vn/δn � 1, and
the strong perturbation regime, where vn/δn can reach values
significantly greater than 1. The second is only achieved by
the NNN model.

B. Eigenvalues and eigenstates

In finite nonintegrable quantum systems, the appearance
of properties that clearly indicate the onset of quantum chaos
depends on the size of the perturbation. To determine how
the system approaches the chaotic limit as the perturbation
increases, we analyze the level spacing distribution and the
level number variance [63]. Both quantities require unfolding
the spectrum of each symmetry sector separately. This pro-
cedure consists of locally rescaling the energies, so that the
mean level density of the new sequence of energies is equal to
one [54,63]. We also discard some few (10% is our arbitrary
choice) eigenvalues at the edges of the spectrum, where the
fluctuations are large.
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FIG. 3. (Color online) Indicator κ of the integrable-chaos
crossover vs the perturbation strength (a), level number variance (b),
and Shannon entropy for all eigenstates in the basis of ĤI (c) for
the impurity (filled squares, light color) and the NNN (empty circles,
dark color) models; � = 0.48. (a) L = 12,15, and 18 from top to
bottom. (b), (c): L = 18, dF = 0.9, λF = 0.44. Solid line: Poisson
spectrum (b); dashed line: GOE result (b), (c).

Quantum levels of integrable systems are not prohibited
from crossing and the distribution of level spacings s is
typically Poissonian:

PP (s) = exp(−s). (10)

In chaotic systems, there is level repulsion and the level spacing
distribution is given by the Wigner-Dyson distribution, as
predicted by random matrix theory. Ensembles of full random
matrices with time reversal invariance, the so-called Gaussian
orthogonal ensembles (GOEs), lead to

PWD(s) = πs

2
exp

(
− πs2

4

)
. (11)

Despite the absence of randomness and the existence of
only two-body interactions in the systems studied here, in
the chaotic domain their P(s) is also given by the above
Wigner-Dyson distribution.

In finite systems, if the perturbation is not sufficiently
large to reach PWD(s), the level spacing distribution has an
intermediate shape between Poisson and Wigner-Dyson. To
quantify the crossover from integrability to chaos, we show in
Fig. 3(a) the level spacing indicator κ defined as [64]

κ ≡
∑

i[P(si) − PWD(si)]∑
i PWD(si)

, (12)

where the sums run over the whole spectrum. κ is large
close to the integrable domain and it approaches zero in the
chaotic regime. This indicator is comparable to the quantity η

introduced in Ref. [65] or the parameter β used in the fitting
of P(s) with the Brody distribution [61].

As the perturbations dF and λF increase, both models
become chaotic and show similar values of κ for the same
system sizes. If the perturbation is further increased well
above 1, the systems eventually reach another integrable point.
Notice also that as L increases, the value of the perturbation
leading to small κ decreases. The onset of chaos in the
thermodynamic limit might be achieved with an infinitesimally
small integrability breaking term [64].

The level number variance �2(l) quantifies long-range
correlations [63]. It measures the deviation of the staircase
function from the best fit straight line. It is defined as

�2(l) ≡ 〈N (l,g)2〉 − 〈N (l,g)〉2, (13)

where N (l,g) gives the number of states in the interval
[g,g + l] and 〈. . .〉 represents the average over different initial
values of g. For a Poisson distribution, �2(l) = l, and for
GOEs, �2(l) = 2[ln(2πl) + γ + 1 − π2/8]/π2, where γ is
the Euler constant. Level repulsion leads to rather rigid spectra
and fluctuations are less significant than in regular systems.
As shown in Fig. 3(b), the level number variances for the
impurity and NNN models are similar. They are also close to
the GOE result. This proximity can be improved by changing
the parameters, the best results being associated with the NNN
Hamiltonian.

