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We present an application of the Grassmann algebra to the problem of the monomer-dimer statistics on a
two-dimensional square lattice. The exact partition function, or total number of possible configurations, of a
system of dimers with a finite set of n monomers at fixed positions can be expressed via a quadratic fermionic
theory. We give an answer in terms of a product of two pfaffians and the solution is closely related to the Kasteleyn
result of the pure dimer problem. Correlation functions are in agreement with previous results, both for monomers
on the boundary, where a simple exact expression is available in the discrete and continuous case, and in the bulk
where the expression is evaluated numerically.
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The study of the classical dimer model has a very long
history in physics and mathematics. This model is interesting
as a direct physical representation, e.g., diatomic molecules on
a two-dimensional substrate [1]. From the mathematical point
of view, this model on bipartite lattice—known as a special
case of perfect matching problem [2]—is a famous and active
problem of combinatorics and graph theory [3]. The partition
function of the 2D dimer model was solved independently
using pfaffian methods [4–6], resulting in the exact calculation
of correlation functions of two monomers along a row (or a
column) [7] or along a diagonal [8,9] in the infinite square
lattice limit using Toeplitz determinants. For the general case
of an arbitrary orientation, exact results are given in terms of
the pair correlations of the 2D square lattice Ising model at the
critical point using recurrence relations [10,11].

For the general dimer problem where an arbitrary number
of monomers are present—the lattice sites that are not covered
by the dimers are regarded as occupied by monomers—there
is no exact solution except in 1D where the solution can be
expressed in terms of Chebyshev polynomials [12], on the
complete graph and on locally tree-like graphs [13]. We can
also mention that the matrix transfer method was used to
express the general monomer-dimer problem [14] (monomer
density is not fixed), here the partition function, in terms of the
maximum eigenvalue instead of a pfaffian. In particular, a very
efficient method based on variational corner transfer matrix has
been found by Baxter [15], leading to a precise approximation
of thermodynamic quantities, such as the average dimer
density, which can be evaluated accurately as function of the
dimeractivity. For 3D lattices, no exact solution exists for the
pure close-packed dimer problem. Recent advances concern
the analytic solution of the problem where there is a single
monomer on the boundary of a 2D lattice [16,17], correlation
functions for monomers located on the boundary [18,19], and
localization phenomena of a monomer in the bulk [20,21].

The field of analytical solutions in the monomer-dimer
model is still uncharted, but many rigorous results exist, e.g.,
location of the zeros of the partition function [22,23], series
expansions of the partition function [24], and exact recursion
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relation [25]. This lack of exact solution has been formalized
in the context of computer science [26]. The importance of
the dimer model in theoretical physics and combinatorics also
comes from the direct mapping between the square lattice
Ising model without magnetic field and the dimer model on a
decorated lattice [4–6,27] and oppositely from the mapping
of the square lattice dimer model to a eight-vertex model
[28,29]. Furthermore, the Ising model in a magnetic field can
be mapped to the general monomer-dimer model [23].

Here we present a Grassmannian or fermionic formulation
of the monomer-dimer model, which possesses an exact
solution in terms of the product of two explicit pfaffians.
We study the close-packed model, where an allowed dimer
configuration has the property that each site of the lattice
is paired with exactly one of its nearest neighbors, creating
a dimer. In the simplest form, the number of dimers is the
same in all the configurations, and the partition function is
given by the equally weighted average over all possible dimer
configurations. In the following, we will include unequal
fugacities, so that the average to be taken then includes
nontrivial weighting factors.

An early representation of the dimer model was introduced
using Grassmann techniques [30,32]. A pair of these variables
is attached to each site, preventing double occupancy of a
site by two dimers. This leads to a direct representation of
the partition function in terms of a fermionic integral over a
quartic action, from which diagrammatic expansions can be
carried out. We first review a very simple noncombinatorial
interpretation of the 2D dimer model based on the integration
over Grassmann variables [31–33], and factorization principles
for the density matrix [34,35]. A dimer model can be described
with Boltzmann weights tx and ty of some coupling energy
along the two directions. For example, a magnetic field along
one direction implies nonidentical weight values. The partition
function for a lattice of size (L × L) with L even can directly
be written as

