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Scaling analysis of stationary probability distributions of random walks on one-dimensional
lattices with aperiodic disorder
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Stationary probability distributions of one-dimensional random walks on lattices with aperiodic disorder are
investigated. The pattern of the distribution is closely related to the diffusional behavior, which depends on
the wandering exponent � of the background aperiodic sequence: If � < 0, the diffusion is normal and the
distribution is extended. If � > 0, the diffusion is ultraslow and the distribution is localized. If � = 0, the
diffusion is anomalous and the distribution is singular, which shows its complex and hierarchical structure.
Multifractal analyses are performed in order to characterize these distributions. Extended, localized, and singular
distributions are clearly distinguished only by the finite-size scaling behavior of αmin and f (αmin). The multifractal
spectrum of the singular distribution agrees well with that of a simple partitioning process.
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I. INTRODUCTION

Random walks have long been one of the most fundamental
processes both in physics and mathematics [1]. Due to their
simplicity and interesting and rich structure, they provide the
basis for understanding many kinds of physical phenomena, in-
cluding transport processes, fluctuating time series, relaxation
processes, and pattern formation. It is well known that for a
random walk on a symmetric and homogeneous background,
the average displacement vanishes and the average mean-
square displacement scales linearly with time:

〈X(t)〉 = 0, (1)

〈X2(t)〉 ∼ t. (2)

On the other hand, it is also known that the diffusional
behavior of the system is strongly and qualitatively modified
by disorder, especially when the spatial dimension is low. In
a one-dimensional random walk with random disorder, the
diffusion is strongly suppressed and the average mean-square
displacement grows on a log-time scale [2,3]:

〈X2(t)〉 ∼ (log t)4, (3)

which is called ultraslow diffusion.
In this article, we consider systems with aperiodic disorder.

An aperiodic disorder is generated by a certain deterministic
rule. It is this point that distinguishes aperiodic from random
disorder. We expect that the behavior of systems with aperiodic
disorder is, in general, intermediate between that of a homo-
geneous system and that of a system with random disorder. In
fact, for a random walk on a certain particular one-dimensional
lattice with aperiodic disorder, it was reported in Ref. [4] that
an anomalous diffusion may occur. This is characterized as

〈X2(t)〉 ∼ tφ with 0 < φ < 1. (4)

Interestingly, these normal, ultraslow, and anomalous dif-
fusions are observed in dynamical deterministic maps [5].
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Recently, a unified understanding of the diffusional behavior
described by Eqs. (2)–(4) has been attempted from the point of
view of a weakly chaotic regime of a deterministic map [6]. In
addition to the theoretical and mathematical interest, systems
with aperiodic disorder have been fabricated artificially [7].

We investigate the structure of the stationary probability
distribution of a random walk on a one-dimensional lattice with
aperiodic disorder. For a one-dimensional lattice, aperiodic
disorder is expressed by a corresponding aperiodic sequence.
It is the wandering exponent � that characterizes an aperiodic
disorder and affects the diffusional behavior. It determines how
the geometrical fluctuation of the sequence � scales with the
length of the sequence L, � ∼ L� [4,8,9]: If � is negative,
the geometrical fluctuation is bounded and the effect of the
disorder becomes smaller as the size of the system grows.
Therefore, the diffusional behavior becomes qualitatively
similar to that on a homogeneous background. On the other
hand, if � is positive, the effect of the disorder becomes
stronger with an increase in the system size. If � vanishes,
the effect of the disorder is almost independent of the system
size—the fluctuation grows logarithmically. In this case, we
observe anomalous diffusion, which is written as Eq. (4).

Therefore, we expect that the stationary probability dis-
tribution will show a characteristic pattern. Furthermore, we
expect the pattern to depend on only the wandering exponent
and to correspond to the diffusional behavior. We do not expect
it to depend on the details of the aperiodic sequence.