We also study the structure of the eigenstates |ψα〉 of ĤF

in the basis |n〉,
|ψα〉 =

∑
n

Cn
α |n〉, (14)

via the Shannon (information) entropy

Shn
α ≡ −

∑
n

∣∣Cn
α

∣∣2
ln

∣∣Cn
α

∣∣2
. (15)

This delocalization measure determines the degree of com-
plexity of the eigenstates. Complete delocalization occurs
for full random matrices, where the amplitudes Cn

α are
independent random variables. For GOEs, the average over the
ensemble leads to ShGOE ∼ ln(0.48D) [35,66]. For the realistic
systems considered here, where the Hamiltonian is sparse and
banded, the mixing of the basis vectors is incomplete and
Shn

α < ShGOE.
Figure 3(c) compares the Shannon entropy for the defect

and NNN models for all eigenstates. The results are very
similar for the parameters considered. They reflect the structure
of the matrices in Fig. 2: Shn

α is large close to the middle
of the spectrum, where |Hn,n| is smaller and Mn is larger,
and it decreases as we approach the edges of the spectrum.
This behavior mirrors also the density of states, which is
Gaussian for systems with few-body interactions [61]. By
increasing �, hardly any change is noticed on the values of the
Shannon entropy for the impurity model, but by increasing λF ,
significantly larger values can be reached for the NNN model.
This connects again with the notion of intermediate and strong
perturbation regimes discussed in the description of Fig. 2(d).

IV. RELAXATION DYNAMICS

The correspondence between the static properties of the
impurity and NNN models suggest that, starting from the
same initial state, the dynamics of both systems should also be
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similar. This is confirmed in the following with the analysis of
the fidelity decay and the evolution of the Shannon entropy.

A. Local density of states and fidelity

The initial state |�(0)〉 = |ini〉 evolves unitarily according
to the eigenvalues Eα and eigenstates |ψα〉 of ĤF as

|�(t)〉 = e−iĤFt |�(0)〉 =
∑

α

C ini
α e−iEαt |ψα〉. (16)

The energy of |ini〉 projected on the final Hamiltonian is

Eini = 〈ini|ĤF |ini〉 =
∑

α

∣∣C ini
α

∣∣2
Eα. (17)

The eigenstate of ĤI that we select to be the initial state is the
one for which Eini is closest to the energy

ET =
∑

α Eαe−Eα/kBT∑
α e−Eα/kBT

, (18)

fixed by a chosen temperature T . Above, kB is Boltzmann
constant and it is set to 1.

The distribution P ini
α of the components |C ini

α |2 in the eigen-
values Eα is the so-called local density of states (LDOS) or
strength function [46]. It corresponds to the energy distribution
of the initial state and it gives information about the lifetime
of the initial state. In particular, it determines how the fidelity
decays in time.

The fidelity gives the probability of finding the system still
in the initial state after time t . It corresponds to the overlap
between |ini〉 and |�(t)〉 [67,68]:

F (t) ≡ |〈ini|�(t)〉|2 =
∣∣∣∣∣∑

α

∣∣C ini
α

∣∣2
e−iEαt

∣∣∣∣∣
2

(19)

and is therefore equivalent to the Fourier transform in energy
of the components |C ini

α |2.
In the limit of intermediate perturbation and for Eini away

from the edges of the spectrum, P ini
α approaches a Breit-Wigner

form delineated by [35–43]

P ini
BW(E) = 1

2π

�ini

(Eini − E)2 + �2
ini/4

, (20)

as shown in Figs. 4(a) and 4(c) for the impurity and NNN mod-
els, respectively. A Lorentzian LDOS leads to the exponential
decay of the fidelity

FBW(t) =
∣∣∣∣∫ ∞

−∞
P ini

BW(E)e−iEtdE

∣∣∣∣2

= e−�init , (21)

which is approximately the behavior seen in Figs. 4(b)
and 4(d) [69]. We notice that the Breit-Wigner form of the
LDOS is robust for the NNN model, that is, the shape is
maintained for small variations in the values of �, λF , and
Eini, but for the impurity model fluctuations are observed.
In this case, the shape is sometimes not well defined, with
more than a main peak or a secondary bump deforming the
Breit-Wigner.

