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Starting from the geometrical interpretation of the Rényi entropy, we introduce further extensive generalizations
and study their properties. In particular, we found the probability distribution function obtained by the MaxEnt
principle with generalized entropies. We prove that for a large class of dynamical systems subject to random
perturbations, including particle transport in random media, these entropies play the role of Liapunov functionals.
Some physical examples, which can be treated by the generalized Rényi entropies, are also illustrated.
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I. INTRODUCTION

Generally, to characterize some unknown events with a
statistical model, we choose the one that has maximum
entropy (MaxEnt principle), i.e., the one that has maximum
uncertainty. The corresponding probability distribution func-
tions (PDFs) are obtained by maximizing entropy, under a
set of constraints. In other terms, entropy is regarded as a
measure of information, and it is a quantity able to quantify
the uncertainty, or the randomness, of a system. Information
theory was initially developed by Shannon to quantify the
expected value of the information contained in a message,
usually in units such as bits [1]. However, the Shannon
entropy, used in standard top-down decision trees, does not
guarantee the best generalization (see, for example, Ref. [2]).
The Shannon entropy has then been successively generalized.
Rényi introduced the most general definition of information
measures that preserve the additivity for independent events
and are compatible with the axioms of probability [3]. Tsallis,
on the on the other hand, introduced a nonadditive entropy,
such as nonextensive statistical mechanics, generalizing the
Boltzmann-Gibbs theory [4]. Rényi’s and Tsallis’s entropies
are algebraically related, and both definitions include the
Shannon entropy as a limit case.

The structure of the work is the following. In Sec. II the
main necessity to extend the definition of the Rényi entropy
to the study of distributions in anisotropic phase spaces is
discussed. In Sec. III the Rényi entropy is expressed by a
distance in a metric function spaces. We give examples when
the Shannon-Boltzmann entropy is infinite while the Rényi
entropy is finite, and we give a two-variable PDF with all of
the Rényi entropy infinite (Remark 2).

In Sec. IV the natural generalization of the Rényi entropy
(GRE) is defined in terms of distance in more general
functional spaces, suitable to treat the anisotropy of the phase
space. In particular the problem encountered with PDFs with
infinite Rényi entropy is solved: the counterexample given in
(Remark III) has a sufficient finite GRE. In Sec. V the limit
cases of the GRE and aspects of the MaxEnt principle with
general linear constraints are discussed. In Sec. VI an explicit
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solution of a maximal GRE problem with scale-invariant linear
constraints is given, as a candidate for representation of PDF.
For a large class of Fokker-Planck equations, driven by a
random external noise, a class of GRE is defined that obeys
the generalized H theorem.

II. MOTIVATION

The independent discovery of functionally related en-
tropies, from a pure mathematical axiomatic approach [3],
respectively by the study of a heavy tail distribution in
physics, motivates the importance of the Rényi entropy, its
geometrical reformulation, and generalization via geometrical
reformulation.

A wide spectrum of natural, artificial, and social complex
systems are now analyzed by means of these two entropies. At
present, information theory finds applications in broad areas of
science such as in neurobiology [5], the evolution of molecular
codes [6], model selection in ecology [7], thermal physics [8],
plagiarism detection [9], or quantum information [10].

The purpose of this work is to introduce and study a class
of anisotropic generalizations of Rényi’s entropy (RE). An
obvious reason is that, in some problems of complex systems,
the phase space may be highly anisotropic. Our terminology
is borrowed from the mathematical literature [11], where
anisotropic generalizations of the classical Lp, or Lebesgue
spaces, are studied. Even more general Banach spaces appear
in the study of partial differential equations. Because in
general the full phase space of a dynamical system is a direct
product of subspaces, with different physical interpretation
(like generalized coordinate and conjugated momentum, see
below, or the coordinates of driving and driven system,
see Sec. VI B), it is natural to expect that the integrability,
singularity properties of the distribution function, or even more
complex mathematical structures attached to these subspaces
are different. Consequently we need to develop a formalism
that does not miss exactly this additional information, namely,
this direct product structure of the phase space, or the
different behavior of the distribution function with respect
to its different variables. The anisotropy does not mean the
breaking continuous symmetry group; rather it suggests the
very different physical nature and mathematical properties of
different subspaces of the whole phase space. The first example
is the following. In the framework of equilibrium statistical
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physics, when the PDF is f (p,q) = exp[−H (p,q)/kT ]/Z and