Here we consider random walks on one-dimensional
lattices, for which the disorder is constructed by the Thue-
Morse (TM), the Rudin-Shapiro (RS), and the paperfolding
(PF) sequences, which are taken as representative examples.
The TM, RS, and PF sequences have negative, positive,
and vanishing wandering exponents, respectively. They have
several properties in common: (1) They are binary sequences,
i.e., they are composed of two types of symbols, A and B.
(2) They are constructed systematically from the initial
sequences and by the substitution rules. (3) The ratio of the
number of A to that of B converges to unity in the limit of
infinite length. In these cases, the geometrical fluctuation of
the sequence is given by the difference between the number
of A and that of B.
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Multifractal analysis will be used to characterize the
structure of the stationary probability distribution. Suppose
that a probability distribution is given and the support of
the distribution is covered with patches of size ε. Let pj (ε)
be the measure assigned to the j th patch. It is expected that
the measure scales with ε as

pj (ε) ∼ εαj , (5)

where αj is the singularity exponent. It is also expected that
the number of patches which takes the value of the singularity
exponent between α and α + dα also scales as

N (α)dα ∼ ε−f (α)dα, (6)

where f (α) is, roughly speaking, the fractal dimension of the
set of patches with α. Multifractal analysis has been applied
to characterize the scaling structure of various distributions
including those of the quantum localization problem [10],
energy dissipation in turbulence [11,12], and the sidebranch
structure of dendrites [13]. Since it is so widely applicable, we
expect that multifractal analysis will also be a good tool for
our investigation.

The rest of this paper is organized as follows: In Sec. II,
we present our model. First we describe our random walk
model on a one-dimensional lattice with aperiodic disorder.
Next we introduce the aperiodic sequences mentioned above
and refer to their properties necessary for our study. In
Sec. III, multifractal analysis is performed. We describe the
finite-size scaling formulation and discuss the criterion for
classifying the localization property of the distribution and
the finite-size effect. After briefly discussing the relationship
with the inverse partitioning ratio, which characterizes the
localization property, we present our results and discussion.
Section IV is dedicated to the summary and future outlook.

II. MODEL

A. Random walk on a one-dimensional disordered lattice

Consider a one-dimensional random walk with only nearest
neighbor hopping allowed. The time evolution of the probabil-
ity for the particle to be on site j at time t , pj (t), is described
by the master equation

∂pj (t)

∂t
= wj−1,jpj−1(t) + wj+1,jpj+1(t)

− (wj,j−1 + wj,j+1)pj (t), (7)

where wj,k denotes the transition rate for the particle to hop
from site j to site k. Two transition rates are assigned to the
j th bond, which connects the j th site to the (j + 1)th site.
One is the forward rate wj,j+1 and the other is the backward
rate wj+1,j . These transition rates are generally not symmetric,
i.e., wj,j+1 �= wj+1,j . Interestingly, in Ref. [4], it is pointed out
that the master equation (7) is equivalent to the transverse-field
Ising model.

Let us take a binary sequence S, for example, S =
ABAABAABAB · · · . For this sequence, the transition rates
are assigned as

wj+1,j

wj,j+1
=

{
a, the j th bond is type A

b, the j th bond is type B.
(8)

If a = b, the one-dimensional lattice is homogeneous. It is
apparent that the properties of the sequence S strongly affect
the behavior of the random walk.

By definition, an aperiodic sequence has infinite length. We
consider an aperiodic sequence which is constructed system-
atically by substitution rules and replace the fully aperiodic
sequence with a finite approximant Sn of finite length L,
where n denotes the generation of the approximant. We impose
the periodic boundary conditions, pj+L ≡ pj , wj+L,j+L+1 =
wj,j+1, and wj+L,j+L−1 = wj,j−1. The aperiodic sequence is
recovered in the limit as L → ∞.

We now consider the stationary probability distribution,
dpj/dt = 0. For simplicity, we set wj,j+1 = 1 for all j . The
exact expression of the stationary probability is obtained [3]
from the proportional relation

pj ∝ 1 +
L−1∑
k=1

k∏
l=1

wj+l+1,j+l , (9)

and the normalization condition

L∑
j=1

pj = 1. (10)

From this stationary probability, we can obtain the drift
velocity [and the diffusion constant if Eq. (2) holds] [3,4]. The
drift velocity vd is given as

vd ∝ 1 −
L∏

j=1

wj+1,j . (11)

If vd is sufficiently large, the stationary probability distribution
is extended throughout the system independently of the
properties of the disorder. On the other hand, if vd is small,
diffusion is dominant and then the disorder of the lattice
strongly affects the behavior of the system. Since we are
interested in how the structure of the probability distribution
is related to the diffusional behavior, we will consider only the
case with vanishing drift velocity, i.e., from Eq. (11),

L∏
j=1

wj+1,j = 1. (12)

For a given a, b is given as a function of a so that Eq. (12)
hold.