For the NNN model, in the limit of strong perturbation, the
LDOS of initial states away from the edges of the spectrum
approaches a Gaussian shape, as shown in Fig. 4(e). The
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FIG. 4. (Color online) Local density of states (left) and fidelity
decay (right) for the impurity (a), (b) and NNN (c), (d), (e), (f) models;
� = 0.48, L = 18. The values of the perturbation are indicated. The
initial state is an eigenstate of ĤI with T = 7J −1. Dashed line: Breit-
Wigner fit (left) and corresponding exponential decay (right); solid
line: energy shell (left) and corresponding Gaussian decay (right);
�ini = 0.28 and σini = 0.42 (a); �ini = 0.42 and σini = 0.45 (c); �ini =
1.73 and σini = 1.16 (e).

distribution is limited by the energy shell [35,37,38,41–48],
which is the Gaussian

P ini
G (E) = 1√

2πσ 2
ini

exp

[
− (E − Eini)2

2σ 2
ini

]
(22)

with width

σini =
√∑

α

∣∣C ini
α

∣∣2
(Eα − Eini)2 =

√∑
n�=ini

|〈n|ĤF |ini〉|2. (23)

The shell determines the maximum possible spreading of
|ini〉 in a system with two-body interactions. The Gaussian
distribution induces the Gaussian decay of the fidelity

FG(t) =
∣∣∣∣∫ ∞

−∞
P ini

G (E)e−iEtdE

∣∣∣∣2

= e−σ 2
init

2
, (24)

as illustrated in Fig. 4(f). The impurity model can not reach
this extreme scenario. Its LDOS does not go beyond the Breit-
Wigner form and its fidelity decay is thus restricted to the
exponential behavior.

We notice, however, that the fidelity decay of the impurity
model can be significantly accelerated, being dictated by
cos2(dF t/2), if one considers a very large defect. In the case
where dF � 1, P ini

α is bimodal and the distance between the
two peaks controls the initial dynamics.
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FIG. 5. (Color online) Shannon entropy Shn
ini vs time (top) and

sum of the probabilities Wn separated for odd and even states |n〉
(bottom) for the impurity (a), (c) and NNN (b), (d) models. Circles:
numerical results for Shn

ini; solid lines: semianalytical Eq. (27); up
triangles:

∑
n Wn for states with the same parity as |ini〉; down

triangles: states with the opposite parity. The initial state is an
eigenstate of ĤI with T = 7J −1; � = 0.48, dF = 0.9, λF = 0.44,
L = 18. Npc was obtained from the average in the interval J t ∈
[1000,2000].

B. Evolution of the Shannon entropy

In Figs. 5(a) and 5(b), we analyze the evolution of the
Shannon entropy written in the basis corresponding to the
eigenstates of the initial Hamiltonian

Shn
ini(t) = −

∑
n

Wn(t) ln Wn(t), (25)

where

Wn(t) = |〈n|e−iĤF t |ini〉|2 (26)

is the probability to find the system in the basis vector |n〉 and
Wini(t) = F (t). We focus on the quenches from ĤI to Ĥ local

F

and from ĤI to Ĥ
global
F in the intermediate perturbation regime.

The temporal behavior for both quenches is very similar.
There is an initial quadratic growth, as expected from pertur-
bation theory, followed by a linear increase of the entropy,
which is a general behavior of initial states that are sufficiently
delocalized and can take place even when the final Hamiltonian
is integrable [38,42,43].

A cascade model was developed to describe the progressive
decay of the initial state into |n〉 [38]. It led to the following
semianalytical expression for the Shannon entropy

Shn
ini(t) = −F (t) ln F (t) − [1 − F (t)] ln

(
1 − F (t)

Npc

)
, (27)

where Npc is the infinite time average of exp(Shn
ini). However,

this expression [solid lines in Figs. 5(a) and 5(b)] does
not agree with our numerical expressions. The deviation
happens because parity is still almost conserved in the initial
integrable Hamiltonian. This is not the case for the two chaotic

Hamiltonians and the reverse quenches, from the impurity
and NNN Hamiltonians to the XXZ system, lead to excellent
agreement with Eq. (27) (not shown).