Q0 =
∫ ∏

m,n

dηmn(1 + txηmnηm+1n)(1 + tyηmnηmn+1), (1)

where ηmn are nilpotent and commuting variables satisfying
[36] η2

mn = 0,
∫

dηmnηmn = 1, and
∫

dηmn = 0. The integrals
can be performed if we introduce, following closely Hayn and
Plechko [34], a set of Grassmann variables {amn,āmn,bmn,b̄mn},
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FIG. 1. (Color online) Variable configuration on site and links.
At each site is associated a nilpotent variable η, such that η2 = 0, and
two pairs of Grassmann variables (a,ā) and (b,b̄), one for each of the
two directions.

see Fig. 1, such that

1 + txηmnηm+1n =
∫

dāmndamne
amnāmn

× (1 + amnηmn)(1 + tx āmnηm+1n),

1 + tyηmnηmn+1 =
∫

db̄mndbmne
bmnb̄mn

× (1 + bmnηmn)(1 + ty b̄mnηmn+1). (2)

This decomposition allows for an integration over the Grass-
mann variables ηmn, after rearranging the different link vari-
ables Amn = 1 + amnηmn, Ām+1n = 1 + tx āmnηm+1n, Bmn =
1 + bmnηmn, and B̄mn+1 = 1 + ty b̄mnηmn+1. Then the partition
function becomes

Q0 = Tr{a,ā,b,b̄,η}
∏
m,n

(AmnĀm+1n)(BmnB̄mn+1), (3)

where we use the integration measure Tr{.} for the different
Grassmannian and nilpotent variables with the adequate
weights.

The noncommuting link variables are then moved through
the product in such a way that each ηmn is isolated and
can be integrated directly. This rearrangement is possible in
two dimensions thanks to the mirror symmetry introduced by
Plechko [37] for the 2D Ising model. This also imposes the
conditions Ā1n = 1, ĀL+1n = 1, B̄m1 = 1, and B̄mL+1 = 1, or
ā0n = āLn = b̄m0 = b̄mL = 0 for open boundary conditions.
One finally obtains the following exact expression:

Q0 = Tr{a,ā,b,b̄,η}

−→∏
n

(←−∏
m

B̄mn

−→∏
m

ĀmnBmnAmn

)
. (4)

The integration over the ηmn variables is performed recur-
sively from m = 1 to m = L for each n. Each integration
leads to a Grassmann quantity Lmn = amn + bmn + tx ām−1n +
(−1)m+1ty b̄mn−1, which is moved to the left of the products
over m in Eq. (4), hence a minus sign is needed in front of
each b̄ crossed by Lmn that is moved through the product
of the B̄ terms. Finally, the result Q0 = Tr{a,ā,b,b̄}

∏
m,n Lmn

can be further rewritten by introducing additional Grassmann
variables cmn, such that Lmn = ∫

dcmn exp(cmnLmn). This
expressesQ0 as a Gaussian integral over variables {a,ā,b,b̄,c}.

The integration over variables {a,ā,b,b̄} can then be performed
and, after antisymmetrization of the expression, one obtains
explicitly

Q0 =
∫ ∏

m,n

dcmn exp
∑
m,n

[
1

2
tx(cm+1ncmn − cm−1ncmn)

+ 1

2
ty(−1)m+1(cmn+1cmn − cmn−1cmn)

]

=
∫ ∏

m,n

dcmn expS0. (5)

Boundary conditions are now c0,n = cm,0 = cL+1,n =
cm,L+1 = 0. We consider a Fourier transformation
satisfying open boundary conditions [34], cmn =
im+n

∑L
p,q=1 cpqfm(p)fn(q), where fn(p) =

√
2

L+1 sin πpn

L+1

form an orthonormal set of functions
∑

m fm(p)fm(q) = δpq .
This leads to a block representation of the action
in the momentum space, for momenta inside the
reduced sector 1 � p,q � L/2. We note vectors
cα =t (cpq,c−pq,cp−q,c−p−q ), where −p is meant for
L + 1 − p and label α = {p,q}. The four components of
these vectors will be written cμ