B. Aperiodic sequences

In this subsection, we review three aperiodic sequences,
each of which we consider below for the disorder of a
lattice. Following Refs. [8,9], we discuss the initial sequences,
the substitution rules, which generate the sequences, and
the wandering exponents. Then we will show the stationary
probability distributions of our stochastic model with each of
these types of aperiodic disorder.

1. Thue-Morse (TM) sequence

The TM sequence S = ABBABAAB · · · is generated by
the initial sequence S1 = AB and the iterative substitution
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rules A → AB and B → BA. Let Nn(A) and Nn(B) be the
numbers of A and B, respectively, in the sequence of the
nth generation Sn. From the substitution rules, Nn+1(A) and
Nn+1(B) are obtained from Nn(A) and Nn(B) as

[
Nn+1(A)
Nn+1(B)

]
= M

[
Nn(A)
Nn(B)

]
, (13)

where the substitution matrix M is given as

M =
[

1 1
1 1

]
. (14)

By diagonalizing the substitution matrix M , we find that the
eigenvalues are λ1 = 2 and λ2 = 0, and

Nn+1(A) + Nn+1(B) = 2{Nn(A) + Nn(B)}, (15)

Nn+1(A) − Nn+1(B) = 0. (16)

From Eqs. (15) and (16), we obtain

Nn(A) = Nn(B) = 2n−1. (17)

For the nth generation sequence Sn, the length L = Nn(A) +
Nn(B) and the geometrical fluctuation � = Nn(A) − Nn(B)
are L = 2n and � = 0, respectively. From the definition of the
wandering exponent �TM, � ∼ L�TM , it is obtained as the ratio
of the logarithm of (the absolute value of) the second-largest
eigenvalue to the logarithm of the largest eigenvalue,

�TM = log |λ2|
log λ1

= −∞. (18)

Since Nn(A) = Nn(B) holds in any generation, the vanishing
drift velocity condition is b = a−1.

Figure 1 shows the stationary probability distribution of
the TM model with L = 1024 and a = 0.3. The diffusion
of the TM model is known to be normal [4]. We observe that
the distribution is extended. From Eq. (9), the distribution
is analytically obtained in a simple form: For the nth
sequence Sn with a given a, the stationary probability
distribution is composed of 2n−1 sites with pj = 1/C,
2n−2 sites with pj = a/C, and 2n−2 sites with pj = 1/aC,
where C = 2n−1 + (a + a−1)2n−2 is the normalization
constant. These three types of measures are aligned
aperiodically.
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FIG. 1. Stationary probability distribution {pj } for the Thue-
Morse model with L = 1024 and a = 0.3. For visibility, only the
results of 650 � j � 750 are shown. The distribution is extended.

2. Rudin-Shapiro (RS) sequence

The RS sequence S = AAABAABA · · · is generated by
the initial sequence S1 = AA and the substitution rules AA →
AAAB, AB → AABA, BA → BBAB, and BB → BBBA.
In order to calculate Nn(A) and Nn(B) for the nth sequence
Sn, it is convenient to consider Nn(AA), Nn(AB), Nn(BA),
and Nn(BB). Using them, we obtain⎡

⎢⎣
Nn+1(AA)
Nn+1(AB)
Nn+1(BA)
Nn+1(BB)

⎤
⎥⎦ = M

⎡
⎢⎣

Nn(AA)
Nn(AB)
Nn(BA)
Nn(BB)

⎤
⎥⎦ , (19)

where the 4 × 4 substitution matrix is

M =

⎡
⎢⎣

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎤
⎥⎦ . (20)

By diagonalizing the substitution matrix M , we find that
the eigenvalues are 2, ±√

2, and 0, and for the first three
eigenvalues,

Nn+1(AA) + Nn+1(AB) + Nn+1(BA) + Nn+1(BB) = 2{Nn(AA) + Nn(AB) + Nn(BA) + Nn(BB)}, (21)

(
√

2 + 1)Nn+1(AA) + Nn+1(AB) − Nn+1(BA) − (
√

2 + 1)Nn+1(BB)

=
√

2{(
√

2 + 1)Nn(AA) + Nn(AB) − Nn(BA) − (
√

2 + 1)Nn(BB)}, (22)

(
√

2 − 1)Nn+1(AA) − Nn+1(AB) + Nn+1(BA) − (
√

2 − 1)Nn+1(BB)

