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Work and quantum phase transitions: Quantum latency
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We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics.
For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical
point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent
heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is
closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate
our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain
models.
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I. INTRODUCTION

Classical phase transitions are driven by a multitude
of mechanisms such as particle or heat exchange with a
reservoir [1]. A characteristic trait of first-order classical phase
transition, e.g., water turning into ice, is an exchange of heat
between the system and reservoir at constant temperature
called the latent heat; this is the energy needed to go from
one state of matter to another [2]. This can be made explicit
if we consider the free energy F = U − T S, which has
a discontinuous derivative at the first-order critical point,
implying a discontinuity in entropy since S = − ∂F

∂T
. Therefore,

we also have a discontinuity in internal energy, which is the
latent heat �U = T �S = Qlatent.

Quantum phase transitions (QPTs), on the other hand,
occur at zero temperature and are driven by changes in the
system Hamiltonian, i.e., by extracting or performing work
on the system [3]. Here, we recast QPTs in the framework
of nonequilibrium thermodynamics [4–8] and show that the
average and irreversible work can be made vanishingly small in
the vicinity of a first-order QPT; therefore, we show that there
is no correspondence with classical latency. Thus, there is no
quantum latent work associated with equilibrium first-order
quantum phase transitions. However, an actual transition
between two phases separated by a first-order transition is
forbidden by the Hamiltonian dynamics and thus requires the
presence of an external bath, which allows one phase to be
converted into the other. The bath absorbs the excess work as
a heat transfer from the system and hence latency is found as
a nonequilibrium property.

In this article we consider the work done on a quantum
system when it is taken across the critical point of a QPT by
an infinitesimal-instantaneous change of its Hamiltonian. The
sudden quench simplifies our analysis to give a transparent in-
terpretation of the essential physics without loss of generality.
Our method relies on quantifying the nonequilibrium work by
analyzing the moments of the quantum work distribution. This
approach has recently been used to provide insight into both the
thermodynamic and universal features of quantum many-body

systems [9–18]. In particular, it was recently shown that
for a zero-temperature quantum system undergoing a sudden
quench, the first and second derivatives of the ground-state
energy with respect to the quench parameter are closely related
to the average work and irreversible work, respectively [19].
Building on this result, we show how the work distribution
captures the nonanalyticity of the ground-state energy in first-
order QPTs and to the order parameter and susceptibility of
the model in second-order QPTs. We support our findings with
numerical simulations of the first-, second-, and infinite-order
QPTs in the XXZ spin chain, which maps to a model of
interacting fermions [20].

II. PURE STATE THERMODYNAMICS

We consider a quantum system with the Hamiltonian
H (λ) = Hfree + λV , where λ is an external parameter control-
ling the strength of the perturbing potential V . For t < 0 the
control parameter is held at a fixed initial value λ = λi and the
system is coupled to a reservoir at zero temperature. We make
two assumptions: (i) the ground state to be nondegenerate,
which can always be assumed for real systems in which small
imperfections and disorder naturally break degeneracy; and
(ii) even though absolute zero temperature is not feasible it
is a fair representative of currently attainable low-temperature
physics [21,22]. Upon equilibration, the system reaches its
ground state, defined by H (λi)|ψ0〉 = E0(λi)|ψ0〉, where
E0(λi) denotes the ground-state energy. The control parameter
is instantaneously quenched to a final value λf , giving the
Hamiltonian H (λf ) = ∑

m Em(λf )|φm〉〈φm|, where Em(λf )
are the energy eigenvalues of the final Hamiltonian and {|φm〉}
are the corresponding eigenstates.

The work done on the system is defined as the difference
between the initial energy of the system and the outcome of an
energy measurement performed in the eigenbasis of the final
Hamiltonian, i.e., Wm = Em(λf ) − E0(λi), where the outcome
Em(λf ) is obtained with probability pm = |〈ψ0|φm〉|2. Accord-
ingly, the quantum work distribution, which encodes the full
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statistics of work, is given by [4–7] P (W ) = ∑
m pm δ(W −

Wm), which has a direct connection to the Loschmidt echo [9].
The first moment of the work distribution gives the average
work done:

〈W 〉 =
∫

WP (W )dW = 〈ψ0|H (λf )|ψ0〉 − 〈ψ0|H (λi)|ψ0〉

= (λf − λi)〈ψ0|V |ψ0〉 = δλ
∂E0

∂λ

∣∣∣∣
λi

, (1)

where the last equality follows from V = ∂H/∂λ, the
Hellmann-Feynman relation [23], and we define δλ =
λf − λi .