The small defect on site 1 is not enough to strongly break
reflection symmetry in the XXZ model, so the initial states
have significantly larger contributions from one of the parity
sectors. This is deduced from Figs. 5(c) and 5(d), where we
separate the sum of the participations Wn of quasieven states
from the sum of states with quasiodd parity. The contributions
from the states that do not belong to the same parity sector as
|ini〉 take a very long time to become relevant. This results in a
sort of prerelaxation of the Shannon entropy. The fact that Npc

is computed after relaxation causes the disagreement between
Eq. (27) and the numerical results. Excellent agreement with
the semianalytical expression can be recovered, up to the
prerelaxation region, if Npc is computed by taking a time
interval restricted to this region (not shown).

V. THERMALIZATION

The subject of thermalization in isolated quantum sys-
tems [35,70–78] has been brought back to surface with
recent experimental and theoretical studies [11,12,79–83]. A
first necessary condition for thermalization is, of course, the
relaxation of the quenched system to a new equilibrium.

One refers to equilibration in such isolated systems in a
probabilistic sense. It occurs if after a transient time the system
remains very close to a steady state for most time and the
fluctuations around it decreases with system size (see Ref. [55]
and references therein). In this scenario, the density matrix

ρ(t) = |�(t)〉〈�(t)|
=

∑
α

∣∣C ini
α

∣∣2|ψα〉〈ψα|+
∑
α �=β

C ini∗
α C ini

β ei(Eα−Eβ )t |ψα〉〈ψβ |

(28)

approaches the diagonal density matrix ρDE [84–86], which
corresponds to the infinite time average

ρDE = lim
t→∞

1

t

∫ t

0
dτ ρ(τ ) =

∑
α

∣∣C ini
α

∣∣2|ψα〉〈ψα|. (29)

The entropy that describes the system after relaxation,

Sα
ini = −Tr(−ρDE ln ρDE) = −

∑
α

∣∣C ini
α

∣∣2
ln

∣∣C ini
α

∣∣2
, (30)

is referred to as diagonal entropy [84]. It is simply the Shannon
entropy of the initial state projected onto the eigenstates of the
final Hamiltonian. Thermalization occurs when the diagonal
entropy coincides with the thermodynamic entropy [84–86].

In terms of few-body observables, thermalization implies
that their infinite time average (the diagonal ensemble average)

ODE = Tr(ρDEÔ) =
∑

α

∣∣C ini
α

∣∣2〈ψα|Ô|ψα〉 (31)

becomes very close to the thermal (microcanonical) average

OME ≡ 1

NEini,δE

∑
α

|Eini − Eα | < δE

〈ψα|Ô|ψα〉, (32)
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FIG. 6. (Color online) Left: Diagonal entropy (points) for all
initial states and rescaled logarithm of the density of states for the final
Hamiltonian (solid line). Right: Extremal fluctuations �Szz [Eq. (34)]
for Ŝzz(2π/3) in windows of energy [E,E + 0.4] (main panels) and
the eigenstate expectation values of Ŝzz(2π/3) for all Eα (insets).
Final Hamiltonians: impurity (a), (b), NNN couplings (c), (d), XXZ

(e), (f). Initial Hamiltonians: XXZ (a), (c) and XX (e). � = 0.48,
dF = 0.9, λF = 0.44. Left panels and insets: L = 18. Right main
panels: L = 12 (circles); L = 15 (triangles); L = 18 (squares).

when the system is finite, and both averages coincide in the
thermodynamic limit. Above, NEini,δE stands for the number
of energy eigenstates in the window δE.

Two situations can imply the proximity of the two averages:
(1) The eigenstate expectation value of the observables
〈ψα|Ô|ψα〉 is a smooth function of energy, which means
that the result from a single eigenstate inside the micro-
canonical window agrees with the microcanonical average.
This approach became known as the eigenstate thermalization
hypothesis (ETH) [71,72,81–83]. (2) The coefficients C ini

α

behave as random variables. This happens when the energy
distribution of the initial state fills the energy shell. The
fluctuations of the coefficients in Eq. (31) become uncorrelated
with 〈ψα|Ô|ψα〉 [75].

For the quench into the impurity Hamiltonian, if thermal-
ization happens, it must be mainly caused by condition (1)
since the LDOS for this model does not achieve a Gaussian
shape, as discussed in the end of Sec. IV A.