= −
√

2{(
√

2 − 1)Nn(AA) − Nn(AB) + Nn(BA) − (
√

2 − 1)Nn(BB)}. (23)

From Eqs. (21)–(23),

Nn+1(A) + Nn+1(B) = 2{Nn(A) + Nn(B)}, (24)

Nn+1(A) − Nn+1(B) = 2�n/2�{Nn(A) − Nn(B)}, (25)

where �n/2� is the ceiling function:

�n/2� =
{
n/2, n even

(n + 1)/2, n odd.
(26)
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FIG. 2. Stationary probability distribution for the Rudin-Shapiro
model with L = 1024 and a = 0.3. For visibility, only the results of
600 � j � 800 are shown. Clearly the distribution is localized.

Then we immediately find that

Nn(A) = 2n−1 + 2�n/2�−1,

Nn(B) = 2n−1 − 2�n/2�−1,
(27)

and the length and geometrical fluctuation of the nth sequence
are L = 2n and � = 2�n/2�, respectively. This last result means
that the geometrical fluctuation scales as � ∼ 2n/2, which
corresponds to the second-largest eigenvalues, ±√

2.
The wandering exponent �RS is

�RS = log
√

2

log 2
= 1

2
. (28)

The geometrical fluctuation of the RS sequence grows un-
boundedly with the sequence length as � ∼ L1/2. Note that
the value �RS = 1/2 coincides with that of the random binary
sequence.

For the drift velocity to vanish, b = a−Nn(A)/Nn(B) for a given
a. In the limit as n → ∞, b approaches a−1. The stationary
probability distribution of the RS model with a = 0.3 and L =
1024 is shown in Fig. 2. The distribution is strongly localized.
It was reported that diffusion is ultraslow in the RS model,
where the mean-square displacement scales as Eq. (3) [4].

3. Paperfolding (PF) sequence

The PF sequence S = AABAABBA · · · is generated by
the initial sequence S1 = AA and the substitution rules AA →
AABA, AB → AABB, BA → ABBA, and BB → ABBB.
The recursion relation for the numbers of letters A and B is
expressed in the same form as Eq. (19), where the substitution
matrix in this case is given as

M =

⎡
⎢⎣

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎤
⎥⎦ . (29)
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FIG. 3. Stationary probability distribution for the paperfolding
model with L = 1024 and a = 0.3. A complex and hierarchical
structure can be observed.

The eigenvalues of M are 2, 1, and 0 (which is doubly
degenerate), and for the first two eigenvalues,

Nn+1(AA) + Nn+1(AB) + Nn+1(BA) + Nn+1(BB)

= 2{Nn(AA) + Nn(AB) + Nn(BA) + Nn(BB)}, (30)

Nn+1(AA) − Nn+1(AB) + Nn+1(BA) − Nn+1(BB)

= Nn(AA) − Nn(AB) + Nn(BA) − Nn(BB). (31)

We find that for the nth sequence L = 2n, � = 2, and

Nn(A) = 2n−1 + 1,

Nn(B) = 2n−1 − 1.
(32)

The wandering exponent of the PF sequence vanishes:

�PF = log 1

log 2
= 0. (33)

In fact, the geometrical fluctuation grows logarithmically with
L, although it remains constant at the endpoint.

For the drift velocity to vanish,

b = a−(2n−1+1)/(2n−1−1), (34)

for a given a, which converges to a−1 in the limit as n → ∞. It
was found that in the PF model, the diffusion is anomalous and
it is written as in Eq. (4) [4], where the exponent φ depends
on the inhomogeneity parameter a. The stationary probability
distribution of the PF model with a = 0.3 and L = 1024 is
shown in Fig. 3. The distribution appears to be singular, and
appears to be neither extended nor localized. We can observe
its complex and hierarchical structure.

III. MULTIFRACTAL ANALYSIS

A. Formulation: On a one-dimensional support

Aperiodic chains are defined in the limit as L → ∞.
Thus we estimate the results of the system as L → ∞ by
systematically extrapolating from the results of systems with
finite L.
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Let us review the formulation of multifractal on a one-
dimensional support [10,14]. Suppose that a stationary prob-
ability measure for a finite one-dimensional L-site system
{pj }j=1,2,...,L is given. The partition function Z(q,L) is
introduced as

Z(q,L) =
∑

j,pj �=0

(pj )q . (35)

The multifractal exponent for the finite system τ (q,L) is
defined as

τ (q,L) = − log Z(q,L)

log L
. (36)

By the Legendre transformation, the singularity exponent α for
the finite system and its fractal dimension f (α) are obtained,
as functions of q and L,

α(q,L) = ∂τ (q,L)

∂q
, (37)

f (α(q,L)) = qα(q,L) − τ (q,L). (38)

However, it is not practical to evaluate α and f (α) numerically
from Eqs. (37) and (38) since this requires numerical differen-
tiation, which may produce relatively large errors. Therefore,
it is better to evaluate them directly. We show this below,
following the method presented in Ref. [11].