α with μ = 1 · · · 4. Then
S0 = i

2cμ
α Mμν

α cν
α , where the antisymmetric matrix M is

defined by

Mα =

⎛
⎜⎝

0 0 −ay(q) −ax(p)
0 0 ax(p) −ay(q)

ay(q) −ax(p) 0 0
ax(p) ay(q) 0 0

⎞
⎟⎠,

with ax(p) = 2tx cos πp

L+1 and ay(q) = 2ty cos πq

L+1 . The factor
i can be absorbed in a redefinition of the c’s variables. One
simply obtains a product of cosine functions [34] as found by
Kasteleyn, Temperley, and Fischer [4–6], since the pfaffian of∏

α Mα is the product
∏

p,q [ax(p)2 + ay(q)2] in the reduced
sector of momenta, or

Q0 =
L/2∏

p,q=1

[
4t2

x cos2 πp

L + 1
+ 4t2

y cos2 πq

L + 1

]
. (6)

The matrix Mα is deeply related to the Kasteleyn [4] orientation
matrix K since Q0 = Pf(

∏
α Mα) = Pf(K).

We consider now the case where an even number n of
monomers are present in the lattice at different fixed positions
ri = (mi,ni) with i = 1, · · · , n; see Fig. 2. The partition

FIG. 2. (Color online) Typical dimer configuration for a square
lattice of size 6 × 6 without monomer (left) and with six monomers
(right, red dots).
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function Qn({ri}), which we define as a correlation function
between monomers after summing up over all dimer config-
urations, is the number of all possible dimer configurations
with the constraint imposed by fixing the given monomer
positions. This quantity is evaluated by inserting ηmini

in
Eq. (1) at each monomer location, which prevents dimers
from occupying these sites. It is useful to introduce additional
Grassmann variables hi , such that ηmini

= ∫
dhi exp(hiηmini

).
These insertions are performed at point ri in Eq. (4), and the
integration over ηmini

modifies Lmini
→ Lmini

+ hi . However,
by moving the anticommuting variables dhi to the left of the
remaining ordered product, a minus sign is introduced in front
of each b̄mni−1 or ty coupling in B̄mni

for all m > mi . We can
replace more generally b̄mn−1 by εmnb̄mn−1, such that εmni

=
−1 for m > mi , and εmn = 1 otherwise. The integration is then
performed on the remaining {a,ā,b,b̄} variables as usual, so
that Qn({ri}) can be expressed as a Gaussian form, with a sum
of counter-terms corresponding to the monomer insertions, or

Qn({ri}) = Tr{c,h}e
S0+

∑
{ri } cmi ni

hi+SI ,

SI = 2ty
∑
{ri }

L∑
m=mi+1

(−1)m+1cmni−1cmni
. (7)

The contribution SI corresponds to a line of defects, as shown
in Fig. 3. The addition of monomers is therefore equivalent
to inserting a magnetic field hi at points ri , as well as a line
of defect cmni−1cmni

running from the monomer position to
the right boundary m = L. If two monomers have the same
ordinate ni = nj , the line of defects will only run between the
two mononers and will not reach the boundary. This can be
viewed as an operator acting on the links crossed by the line

FIG. 3. (Color online) Typical configuration of the system with
four monomers. The sign of the couplings ty are reversed (red links)
along the black-dashed line (or disorder operator, see text) that
arises from moving the Grassmann fields conjugated to the defects
toward the right boundary. Elementary vectors ei=1···4 are represented,
and e4 indicates the starting location of the line of defects for the
disorder operator.

and running from a point on the dual lattice to the boundary
on the right-hand side. More specifically, we can express
the correlation functions, after integration over the fermionic
magnetic fields hi , as an average over composite fields

Qn({ri})
Q0

=
〈∏

{ri }
cmini

exp

(
2ty

L∑
m=mi+1

(−1)m+1cmni−1cmni

)〉
0

=
〈∏

{ri }
cmini

μ(ri + e4)

〉
0

=
〈∏

{ri }
�4(ri)

〉
0

, (8)

where μ(r + ei) is a disorder operator whose role is to change
the sign of the vertical links across its path starting from
vector r + ei on the dual lattice toward the right-hand side;
see Fig. 3. The integration 〈· · · 〉0 is performed relatively to
the action S0. Elementary vectors ei define a four-component
fermionic field �μ(r) = cmnμ(r + eμ), which is the fermionic
counterpart of the scalar field introduced for the Ising-spin
model [38,39]. In the latter case, a linear differential equation
can be simply found for �μ(r) = σ (r)μ(r + eμ), with σ (r) =
±1, leading to a Dirac equation. Here the general correlator
between monomers is directly mapped onto the correlator
between these fermionic composite fields. If we go back to
Eq. (7), the part of the field interaction can be Fourier
transformed such that