H (p,q) = 1

2m

∑
ι

p2
i +

∑
ι<j

V (xi − xj )

the phase space is anisotropic.
Clearly in the case when V (x) vanishes at infinity and is

singular in origin the anisotropy is clear; f (p,q) has very
different differentiability properties in pi respectively in xi ,
and very different asymptotic decay at large pi respectively
in xi . A second example, from nonequilibrium statistical
mechanics is the following. We consider two small identical
particles of mass m, immersed in a fluid governed by the
Stokes law, with friction coefficient γ̃ , and subject to a central
two-body force −∇V (r). In this case, it is easy to check that
the problem is equivalent to the one of a single particle, of
reduced mass μ = m/2, immersed in a bath with friction
coefficients γ = γ̃ /2. After a few calculations, we see that
in this case the statistical properties of the center of mass
R = (r1 + r2)/2 are completely decoupled by those of the
relative motion r ≡ r1 − r2. It is also easily checked that the
velocity of the center of mass, i.e., Ṙ = (ṙ1 + ṙ2)/2, obeys
the Ornstein Uhlenbeck Fokker-Planck equation, whereas the
statistical properties of the relative motion are described by
the following Kramer equation:

∂ρ(r,v,t)

∂t
=

{
− ∂

∂r
v + 1

μ

∂

∂v
[γ v + ∇V (r)]

+ γKBT

μ2

∂2

∂v2

}
ρ(r,v,t)

with KB denoting Boltzmann’s constant. Moreover, T and
v stand for temperature and ṙ, respectively. The steady-state
solution is of the Boltzmann distribution type [12]:

ρstat(r,v) = ρ0 exp[−V (r)/(KBT )] exp[−μv2/(2KBT )].

(1)

We are interested in diffusion of particles in the presence
of a logarithmically growing potential. This potential has
attracted much interest since it serves as a model of several
physical systems. For example, charged particles near a long
and uniformly charged polymers are subject to a logarithmic
potential. Other examples of systems having potentials show-
ing a logarithm and power-law potentials are in condensation in
polyelectrolyte solutions [13], nanoparticles with an arbitrary
two-dimensional force field [14], and vortex dynamics in the
two-dimensional model [15]. For a logarithmically growing
potential V (x) � V0 log(x/a), for x � a and V0 > 0, we get
an equilibrium distribution with power-law tail ρstat(x) ∼
x−V0/(KBT ) [16]. Reference [17] reports the study of an
overdamped motion of a Brownian particle in the logarithmic-
harmonic potential. In Ref. [18] can be found the study of
the trajectories of a Brownian particle moving in a confining
asymptotically logarithmic potential, obeying the overdamped
Langevin equation with potential

V (r) = g log(1 + r2), (2)

where the parameter g > 0 specifies the strength of the
attractive potential. Notice that this situation may be realized
in experiments [19,20]. In this case, the stationary solution

reads

ρstat(r,v) = ρ0
1

(1 + r2)g/(KBT )
exp[−μv2/(2KBT )]. (3)

Equation (3) clearly shows that the steady-state solution has
a short tail in velocity and long tail in distance r . We shall
show that this anisotropy of the PDF in the {r,v} phase
space can be retrieved from the MaxEnt principle applied to
the new class of entropy here introduced, subject to natural
scale-invariant restrictions (see below). This anisotropy of the
phase space is manifest in magnetically confined plasmas and,
in general, in the case of integrable systems subject or not to
perturbations. Another example is provided by the evolution
of dynamical systems under the effect of noise where we
consider the extended phase space of the system plus source
of noise. Also in this quite general example, the extended
phase space is anisotropic. Our main task is to propose a
generalization of the Rényi entropy (GRE) that, still preserving
the additivity, is able to treat these anisotropic situations. We
prove that the GRE provides a new set of Liapunov functionals
(more exactly H theorems) for a large class of Fokker-Planck
equations describing particles transport in a random physical
environment. In this case the GRE is always monotonic.
We encounter this situation when we study the dynamics of
charged particles in random electric and magnetic fields [21].

III. THE RÉNYI ENTROPY AND GEOMETRY
OF FUNCTION SPACES

Our generalization of RE results from the reinterpretation
of the RE and MaxEnt principles in terms of geometrical
concepts in the functional spaces of all PDFs in a given
phase space. Let us now proceed by introducing a rigorous
definition of the GRE and illustrating its main properties.
The definition of GRE starts from the reformulation of RE in
the geometric term of norm (or pseudonorm). Starting from the
initial axiomatic definition in the case of a discrete probability
field, Rényi proved that, for a fixed value of parameter q,
appearing in his set of axioms, in particular the “axiom 5′” (see
Ref. [3]), the form SR,q(pi) = q

1−q
log(

∑N
i=1p

q

i )1/q is unique,
up to a multiplicative constant. In general, i.e., including the
continuum case, when the probability is defined in the terms
of some (possibly preferred invariant) measure dm(x) with
PDF ρ(x) in the space �, the previous definition of RE can be
extended, as

SR,q[ρ] = q

1 − q
log

{∫
�

[ρ(x)]q dm(x)

} 1
q

. (4)

In the particular case when � is a set with N elements and m

is the counting measure the original form is obtained, and the
permutation symmetry from the original Axiom 1 (see Ref. [3])
became the invariance under transformations that preserve the
measure m.