In Fig. 6, we analyze the diagonal entropy and the
eigenstates expectation values of few-body observables for
the impurity, NNN, and XXZ models. The results suggest
agreement with ETH for the first two. In Figs. 7 and 8, we
confirm the expectations of thermalization for the local and
global quenches into chaotic models.

Figures 6(a), 6(c), and 6(e) compare the diagonal entropy
(points) for all the initial states extracted from ĤI with the
logarithm of the density of states of the final Hamiltonian
(solid line), which is related with the microcanonical entropy.
Figures 6(a) and 6(c) correspond to the quenches from
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FIG. 7. (Color online) Relative difference for Ŝzz(2π/3) (a), (b)
and absolute difference for Czz

L/2,L/2+1 (c), (d) vs dF (a), (c) and λF (b),
(d). Initial state with T = 7J −1; � = 0.48; L = 12 (circles); L = 15
(triangles); L = 18 (squares).

the XXZ model to the impurity and NNN Hamiltonians,
respectively, and Fig. 6(e) is an integrable quench from the
XX model to the XXZ Hamiltonian. In all panels, both
entropies show a similar shape, apart from the edges of the
spectrum. However, the fluctuations of the diagonal entropy in
the integrable scenario is significantly larger and, contrary to
the quenches into chaotic models, they do not decrease with
system size [85]. This suggests that thermalization may not be
possible when both Hamiltonians in the quench are integrable
and the initial state has a finite temperature. This conjecture is
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FIG. 8. (Color online) Relative difference for Ŝzz(2π/3) (a), (b)
and absolute difference for Czz

L/2,L/2+1 (c), (d) vs temperature; dF =
0.9 (a), (c) and λF = 0.44 (b), (d); � = 0.48; L = 12 (circles); L =
15 (triangles); L = 18 (squares).
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confirmed by studies in the thermodynamic limit for quenches
involving Hamiltonians that are of the XXZ type before and
after the perturbation [6].

In Figs. 6(b), 6(d), and 6(f), we analyze the dependence on
system size of the fluctuations of the eigenstate expectation
values of the structure factor in the z direction,

Ŝzz(k) = 1

L

L∑
l,j=1

Ŝz
l Ŝ

z
j e

−ik(l−j ). (33)

This is a nonlocal observable in space. In the main panels we
show the results of

�Szz ≡
∣∣∣∣max Szz − min Szz

Szz
ME

∣∣∣∣ (34)

for three system sizes. Above, max Szz (min Szz) stands for the
maximum (minimum) value of 〈ψα|Ŝzz|ψα〉 obtained in the
energy window used to calculate Szz

ME. This quantity measures
the extremal fluctuations and is more appropriate to test
ETH than the dispersion, which can decrease with L simply
because the number of states increases exponentially with
L [87]. The values of �Szz for the impurity and NNN models
are comparable and, away from the edges of the spectrum,
they clearly decrease with L. For the XXZ system, �Szz is
significantly larger and does not decrease with L.

The insets in Fig. 6 illustrate the fluctuations of the structure
factor for a single system size. They show 〈ψα|Ŝzz|ψα〉 for all
Eα . The outcomes for the impurity and NNN Hamiltonians
are equivalent and reflect the smooth behavior with energy of
the Shannon entropy of the eigenstates |ψα〉, seen in Fig. 3 and
typical of the chaotic domain [64,87,88]. This is in agreement
with ETH and in contrast with the results for the XXZ model,
where large fluctuations are observed.

Figures 7 and 8 compare the results for the infinite time
averages and the microcanonical prediction. We compute the
relative difference

�Szz =
∣∣Szz

DE − Szz
ME

∣∣∣∣Szz
DE

∣∣ (35)

for the structure factor and also the absolute difference

�aC
zz = ∣∣Czz

DE − Czz
ME

∣∣ (36)

for the spin-spin correlation in the z direction for sites in the
middle of the chain Ĉzz