Let us construct a new probability measure {μj (q)} from
{pj }:

μj (q) = (pj )q∑L
j=1(pj )q

. (39)

Then let us define ζ (q,L) and ξ (q,L) as

ζ (q,L) =
L∑

j=1

μj (q) log pj , (40)

ξ (q,L) =
L∑

j=1

μj (q) log μj (q), (41)

from which we obtain α(q,L) and f (α(q,L)) as

α(q,L) = −ζ (q,L)

log L
, (42)

f (α(q,L)) = −ξ (q,L)

log L
. (43)

Direct calculation shows that the definitions (42) and (43)
satisfy the relations (37) and (38). Note that the above
formulation has some similarities with the thermodynamic
formulation of the Rényi entropy H (q) of dynamical systems,
which is defined as [15]

H (q) = 1

1 − q
log

⎡
⎣∑

j

(pj )q

⎤
⎦ , (44)

for q > 0. The phase transition related to the Rényi entropy of
a deterministic chaotic system is discussed in Ref. [6].

Next we estimate the finite-size effect. For example, the
“true” value of τ (q) for a system of infinite size is defined as

τ (q) = lim
L→∞

τ (q,L), (45)

and α(q) and f (α(q)) are defined similarly. They should be
obtained by careful extrapolation from the results for systems
of finite size. From Eqs. (35), (36), and (45), we expect that

τ (q) − τ (q,L) = O(1/ log L). (46)

Therefore, we estimate the value of τ (q) from the plot of
τ (q,L) against 1/ log L and the extrapolation to 1/ log L → 0.

The localization property of a given distribution can be
read from its multifractal spectrum, especially the results for
q → ±∞. This is known in the quantum localization problem,
where the probability distribution is given as the squared norm
of the wave function [10]. Let αmin and αmax be α(q → ∞)
and α(q → −∞), respectively, and let fmin = f (αmin) and
fmax = f (αmax). For an extended distribution, the multifractal
spectrum of the systems of finite size converges to a single
point α = f = 1 in the limit as L → ∞. For a localized
distribution, αmin and fmin converge to 0, αmax diverges to
infinity, and fmax converges to unity. For a singular distribution,
αmin and αmax take different finite values. The spectrum f (α) is
a continuous and convex curve which takes values only within
α ∈ [αmin,αmax].

B. Localization and inverse participation ratio

Note that the partition function given by Eq. (35) with
q = 2, Z(q = 2,L) is equivalent to the “inverse participation
ratio (IPR).” The IPR was originally introduced in the quantum
localization problem [16,17] more than 40 years ago. Its
purpose is to simply evaluate the localization property of
a given distribution. It has been used not only in quantum
mechanics but even in finance [18]. And some generalizations
have been attempted recently [19,20]. The scaling behavior
of the IPR against the system size L is used to classify
the localization property of a given distribution. If a state is
extended, the IPR is inversely proportional to the system size
since the probability measure at a site is roughly inversely
proportional to the system size, i.e., pj ∼ L−1. On the other
hand, if a state is localized, the IPR is almost independent of
the system size. If a state is singular, which is called “critical”
in the context of quantum localization, the scaling behavior of
the IPR is intermediate between the behavior in the above two
cases:

IPR(L) ∼ L−δ with 0 < δ < 1. (47)

We expect that these scaling behaviors hold for the stationary
probability distribution of our classical stochastic models.