∑
{ri } cmini

hi = ∑L
p,q=1 cpqHpq =∑

α,μ cμ
α Hμ

α . The term SI in the action can be written as
i
2cμ

α V
μν
αβ cν

β , with the perturbative matrix Vαβ given by

Vα,β = Vpq,p′q ′ =
∑
{ri }

2ty(−1)ni

⎧⎨
⎩

L∑
m=mi+1

fm(p)fm(p′)

⎫⎬
⎭

× (fni−1(q)fni
(q ′) − fni−1(q ′)fni

(q)). (9)

The different components V
μν
αβ are given explicitly, for the first

terms, by V 11
αβ = Vpq,p′q ′ , V 12

αβ = Vpq,−p′q ′ , V 21
αβ = V−pq,p′q ′ ,

and so on. Then the full fermionic action is S = i
2cμ

α Wμν
α cν

α +
cμ
α Hμ

α with antisymmetric matrix W
μν
αβ = δαβMμν

α + V
μν
αβ sat-

isfying W
μν
αβ = −W

νμ
βα . By construction, this matrix can be

represented as a block matrix of global size (L2 × L2)

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

Mα=(1,1) V(1,1),(1,2) V(1,1),(1,3) · · ·
−V(1,1),(1,2) M(1,2) V(1,2),(1,3) · · ·
−V(1,1),(1,3) −V(1,2),(1,3) M(1,3) · · ·

· · ·︸ ︷︷ ︸
L2/4 blocks

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where each of the (L2/4) × (L2/4) blocks is a (4 × 4)
matrix. Labels α are ordered with increasing momentum
(1,1),(1,2) · · · (1,L/2),(2,1) · · · . Then Qn({ri}) can formally
be written asQn({ri}) = Tr{c,h} exp( i

2cμ
α W

μν
αβ cν

β + cμ
α Hμ

α ). The
linear terms in cμ

α can be removed using a translation cμ
α →

cμ
α + gμ

α , with gμ
α = i(W−1)μν

αβHν
β . After a further rescaling of

variables cα → i−1/2cα , one obtains

Qn({ri}) = Pf(W )Tr{h} exp

[
− i

2
(W−1)μν

αβHμ
α Hν

β

]
.
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The fields Hμ
α depend on hi through the identity Hμ

α =∑n
i=1 �

μ

i,αhi , where coefficients �
μ

i,α are expressed using a
four-dimensional vector �i,α = fmi

(p)fni
(q)�i . The com-

ponents of momentum-independent vector �
μ

i are (imi+ni ,

− i−mi+ni , − imi−ni ,i−mi−ni ). Its role is to fix whether the
configuration of the monomers is allowed or not (in this case
the correlator is zero). The final and compact expression for
Qn({ri}) is then

Qn({ri}) = Pf(W )Pf(C), (10)

where C is a real (n × n) antisymmetric matrix with elements
Cij = −i�

μ

i,α(W−1)μν
αβ�ν

j,β . The antisymmetry can be easily
verified using the antisymmetry property of W or W−1. Qn

is therefore a product of two pfaffians where the positions of
the monomers are specified in both matrices W and C. The
factorization Eq. (10) can generally be viewed as the product
of a bulk and, by analogy, a boundary contribution. This can be
found, for example, when a nonhomogeneous magnetic field
is applied at the surface of a 2D Ising model [40], by using
Grassmann techniques as well. Here the term Pf(C) is due to
the contribution of monomers in the bulk leading to a corrective
factor in the free energy of order of the number n of monomers,
similar to a surface perturbation. Since the monomers are in the
bulk, they contribute as well to the term Pf(W ), which would
otherwise, were the monomers located on the surface, be equal
to Q0. It is worth noting that a similar factorization was found
for the correlation function between two monomers in terms of
the product of two spin-spin correlation functions of the Ising
model at criticality [8,10], due to the analogy of the dimer
model with two Ising models (or a complex fermionic field
theory); see Appendix for precise details. It is, however, not
obvious here to have such a direct identification with this result
since the two pfaffians in Eq. (10) are of different nature. We
can also mention that factorization of the correlation function
exists in other models such as the one-dimensional XY chain
[41]. Matrix V can be rewritten using additional matrices after
considering the different components (μ,ν). We can indeed
express V using four functions u

s=0,1
k (α,β), and v

s=0,1
k (α,β),

for each monomer at location rk = (mk,nk), with mk < L,
and such that Vαβ = −2ty

∑
rk

∑
s,s ′=0,1 us

k(α,β)�ss ′vs ′
k (α,β),

with

�01 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠, �11 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠,

�00 =

⎛
⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎠, �10 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎠.