L/2,L/2+1 = 〈Ŝz
L/2Ŝ

z
L/2〉, which is a local

operator in space.
Figure 7 shows �Szz and �aC

zz for different values of
the perturbations for the quenches to the impurity [Figs. 7(a)
and 7(c)] and NNN [Figs. 7(b) and 7(d)] Hamiltonians. The
relative differences are of similar magnitude for both models.
Despite the large fluctuations, one can see that overall �Szz

and �aC
zz decrease with the strength of the perturbation. This

is better noticed by focusing on the largest system size L =
18 (green squares), where the fluctuations are smaller. The
differences eventually start increasing again when dF and λF

get close to 1 since beyond this point, another integrable limit is
reached. By comparing most points for L = 12 (black circles)
with L = 18, one also notices that �Szz and �aC

zz decrease
with L.

Figure 8 shows �Szz and �aC
zz for different values

of temperature for quenches to the impurity [Figs. 8(a)

and 8(c)] and NNN [Figs. 8(b) and 8(d)] Hamiltonians. Despite
the fluctuations, general trends can be identified. For both
quenches, we see that the agreement between the averages
improves as the temperature increases and the energy of |ini〉
approaches the middle of the spectrum. This is better seen
if we concentrate our attention on L = 18. The improvement
with system size is also clear if we compare L = 12 with
L = 18. The results reinforce the equivalence between the
two models for the chosen values of dF and λF . They also
corroborate the dependence on temperature in the studies of
thermalization [89,90].

In Ref. [90], we studied quenches to the NNN model in
the limit of strong perturbation, where the energy distribution
of the initial state is Gaussian and therefore already approx-
imately thermal, even before the quench. In such an extreme
scenario, it was difficult to clearly discern improvements with
T and L. Here, where the initial state is Breit-Wigner, these
improvements are more visible.

VI. SUMMARY

We studied static and dynamical properties of one-
dimensional spin- 1

2 systems and showed that, for the initial
states considered, the outcomes of a local-in-space quench can
be very similar to those of a global quench. Our system was
initially in an excited eigenstate of an integrable gapless XXZ

model. Either a local magnetic field was suddenly turned on or
NNN couplings affecting the entire chain were instantaneously
added. Since the initial state is far from localized in space, it
was globally affected by both perturbations. For both cases,
we found the following:

(i) The final Hamiltonian matrices have very similar
structures if written in the mean-field basis corresponding
to the eigenstates |n〉 of the initial XXZ Hamiltonian.
Their eigenvalues and eigenstates show equivalent statistical
properties, which are typical of quantum systems in the chaotic
domain.

(ii) The energy distribution of initial states away from the
borders of the spectrum have a Breit-Wigner form and lead to
an exponential decay of the fidelity.

(iii) The Shannon entropy written in the basis |n〉 grows
linearly in time and reaches a prethermalization region caused
by parity (almost) conservation, before saturating.

(iv) In agreement with ETH, the eigenstate expectation
values of few-body observables show minor fluctuations
for states close in energy and, away from the edges of
the spectrum, they decrease with system size. The viability
of thermalization is confirmed by comparing infinite time
averages and microcanonical predictions. The results are
similar and further improve with L.

A main goal of this paper was to show that the effects
of a quench depend on the representation and therefore on
the initial state. A perturbation that is local in a certain basis
should have limited effects and cause a restricted propagation
of the signal if the initial state is also localized in that same
basis, as shown for example in [17,18]. But, in our studies, the
initial states considered were delocalized in space, so it is not
so surprising that the local quench in space turned out to be
very similar to the global one.
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There is, however, an important difference between the
two quenches analyzed. As λF increases, the global quench
can eventually reach the strong perturbation regime, where
both the energy distribution of the initial state and the fidelity
decay become Gaussian. This extreme is not achieved by the
local quench of the magnetic field (at least not for the system
sizes accessible to exact diagonalization). It is conceivable
that such local quenches be fundamentally forbidden to

reach this regime. This is a point that deserves further
investigation.
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[14] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,

A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and
I. Bloch, Science 319, 295 (2008).

[15] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and
M. Greiner, Nature (London) 472, 307 (2011).

[16] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,
U. Schollwöck, J. Eisert, and I. Bloch, Nat. Phys. 8, 325 (2012).

[17] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schausz,
S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross
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