In the limit q → 1 we obtain the Shannon-Boltzmann
entropy

lim
q→1

SR,q[ρ] = −
∫

�

ρ(x) log[ρ(x)] dm(x) := SS,B [ρ]. (5)
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There are several examples when SS,B [ρ] is infinite while
for some q the Rényi (and Tsallis) entropies are finite

Example 1. Let consider � = (0,+∞):

dm1(x) = dx, dm2(y) = dy, (6)

ρ1(x) = 1 + x−β

(1 + x)[log(2 + x)]1+ε
K1, (7)

ρ2(y) = 1

y(1 + yγ )[log(2 + 1/y)]1+ε
K2, (8)

where 0 < ε < 1, 0 < β < 1, γ > 0, and K1,2 are normaliz-
ing factors. It is easy to check that in the q → 1 limit, the
Shannon-Boltzmann entropy SS,B [ρ] is infinite but there are
ranges of the parameter q such that the Rényi entropy is finite:

|SR,q[ρ1]| < ∞; 1 < q < 1/β, (9)

|SR,q[ρ2]| < ∞;
1

1 + γ
< q < 1. (10)

The logarithmic terms are necessary for integrability; see
the Appendix. Observe that SR,q[ρ] for q > 1 can geometri-
cally be reinterpreted in terms of the norm ‖ρ‖q :

SR,q[ρ] = q

1 − q
log ‖ρ‖q ;

(11)

‖ρ‖q =
[∫

�

[ρ(x)]qdm(x)

] 1
q

; q > 1

with the norm ‖ρ‖q defining the distance in the standard
Lebesgue Lq(�,dm) spaces [22,23]. However, in the case
0 < q < 1 we are no longer able to interpret ‖ρ‖q in Eq. (11),
as a distance, because it does not satisfy the triangular
inequality. This problem may easily be overcome by observing
that the functional

Nq[ρ] =
∫

�

[ρ(x)]qdm(x)

may be interpreted as a distance [22,24,25], so, for 0 < q < 1,
the definition of entropy reads

SR,q[ρ] = 1

1 − q
log Nq[ρ]

with Nq[ρ] playing the role of “distance,” but in the more
complicated space Lq<1(�,dm) [22]. We remark that Nq[ρ]
and spaces Lq<1 were used for studying the steady-state
distributions of linear stochastic differential equations [25]
or of the stable distributions with a heavy tail [24]. However,
it should be mentioned that, due to the complexity of the
formalism, mathematicians prefer to transfer f (x) ∈ Lq<1 in
the standard L1 space by f (x) → |f (x)|q ∈ L1 [22]. The
physical counterpart of this transformation is the Tsallis
averaging rule [26]: if ρ(x) is a PDF, then for averaging
it use the escort distribution [ρ(x)]q/〈[ρ(x)]q〉, not ρ(x).
Under a natural set of restrictions (consisting of normalization,
fixing the expectation values, positivity) on ρ(x), the MaxEnt
principle, applied to SR,q(ρ) with q < 1, generates distribution
functions with a heavy tail. The set of the PDFs satisfying
the restrictions (this set of PDFs will be denoted with K) is
always convex. According to this interpretation, geometrically

we have that, for 0 < q < 1, the MaxEnt PDF is the PDF ∈ K
corresponding to the maximal distance from the origin ρ ≡ 0,
and reversely, for q > 1, it is the PDF ∈ K, closest to the
origin ρ ≡ 0. Despite that the corresponding equations for the
Lagrange multipliers could be quite complicated, from general
arguments on convex analysis we have that the convexity of the
functional ‖ρ‖q with respect to the variable ρ (or, similarly, the
concavity of the functional Nq[ρ] with respect to ρ) ensures
the uniqueness of the solution of the MaxEnt problem [27].
These properties, as well as the extensivity of RE, will be
preserved in our definition of the GRE. However, Axiom 1
in the original work of Rényi, i.e., the symmetry of RE [3],
will not be preserved in the GRE. In fact, the invariance under
symmetry expresses the maximal lack of specific information.
In the case of a PDF depending on many variables imposing
symmetry under a general measure-preserving transformation
means to forget, for pure mathematical formal reasons, the
specific physical meaning of the variables. Another problem
that appears in the case of a PDF depending on many variables
appears if we consider now the joint distribution function
obtained from PDFs ρ1(x),ρ2(y) from Example 1 [Eqs. (7)
and (8)]:

ρ1,2(x,y) = ρ1(x)ρ2(y). (12)

Due to additivity of the Rényi entropy, we have

SR,q[ρ1,2] = SR,q[ρ1] + SR,q[ρ2]. (13)

Remark 2. The problem is that, according to the Eqs. (9)
and (10), the domain of q when SR,q[ρ1,2] is finite is empty.