Functions u and v are specified by

us
k(α,β) =

L∑
m=mk+1

(−1)s(m+1)fm(p)fm(p′),

(11)
vs

k(α,β)

(−1)snk
= [

fnk
(q)fnk−1(q ′) + (−1)sfnk

(q ′)fnk−1(q)
]
.

It is also worth noting that we have a similar structure in
the real space, where the total action Eq. (7) is expressed
by S = 1

2cmnWmn,m′n′cm′n′ + ∑
ri

cmini
hi , with W containing

both the connectivity matrix M and the contribution of the line
of defects V . A direct computation also leads to the factoriza-
tion Qn({ri}) = Pf(W )Pf(C), where Cij = (W−1)mini ,mj nj

is a
(n × n) antisymmetric matrix.

Exact dimers enumeration algorithms [42] up to size
of 10 × 10 has been widely used to compare with the
theoretical prediction. For instance there are 636 072 different
configurations of dimers with two monomers at coordinates
r1 = (2,3) and r2 = (7,5) on a 8 × 8 lattice, in accordance
with the computation of Q2(r1,r2) taking tx = ty = 1. As
possible other application, we could obtain the full partition
function of the monomer-dimer model by summing up
over all the possible number of monomers and over all
the possible positions. The result for the 8 × 8 lattice is
179,788,343,101,980,135 [25], compared with the 12,988,816
configurations without monomer. In Fig. 4, we have solved
numerically for a size L = 96 the modified correlation func-
tion Q2({r1,r2})Q−1

0 = Pf(M−1W )Pf(C), for two monomers
at positions r1 = (m,L/2 − k) and r2 = (m,L/2 + k + 1),
k = 0 · · · L/2, distant of d = 2k + 1. Due to finite-size effects,
a curve for a given m is distinguished depending on the parity
of k. In the large size limit, this difference is indiscernible.
Figure 4 shows the crossover between a behavior in d−1

near the boundary (m = 96) to a bulk behavior [7] in

FIG. 4. (Color online) Correlation function Q2({r1,r2})Q−1
0 for

two monomers on a lattice of size L = 96 as function of their
distance d = |r2 − r1|. They are positioned vertically, at locations
r1 = (m,L/2 − k) and r2 = (m,L/2 + k + 1), with d = 2k + 1. The
curves represent different abscissa m successively from the right
border (m = L = 96) to the center of the lattice (m = 48). Curves
come by pair, with lower or higher correlations, depending if k is even
or odd. Inset: Correlation function using Eq. (12) for two monomers
on the boundary (black square symbols), at locations n1 = L/2 − k

and n2 = L/2 + k + 1, as function of their distance d = 2k + 1.
Lattice size is L = 1000. Asymptotic limit 2

π
d−1 (black dashed line)

is shown for comparison. The bulk correlator (blue symbols L = 96
and m = 48) is also displayed, as well as its asymptotic limit Bd−1/2

(blue dashed line). The value B � 0.247; see text.
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d−1/2 (m = 48). The amplitude B of the asymptotic two-
point correlation function, which behaves like Bd−1/2, has
been determined explicitly in the thermodynamic limit [10],
B = 2−3/4A2 ≈ 0.247 with A = 21/12e3ζ ′(−1) and where ζ (s)
is the Riemann zeta function. This value appears to be in good
agreement with our numerical fit (see inset Fig. 4, dashed blue
line). Interestingly, when the monomers are located exactly
on the boundary (m = L), V = 0, and W = M , in this case
Qn({ri}) = Q0Pf(C), and it is straightforward to compute ex-
actly the elements of matrix C. In the discrete case one obtains

Cij = 4[(−1)ni − (−1)nj ]

(L + 1)2

L/2∑
p,q=1

i1+ni+nj ty cos πq

L+1 sin2 πp

L+1

t2
x cos2 πp

L+1 + t2
y cos2 πq

L+1

× sin
πqni

L + 1
sin

πqnj

L + 1
. (12)

Cij are zero if ni and nj > ni have the same parity. For ex-
ample, fixing one monomer on the first site n1 = 1 and taking
n2 = 2k, we have, for tx = ty = 1 in the asymptotic limit L →
∞ and large k, the following expansion C12 � 2

π
k−1 − 3

2π
k−5.