Figure 4 shows the log-log plots of the IPR against the
system size L for the TM, RS, and PF models with a = 0.3.
For the TM model, it is observed that Z(2,L) ∼ L−1. For
the RS model, for small n, the IPR depends on whether
n = log2 L is even or odd. However, as n increases, the
series of the results for odd n converge with those for even
n, and the results become independent of the system size,
i.e., Z(2,L) ∼ const. These results are consistent with the
localization properties of their probability distributions as
shown in Figs. 1 and 2, which are extended for the TM model
and localized for the RS model, respectively. These scaling
properties are independent of the value of a. For the PF model
with a singular probability distribution, the scaling behavior
is Z(2,L) ∼ L−δ with δ = 0.69. Note that in this case, the
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FIG. 4. Log-log plots of the inverse participation ratio Z(2,L)
against system size L for the Thue-Morse, Rudin-Shapiro, and
paperfolding models with a = 0.3. Lines are, from top to bottom,
const, L−0.69, and L−1.

exponent δ depends on a. Figure 5 shows the a dependence
of δ. It monotonically increases with a and approaches 1 as
a → 1, since the system with a = 1 is homogeneous and so
the distribution is extended.

C. Multifractal spectra

Since αmax and fmax are dominated by the smallest measure
of the distribution, they may have large numerical errors.
Therefore, we will restrict our discussion to only αmin and
fmin.

Figure 6 shows the plots of αmin(L) against 1/n = 1/ log2 L

for the TM, RS, and PF models with a = 0.3. For the TM
and PF models, these plots are linear. For the RS model,
similar to the case of the scaling of the IPR, some parity
dependence is found for small n. However, for large n, the plots
become linear, independent of the parity of n. This validates
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FIG. 5. Plots of the exponent δ in Eq. (47) against a. In the
homogeneous limit a → 1, δ → 1.
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FIG. 6. Plots of αmin(L) against 1/n = 1/ log2 L for the Thue-
Morse, Rudin-Shapiro, and paperfolding model with a = 0.3. Their
linear dependence means that the leading correction is O(1/ log L).

our expectation of the finite-size effect, given by Eq. (46).
Extrapolating the plots toward 1/ log L → 0, we find that
αmin → 1 for the TM model, αmin → 0 for the RS model, and
αmin → ∼0.391 for the PF model. Figure 7 shows the plots of
fmin(L) against 1/ log2 L. It can be observed that in the limit
as 1/ log L → 0, fmin → 1 for the TM model, and fmin → 0
for the RS and PF models. These results are consistent with
the criteria mentioned in the last paragraph of Sec. III A and
also with the results of the IPR scaling behavior obtained in
Sec. III B.

For the PF model, the multifractal f (α) spectrum takes
continuous values within α ∈ [αmin,αmax], where αmin and
αmax are both positive finite values. The multifractal spectrum
for the PF model with a = 0.3 is shown in Fig. 8. It is
convex upwards, which is a universal property, and takes the
maximum value f = 1, reflecting the fact that the support of
the probability distribution is one dimensional. Moreover, it

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25

f m
in

1/log 2L

TM
RS
PF

FIG. 7. Plots of fmin(L) = f (αmin(L)) against 1/ log2 L for the
Thue-Morse, Rudin-Shapiro, and paperfolding model with a = 0.3.
The leading correction here is also O(1/ log L).
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FIG. 8. Multifractal f (α) spectrum of the stationary probability
distribution of the PF model with a = 0.3 and that of the binomial
branching process with p = 0.763.

looks symmetric with respect to α = α0, where it takes the
maximum. This result is in quite good agreement with the
spectrum of the “binomial branching process,” which is a
simple process constructed by the recursion of elementary
uneven partitioning. The binomial partitioning process was
first introduced as a simple model for the hierarchical en-
ergy cascade of turbulence [21]. It has been applied as a
simple model for various systems, including the sidebranch
structure of a dendrite [13] and fragmentation [22]. In this
process, the spectrum can be calculated exactly due to its
simplicity:

α(q) = −η log p + (1 − η) log(1 − p)

log 2
, (48)

f (α(q)) = −η log η + (1 − η) log(1 − η)

log 2
, (49)

where

η = pq

pq + (1 − p)q
, (50)

and 1/2 < p < 1 is the partitioning parameter, which is the
only free parameter in the process. From Eq. (48), we im-
mediately obtain αmin = − log2 p and αmax = − log2(1 − p).
This agreement shows that in the PF model, there exists a
mechanism which partitions the probability measure unevenly
and hierarchically, in a way similar to that in the binary
branching process. This is attributed to the fact that the
effect of the fluctuation of the PF sequence, due to its
vanishing wandering exponent, is almost independent of length
scale.