Probability density functions that have similar asymptotic
behavior can appear in processes involving an extreme heavy
tail [28]. In contrast to the Rényi entropy, we will see that there
exists much finite GRE.

The complicated aspect of the GRE is compensated by
the fact that it is possible to obtain more complex MaxEnt
distribution functions starting from simple, natural restrictions,
in contrast with the Shannon and Rényi entropies where
the MaxEnt PDFs come from a tautological transcription of
the restrictions. It is worth mentioning that more complex
generalizations of the GRE are possible, and study in this
respect is in progress [29].

IV. DEFINITION OF THE GRE

One possible way to take into account, in the definition
of the generalization of the entropy, the anisotropy, and the
inhomogeneity of, or more generally, the symmetry of, the
phase space, is already apparent in Eq. (4). Suppose the phase
space measure can be written as

dm(x) = n(x)
N∏

i=1

dxi,

where n(x) is a locally integrable, not necessary continuous,
pseudoscalar density. When n(x) has several singular points or
zeros at x = ak , 1 � k � m, then there is no global measure-
preserving group,

x → y = g(x,s), n(x) = n(g(x,s)) det
∂g(x,s)

∂x
,
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GIORGIO SONNINO AND GYÖRGY STEINBRECHER PHYSICAL REVIEW E 89, 062106 (2014)

whose action is isomorphic with the action of the classical
geometrical transformation groups. So we have a way to
include the geometric anisotropy as well as the inhomogeneity
of the phase space.

Another way to introduce the new generalized, additive
entropy in the anisotropic phase space is by starting from
the definition of the (anisotropic) norm of functions of many
variables. According to the authors’ knowledge there is no
possibility to extend this functional analytic method for
inhomogenous case, in order to obtain additive, inhomogenous
generalized entropy.

To this end, we introduce the norm of functions in the
generalized Lp spaces [11]. Suppose for simplicity that
the variable components x from phase space � can be
split like x = {x1, . . . ,xp,xp+1, . . . ,xn} or x = {y,z} with
y = {x1, . . . ,xp} and z = {xp+1, . . . ,xn}. The measure is also
factorized: dm(x) = dm(y,z) = dmy(y)dmz(z).

More general splitting, or grouping, fits in this scheme, but
we restrict ourselves here to the two subsets. In analogy with
Eq. (11), we define for py,pz > 1 the anisotropic norm as [11]

‖f ‖py,pz

=
(∫

�y

dmy(y)

{[∫
�z

dmz(z)|f (y,z)|pz

]1/pz

}py
)1/py

.

(14)

The functional ‖f ‖py,pz
is convex with respect tof . The

corresponding new entropy is defined as

S(1)
py,pz

[ρ] = py

1 − pz

log ‖ρ‖py,pz
; py,pz > 1. (15)

Similarly, for 0 < qy < 1, 0 < qz < 1 we have a concave
functional Nqy,qz

(f ) that, in analogy with the standard Rényi
case, may also be interpreted as the distance in the correspond-
ing functional space and the corresponding entropy:

Nqy,qz
(f ) =

∫
�y

dmy(y)

[∫
�z

dmz(z)|f (y,z)|qz

]qy,

(16)

S(2)
qy ,qz

[ρ] = 1

1 − qz

log Nqy,qz
(ρ); 0 < qy,qz < 1. (17)

The distance between PDFs ρ1,ρ2 is d(ρ1,ρ2) := ‖ρ1 −
ρ2‖py,pz

for py,pz > 1, and d(ρ1,ρ2) := Nqy,qz
(ρ1 − ρ2) for

0 < qy,qz < 1. Notice that, as shown in Ref. [11], for py,pz >

1, the function d(ρ1,ρ2) preserves the triangle inequality:1

d(ρ1,ρ3) � d(ρ1,ρ2) + d(ρ2,ρ3).

The norm ‖ρ‖py,pz
is a convex functional, whereas Nqy,qz

[ρ]
is concave functional.2 These properties give the intuitive

1A similar method illustrated by Rudin in his textbook [22] may be
adopted for showing the validity of the triangle inequality also for
0 < qy,qz < 1.