In the case n1 = L/2 − k and n2 = L/2 + k + 1, as shown in
inset of Fig. 4, C12 � 2

π
d−1 − 2

π
d−3 instead, with d = 2k + 1

and amplitude 2/π . This result is in agreement with the work of
Priezzhev and Ruelle [19] on the scaling limit of the correlation
functions of boundary monomers in a system of closely packed
dimers in terms of a 1D chiral free fermion theory [44].

In summary, we presented a practical fermionic solution
of the 2D monomer-dimer model on the square lattice,
which allows for expressing the correlation functions between
monomers in terms of two pfaffians and gave an explicit
formula for boundary correlations. This can also be used for
studying more general n-point correlation functions, thermo-
dynamical quantities, or transport phenomena of monomers.
Other lattice types, such as hexagonal and other boundary
conditions, can be considered as well.
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APPENDIX

In this section, we derive the continuum limit of the dimer
action Eq. (5) and reformulate S0 in terms of two copies of
Ising models. By an adequate change of variables [35] cmn →
i3/2+m2

cmn, the action S0 can be written as a complex fermion
field theory:

S0 =
∑
m,n

[
1

2
tx(cm+1ncmn − cm−1ncmn)

+ i

2
ty(cmn+1cmn − cmn−1cmn)

]
.

We can introduce the formal derivative using series expan-
sions cm+1n = cmn + ∂xcmn and cmn+1 = cmn + ∂ycmn, up to
first order in lattice elementary step, so that the action can be

recognized as a purely kinetic form with no mass contribution:

S0 =
∑
m,n

[tx∂xcmncmn + ity∂ycmncmn]. (A1)

It is convenient to define the following fields:

c−(m,n) = c2m2n, c+(m,n) = c2m2n+1,
(A2)

c̄−(m,n) = c2m+12n+1, c̄+(m,n) = c2m+12n,

and express the previous action in terms of these fields only:

S0 = −
L/2∑

m,n=1

∑
σ=±

[tx(cσ ∂xc̄−σ + c̄σ ∂xc−σ )

+ ity(cσ ∂yc−σ + c̄σ ∂y c̄−σ )]. (A3)

Site variables (m,n) now designate the locations of reduced
cells containing four sites and take values between 0 and
L/2. Field vectors (cσ ,c̄σ ) are composed of two independent
components and describe two coupled Ising models labeled
by index σ = ±. This action can be diagonalized with a linear
transformation and new set of Grassmann variables:

ϕ− = 1
2 (c− + c+ + c̄− + c̄+),

ϕ̄− = 1
2 (c− + c+ − c̄− − c̄+),

(A4)
iϕ+ = 1

2 (c− − c+ + c̄− − c̄+),

iϕ̄+ = 1
2 (c− − c+ − c̄− + c̄+).

We obtain finally a diagonalized form for S0, defining the
complex derivative in two dimensions, ∂ = tx∂x + ity∂y and
∂̄ = tx∂x − ity∂y :

S0 = −
L/2∑

m,n=0

(ϕ̄+∂̄ ϕ̄+ − ϕ+∂ϕ+ − ϕ̄−∂̄ ϕ̄− + ϕ−∂ϕ−).

Following Plechko [43], it is useful to introduce Dirac
matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
,

and define spinor �σ = (ϕσ

ϕ̄σ

)
. It has to be noted that ϕσ and

ϕ̄σ are not conjugated but independent Grassmann variables.
The action can then be put into a compact expression,

S0 =
L/2∑

m,n=0

∑
σ=±

t �̄σ (σ1∂1 + σ2∂2) �σ , (A5)

where �̄σ = iσ2�σ and ∂1 = tx∂x , ∂2 = ty∂y . Here the result-
ing action is of Majorana form [43], equivalent to two indepen-
dent Ising models at criticality, since no mass term is present.
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