Figure 9 shows the a dependence of αmin. We find that
αmin is a monotonically increasing function of a. In the limit
as a → 1, the system becomes homogeneous, and therefore
the distribution is extended and αmin approaches unity, which
characterizes an extended distribution. Since the multifractal
spectra for the PF model and the binary partitioning process

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
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FIG. 9. Plot of αmin against a. The value of αmin converges to
unity in the homogeneous limit as a → 1.

are in good agreement, the parameter in the binary branching
process, p, and a are related as αmin(a) = − log2 p.

Thus far, we have restricted ourselves to the case of a < 1
for each model. For a > 1, at least the localization property of
the probability distribution and the multifractal spectra do not
vary under a ↔ a−1, in the limit as L → ∞. This is probably
a consequence of the fact that in the underlying aperiodic
sequence, the ratio of the number of A to that of B converges
to unity.

IV. SUMMARY AND OUTLOOK

We found that the stationary probability distribution of a
random walk on a one-dimensional aperiodically disordered
lattice shows a characteristic localization pattern which cor-
responds to its diffusional behavior. The results are summa-
rized in Table I. The localization pattern of the distribution
(extended, localized, or singular) depends on the wandering
exponent of the background aperiodic sequence. These types
of pattern can be distinguished by the finite-size scaling
of the partition function Z(q = 2,L), the singular exponent
αmin, and the fractal dimension fmin. In particular, for the
distribution of the model with a vanishing wandering exponent,
we obtained a continuous multifractal spectrum with finite αmin

and αmax (αmin �= αmax). This spectrum reflects the singular and
hierarchical structure of the distribution and agrees well with
the spectrum of the binomial branching process.

TABLE I. Summary of the results. � denotes the wandering expo-
nent, PDF denotes the stationary probability distribution function, and
αmin and fmin denote α(q → ∞,L → ∞) and f (q → ∞,L → ∞),
respectively.

Sequence � PDF Diffusion αmin fmin

TM − extended normal 1 1
RS + localized ultraslow 0 0
PF 0 singular anomalous finite 0
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We considered only the case with a vanishing drift velocity
vd = 0, since we were interested in the diffusional behavior.
As mentioned in Sec. II A, a finite drift velocity vd �= 0 causes
a finite current through the lattice and makes the distribution
extended. It may be an interesting problem to determine how
a localized or singular distribution changes by a finite drift
velocity.
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APPENDIX: BINOMIAL BRANCHING PROCESS

We discuss the binomial branching process [21] so that
this article is self-contained. Its multifractal spectrum can be
exactly calculated due to its simple structure.

Suppose that a segment of length 1 is divided into two
segments of length 1/2. A probability measure p > 1/2 is
assigned to the left segment and (1 − p) is assigned to the right.
This p is the only free parameter of the process. Next, each
segment is subdivided into two equal halves and the measure is
partitioned into p to the left and (1 − p) to the right. There are
now four segments, each of length 1/4, and the measures p2,
p(1 − p), (1 − p)p, and (1 − p)2 are assigned to the segments
from left to right. This procedure is iterated (see Fig. 10),
which shows the hierarchical structure n = 8. At the nth stage,
there are 2n segments, each of length 2−n, and the number
of segments with measure pk(1 − p)n−k , k = 0,1, . . . ,n, is(
n

k

) = n!/[k!(n − k)!]. Therefore, the partition function for this
stage, Z(q,n), is immediately obtained as

Z(q,n) =
n∑

k=0

(
n

k

)
[pk(1 − p)n−k]q = [pq + (1 − p)q]n.

(A1)

The multifractal exponent τ (q) is, in the limit as n → ∞,

τ (q) = − log[pq + (1 − p)q]

log 2
. (A2)

n=1
p 1-p

n=2 p2
p(1-p) (1-p)p

(1-p)2

n=8

FIG. 10. Different stages of the binomial branching process. Each
segment is divided into two equal subsegments at the next stage and
its measure is divided into nonequal fractions, p and (1 − p). This
figure is cited from Ref. [13].

From this and by using the Legendre transformation, the
singularity exponent α(q) and the fractal dimension f (α(q))
are obtained as Eqs. (48) and (49). The direct evaluation, given
by Eqs. (42) and (43), gives the same result. The spectrum
is symmetric with respect to α0 = −[log2 p + log2(1 − p)]/2
and takes the maximum f (α0) = 1, which reflect the fact that
the support is one dimensional.
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