2That is, for 0 � α � 1 we have for ρ(y,z) = αρ1(y,z) +
(1 − α)ρ2(y, z):‖ρ‖py ,pz

� α ‖ρ1‖py ,pz
+ (1 − α) ‖ρ2‖py ,pz

,

Nqy ,qz
[ρ] � αNqy,qz

[ρ] + (1 − α)Nqy,qz
[ρ].

geometric interpretation of MaxEnt problem subject to linear
constraints, in the framework of convex analysis [27]. It
follows that the GRE is related to the geometry of generalized
Lebesgue space Lpy,pz

consisting of the set of functions
f (y,z) such that Nqy,qz

[f ] or ‖f ‖py,pz
is finite (like the Rényi

entropy in the Lebesgue space Lp). Convexity properties
imply the uniqueness of the solution of MaxEnt problem
with restrictions, despite that the equations for Lagrange
multipliers could be very complex [30]. Instead of working
with two different definitions of entropy (for two separate
cases 0 < qy,qz < 1 and qy,qz > 1) we prefer to compact
the definitions into only one expression. To this end, we
observe that, for fixed ρ � 0, both functions ‖ρ‖py

py,pz
and

Nqy,qz
(ρ) are analytic in the variables py,pz, qy,qz (at least

near the positive real axis) so we can do a unique analytic
continuation in their formula outside their initial domains in
the following manner:

Npy/pz,pz
[ρ] = ‖ρ‖py

py,pz, (18)

S(2)
py /pz,pz

[ρ] = S(1)
py,pz

[ρ]. (19)

For compactness of the formulas, we use for all qy,qz > 0, and
qz = 1:

Nqy,qz
[ρ] =

∫
�y

dmy(y)

[∫
�z

dmz(z) |f (y,z)|qz

]qy

, (20)

S(2)
qy ,qz

[ρ] = 1

1 − qz

log Nqy,qz
(ρ). (21)

Example 3. In the case of PDF defined in Eqs. (7), (8),
and (12), by using Eqs. (20) and (21) and the definition of the
Rényi entropy [Eq. (4)] we obtain

S(2)
qy ,qz

[ρ1(y)ρ2(z)] = 1 − qyqz

1 − qz

SR,qyqz
[ρ1] + qySR,qz

[ρ2].

According to Eqs. (9) and (10) the GRE is finite in the domain

1

1 + γ
< qz < 1, 1 < qyqz < 1/β.

In a similar way

S(2)
qy ,qz

[ρ2(y)ρ1(z)] = 1 − qyqz

1 − qz

SR,qyqz
[ρ2] + qySR,qz

[ρ1],

which is well defined and finite in the domain

1 < qy < 1/β,
1

1 + γ
< qyqz < 1.

Remark that Axiom 1, the symmetry invariance under
permutations for Rényi entropy [3], appears in a more
general form: the invariance under transformations that acts
independently in the spaces �y and �z that preserves the
measures my respectively mz. In the example given below,
passive advection diffusion of a tracer in a turbulent field,
the variables y and measure my are related to the statistical
properties of a macroscopic, external, given turbulent velocity
field, while z and the measure mz give a statistical description
of the effects of molecular diffusion. In this case is no
symmetry transformation that mixes these very different types
of variables; rather, it is meaningful to relate this asymmetry of
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the GRE to the hierarchical relation between multiple scales,
or causality effects, between spaces �y , �z.

V. PROPERTIES OF THE GRE

Notice that in the limit case qy → 1 we obtain the standard
Rényi entropy

S
(2)
1,qz

[ρ] = 1

1 − qz

log
∫

�y

dmy(y)
∫

�z

dmz(z)|ρ(y,z)|qz ,

and for pz → 1 the Shannon entropy,

lim
pz→1

lim
py→1

S(2)
py,pz

{ρ} = −
∫

�y

dmy(y)

×
∫

�z

dmz(z)ρ(y,z) log ρ(y,z).

We would like to underline that, if we perform the fol-
lowing scaling of the variables y → αy, z → βz, and the
measures transform like as dmy(y) → αd1dmy(y),dmz(z) →
βd2 dmz(z), then the previously defined entropies change
by constant. In this context, the variation of the GRE is
invariant under scaling, exactly as in the case of the Shannon
entropy. In addition, notice that the GRE is extensive, like the
Rényi entropy, because the norm ‖ρ‖py,pz

and the functional
Nqy,qz

[ρ] are multiplicative, in analogy with properties of the
norm in the Lp space.

A. The MaxEnt principle

The probability distribution functions may be obtained
by the MaxEnt principle. Here we shall determine the PDF
by generalizing the calculations made for the case of the
Shannon entropy, subject to the most general scale-invariant
restrictions [31]. To this end, we maximize the GRE, S(1,2)

py,pz
[ρ],

subject to the constraints∫
�y

dmy(y)
∫

�z

dmz(z)ρ(y,z)fk(y,z) = ck; 1 � k � M,

(22)

ρ(y,z) � 0; f0(y,z) = 1; c0 = 1 (23)

This means to find the extrema of Nqy,qz
[ρ]. From the Kuhn-

Tucker theorem for maximization [32], we get

δ

δρ(y,z)

{
Npy,pz

[ρ] +
∫

�y×�z

dmy(y) dmz(z)ρ(y,z)

×
[
μ(y,z) −

N∑
k=0

λkfk(y,z)

]}
= 0,

×μ(y,z) � 0; μ(y,z)ρ(y,z) = 0, (24)

where μ(y,z) and λκ and are the multipliers corresponding
to the positivity inequality and the linear restrictions, respec-
tively. Here we consider only the case 0 < py,pz < 1. We

introduce the notations

g(λ,y,z) : = 1

pypz

N∑
k=0

λkfk(y,z),

a : = 1 − py

1 − pypz

; b := pz

1 − pz

;

h(λ,y): =
∫

�z

dmz(z′)|g(λ,y,z′)|−b.

By straightforward calculations, we get

ρ(λ,y,z) = g(λ,y,z)1/(pz−1)|h(λ,y)|−a. (25)

VI. APPLICATIONS

A. MaxEnt with scale-invariant constraints

(This is an extension of the results from Ref. [31].)
Consider the particular case∫

R2
dy dzρ(y,z)y2 = c1;

∫
R2

dy dzρ(y,z)z2 = c2. (26)

From Eq. (25), we obtain (up to a multiplicative constant)

ρ(λ,y,z) = [1 + (λ1y)2]m

[1 + (λ1y)2 + (λ2z)2]
1

1−pz

;

(27)

m = − 1 − 3pz

2(1 − pz)

1 − py

1 − pypz

,

which corresponds to a PDF with different tail exponents in
the variables y,z. If to Eqs. (26) we add the supplementary
restriction ∫

R2
dy dzρ(y,z)y2z2 = c3, (28)

it is possible to find a combination of the Lagrange multipliers
such that, up to a multiplicative constant, we get

g(λ,y,z) = (1 + a1y
2)(1 + a2z

2),

so that (c1,2− > a1,2)

ρ(y,z) = K
1

(1 + a1y2)κy

1

(1 + a2z2)κz
;

(29)
κy = 1/(1 − pypz) ; κz = 1/(1 − pz).

Hence, by putting c2 = (1 − pz)/σ 2, and in the limit case
pz → 1 (with the rest of the parameters kept constant), we get

ρ(y,z) = K
1

(1 + c1y2)κy
exp(−z2/σ 2), (30)

which is exactly the form of the stationary solution analyzed
in our example Eq. (3).

B. H theorems (Liapunov functionals)

Let us now consider the problem of variation of the GRE
in a dynamical system, whose microscopic statistical features
are described by the Fokker-Planck equation, when additional
random effects, due to turbulence at macroscopic scale, are
taken into account by a random variable ω. In general, the
diffusion term describes the effect of the interactions at the
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atomic scale. The space of the additional random variable ω

will be denoted simply by �. � corresponds to the previous
�y , but now it describes the effect of turbulent environment.
The previous space �z is the usual phase space of the
dynamical system, with coordinates z = {z1, . . . ,zm}. The
typical example is the passive advection diffusion of tracer
by a velocity field with turbulent components and molecular
diffusion. Consider the case when the evolution is modeled
by the more general advection diffusion stochastic differential
equation (SDE) driven by the white noise ζi(t)

dzi/dt = Vi(z,ω) + ζi(t); 1 � i � m,
(31)

〈ζi(t1)ζj (t2)〉 = 2Di,j (z,ω)δ(t1 − t2),

where Vi(z,ω) and Di,j (z,ω) satisfy the conditions

∂Vi(z,ω)

∂zi

= 0;
∂Di,j (z,ω)

∂zi

= 0, (32)

where the convention of summation on repeated indices is
adopted. The corresponding Fokker-Planck equation, for a
fixed ω, is

∂ρ(t,ω,z)

∂t
= − ∂

∂zi

(Viρ) + ∂2

∂zi∂zj

(Di,jρ). (33)

Notice that the first condition of Eqs. (32) is satisfied,
e.g., by the most general Hamiltonian system, with m/2
degrees of freedom (Liouville theorem). This general model
contains some important particular cases. When m = 3 this
corresponds to the passive tracer transport by advection and
molecular diffusion, in a turbulent flow, whose statistical
properties are encoded in the probability measure dP (ω). It
also describes the stochastic magnetic field line dynamics in
a tokamak [21]. For m = 2 it may describe the transversal
motion (transversal to a constant magnetic field B) of the
charged particles in the drift approximation, and subject to
a random electric field −∇φ(z,t,ω) and collisions modeled by
white noise ζi(t) [33]:

dzi/dt = 1

B
ei,j

∂φ

∂zj

+ ζi(t); i = 1,2,

〈ζi(t1)ζj (t2)〉 = δi,j σ δ(t1 − t2).

Here ei,j is the Levi-Civita symbol and σ describes the effects
of the collisions.

We prove now the following important theorem, which is
a sort of H theorem describing the tendency of the GRE to
increase in time. In general, we define the Liapunov function
L(t) := ∫

�
dP (ω)[

∫
�

dmx(ρ(t,ω,x))pz ]py where ρ(t,ω,z) is
the solution of the Fokker-Planck equation [Eq. (33)] for a
fixed ω. Then we have the following.

Proposition. Under the conditions of Eqs. (32), d
dt

L(t)(pz −
1) > 0, and the corresponding GRE S(2)

qy ,qz
[ρ] = 1

1−qz
log L(t)

is nondecreasing in time.
Proof. We start from the definition of the GRE and

differentiate the expression with respect to time. Then we use
the Fokker-Planck equation for the time derivative of ρ, and
after integration by part in the z coordinate, and by taking into

account Eqs. (32), we obtain

d

dt
L(t) =

∫
�

dP (ω)M(ω,t)

×
∫

�

dmz(ρ(t,ω,z))pz−2 ∂ρ

∂zi

∂ρ

∂zj

Di,j ,

M(ω,t) = −pypz(pz − 1)

[∫
�

dmz′(ρ(t,ω,z′))pz

]py−1

with ∂ρ

∂zi

∂ρ

∂zj
Di,j � 0 from the second law of thermodynamics.

VII. CONCLUSIONS

In conclusion, we have introduced a generalization of the
Rényi entropy (GRE) that, still preserving the additivity, is
able to treat dynamical systems in a highly anisotropic phase
space. This is the case of magnetically confined plasmas or of
integrable systems subject to perturbations. The anisotropy of
the PDF in the phase space can be retrieved from the MaxEnt
principle applied to the GRE, subject to natural scale-invariant
restrictions. In these situations, the PDFs may show different
tail exponents in the variables; this property belongs only to
the GRE and not to the standard Rényi entropy. We have also
seen that the Rényi and Shannon entropies are reobtained
by the GRE as limit cases. Even though the extensivity of
the RE is preserved in the GRE, the symmetry of the RE
(Axiom 1 of the RE), is not completely preserved in our
generalized version. The symmetry group of Rényi entropy,
i.e., the measure-preserving transformations of �y × �z, splits
into a direct product of measure-preserving transformations of
�y , respectively. This is the “price” we have to pay to treat
dynamical systems in highly anisotropic phase space.

The functionals that appear in the definition of the GRE may
be interpreted as the distance in the corresponding functional
space and in a wide range of the parameters py,pz have useful
concavity, respectively convexity, properties. Again, when the
evolution of the system is modeled by the general advection
diffusion SDE driven by white noise, we proved the validity
of a sort of H theorem, which results in being satisfied by the
GRE when the velocity flows and the diffusion coefficients
are divergenceless in the phase space of the dynamical system
[see Eq. (30)].

This work gives several perspectives. Through the ther-
modynamical field theory (TFT) [34], it is possible to
estimate the PDF when the nonlinear contributions cannot
be neglected [35]. The next task should be to establish the
relation between the reference, stationary PDF, derived by the
MaxEnt principle applied to GRE, subject to scale-invariant
restrictions, with the ones found by the TFT.
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APPENDIX

1. Proof of Eq. (9)

Denote

u1(x) = 1 + x−β

(1 + x)[log(2 + x)]1+ε
.

From Eqs. (4) and (7) we have to study the δ → 0 and A → ∞
limits in

Iq,δ,A =
∫ A

δ

[u1(x)]q dx. (A1)

We have Iq,δ,A = J
(1)
q,δ,A + J

(2)
q,δ,A where

J
(1)
q,δ =

∫ 1

δ

[u1(x)]q dx, (A2)

J
(2)
q,A =

∫ A

1
[u1(x)]q dx. (A3)

Remark that

lim
x→0

[u1(x)]q

x−βq
= 1

[log(2)]q(1+ε)
.

It follows that for q > 1 and 0 < β < 1 the conver-
gence/divergence in J

(1)
q,δ for δ → 0 is the same as in the integral∫ 1

δ
x−βq dx, while J

(2)
q,A has finite limit for A → ∞, which

proves Eq. (9).
Remark 4. Moreover, we observe that also in the limit q ↘ 1

the normalization integral I1,ε,A has a finite limit, due to the
logarithmic term.

Indeed, J (1)
q,δ from Eq. (A2) is finite also for q = 1 in the limit

δ → 0, because β < 1. The behavior for large A in the integral
J

(2)
q,A is the same as for the integral

∫ A

1
1

(2+x) [log(2+x)]1+ε dx,
which is finite.

2. Proof of Eq. (10)

Denote

u2(y) = 1

y(1 + yγ )[log(2 + 1/y)]1+ε
.

Similarly,from Eqs. (4) and (8) we have to study the δ → 0
and A → ∞ limits in

Fq,δ,A =
∫ A

δ

[u2(y)]q dy. (A4)

We decompose Fq,δ,A = G
(1)
q,δ + G

(2)
q,A where

G
(1)
q,δ =

∫ 1

δ

[u2(y)]q dy, (A5)

G
(2)
q,A =

∫ A

1
[u2(y)]q dy. (A6)

For γ > 0 the integral G
(1)
q,δ behaves for δ → 0 like the

integral
∫ 1
δ

y−q dy, so converge for 0 < q < 1 and diverge

for q > 1. The behavior for A → ∞ of G
(2)
q,A is the same as for∫ A

1 y−q(1+γ ) dy: it is finite for q(1 + γ ) > 1 and it is divergent
for q(1 + γ ) < 1, which proves Eq. (10).

Remark 5. Similarly to Remark 4 we observe that also in the
limit q ↗ 1 the normalization integral F1,ε,A has finite limit,
due to the logarithmic term.

For proof, we observe that G
(2)
q,A for q = 1 and A →

∞ is finite. The δ → 0 behavior of G(1)
q,ε for q = 1 is

similar to the integral
∫ 1
δ

1
y[log(2+1/y)]1+ε dy, or that of integral∫ 0.5

δ
1

y[log(1/y)]1+ε dy, which is finite.

3. Proof of example with infinite Boltzmann-Shannon entropy

We prove that the Boltzmann-Shannon entropy for distri-
butions from Eqs. (7) and (8) is infinite. First, we observe
that according to Remarks 4 and 5, both distributions from
Eqs. (7) and (8) are integrable and the resulting convergence
or divergence is not influenced by the normalizing constants
K1,2. From Eqs. (5) and (7) results

SS,B [ρ1] = k1 + lim
δ→0

H
(1)
δ + lim

A→∞
H

(2)
A , (A7)

where in the following we denote by k1,... some finite constants
and

H
(1)
δ = −

∫ 1

δ

u1(x) log u1(x) dx, (A8)

H
(2)
A = −

∫ A

1
u1(x) log u1(x) dx. (A9)

Remark that the dominant term in the integrand of H
(1)
δ is of

the form x−β log x−β , so limδ→0H
(1)
δ is finite.

Denote

v(x) = 1

(2 + x) [log(2 + x)]ε
, (A10)

and remark that

lim
x→∞

u1(x) log u1(x)

v(x)
= 1, (A11)

∫ A

1
v(x) dx = O([log A]1−ε). (A12)

Then from Eqs. (A7) and (A9)–(A12) we obtain

H
(2)
A = O([log A]1−ε). (A13)

In conclusion, from Eqs. (A7) results that the Shannon-
Boltzmann entropy of the distribution ρ1(x) from Eq. (7) is
infinite. In order to prove that the Shannon-Boltzmann entropy
of the distribution ρ2(y) is infinite, we use Eqs. (5) and (8).
Similarly to Eq. (A7) results

SS,B [ρ2] = k3 + lim
δ→0

L
(1)
δ + lim

A→∞
L

(2)
A , (A14)

where

L
(1)
δ = −

∫ 1

δ

u2(y) log u2(y) dy, (A15)

L
(2)
A = −

∫ A

1
u2(y) log u2(y) dy. (A16)
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Remark that ∣∣ lim
A→∞

L
(2)
A

∣∣ < ∞ (A17)

because γ > 0. Denote

s(y) = 1

y[log(1/y)]ε
. (A18)

It is easy to see

lim
y→0

u2(y) log u2(y)

s(y)
= −1. (A19)

On the other hand, by the substitution y = exp(−t) we obtain

∫ 1/2

δ

s(y) dy = 1

1 − ε

[(
log

1

δ

)1−ε

− (log 2)1−ε

]
.

(A20)

From Eqs. (A15), (A19), and (A20) results that

L
(1)
δ = −O

(
log

1

δ

)1−ε

, (A21)

which proves that SS,B [ρ2] = −∞.

[1] C. E. Shannon, Bell Syst. Tech. J. 27, 379
(1948); ,27, 623 (1948)

[2] T. Maszczyk and X. Duch, Lect. Notes Comput. Sci. 5097, 643
(2008).
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