The average work is bounded from below by the Clausius
statement of the second law [24]. At zero temperature,
this requires that 〈W 〉 � �U with �U = E0(λf ) − E0(λi)
denoting the change in internal energy. The Clausius inequality
is saturated for completely adiabatic evolution. However, for
general quenches the system can become excited, thereby
dissipating work. This leads to the definition of the irreversible
work 〈Wirr〉 = 〈W 〉 − �U as a measure of the nonadiabiticity
of the quench [25]. For a weak quench, λf − λi = δλ � 1,
the irreversible work can be expanded in powers of the small
parameter δλ, thus,

〈Wirr〉 = δλ
∂E0

∂λ

∣∣∣∣
λi

− E0(λi + δλ) + E0(λi) ≈ − δλ2

2

∂2E0

∂λ2

∣∣∣∣
λi

.

(2)

III. UNIVERSAL FEATURES OF QPTS

Zero-temperature quantum systems in the thermodynamic
limit undergo a phase transition when a Hamiltonian parameter
is tuned through a point of nonanalyticity in the derivatives
of the ground-state energy [3]. For first-order QPTs this
nonanalyticity takes the form of a level crossing, while for
second-order QPTs the critical point occurs at an avoided
crossing (see Fig. 1 for a graphical illustration). Owing to this
universal behavior, we need only consider a minimal model
incorporating a level crossing and an avoided crossing for our
investigation of the thermodynamics of QPTs. We therefore
choose the Landau-Zener model, describing a single two-level
system with energy splitting � and coupling ε within an
externally tunable magnetic field of strength λ. The relevant
Hamiltonian is

HLZ =
(

−�

2
+ aλ

)
σ z + εσ x, (3)

where σα is a spin-1/2 Pauli matrix with α = {x,y,z} and a

measures the strength of the coupling between the two-level
system and the magnetic field. The ground-state energy of
the Hamiltonian in Eq. (3) is easily found to be E0 =
− 1

2

√
4ε2 + (� − 2aλ)2. The first and second derivatives of

the ground-state energy with respect to the control parameter
are then

∂E0

∂λ
= a(� − 2aλ)√

4ε2 + (� − 2aλ)2
, (4)

∂2E0

∂λ2
= − 8a2ε2

(4ε2 + (� − 2aλ)2)3/2 . (5)

λ

E

λ

E

λ λ

∂2E∂E

First order transition Second order transition

First

Second

FIG. 1. (Color online) Schematic representation of a level cross-
ing giving rise to a first-order QPT and an avoided crossing leading to
a second-order QPT as discussed in the main text. The corresponding
first- and second-order derivatives of the ground-state energy are
also presented. For ε = 0, the ground and excited states of the
Landau-Zener Hamiltonian [Eq. (3)] exhibit a level crossing as the
external field is tuned through the critical value λc = �/(2a), while
for ε �= 0, the energy levels exhibit an avoided crossing. In the case
of the level crossing, both derivatives are discontinuous. For the
avoided crossing, the first and second derivatives are continuous for
finite ε and become discontinuous in the limit ε → 0 as the turning
point in the ground-state energy becomes a kink. As an aside, we
note that the Landau-Zener Hamiltonian is isomorphous to the Ising
mean-field Hamiltonian, which is accurate for the infinitely connected
many-body lattice [3].

Hence, combining Eq. (4) with Eq. (1), we are able to
evaluate the average work induced by a sudden quench of the
external field in the Landau-Zener model. We approximate
an adiabatic change in the external parameter by considering
weak sudden quenches, i.e., taking λi to λf = λi + δλ. In
the level crossing scenario (ε = 0, see Fig. 1), analogous
to a first-order QPT, the average work done per quench is,
thus, 〈W 〉/δλ = a for λf < λc and 〈W 〉/δλ = −a for λi > λc,
where λc = �/(2a) is the critical value of the external field.
Evidently, the average work per quench exhibits a discontinuity
at the critical point of magnitude

w = 2a. (6)

This discontinuity is a general feature of the level crossing
and, therefore, a general feature of first-order QPTs. Similar
discontinuous behavior is also exhibited by the classical latent
heat in CPTs. This sudden change is not quantum reminiscent
of classical latency rather a novel form of nonequilibrium
quantum latency.

Physically, the average amount of work required to cross
the critical point of a first-order QPT vanishes with the “size”
of the quench W = δλw. However, as the system is driven
across the level crossing it inevitably becomes excited, even
for very slow evolution. Hence, to bring the system to its new
ground state following the quench, it must be attached to a
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zero-temperature reservoir. During the equilibration process,
an amount of heat is dissipated from the system to the reservoir.
The amount of heat transfer is given by the “excess” energy
in the system, which is exactly the irreversible contribution
to the quantum work [25]. Thus, we have a quantum heat per
quench,

q = 〈wirr〉, (7)

as a universal feature of first-order QPTs. However, again, Q =
δλq goes to zero with the size of the quench, thus, there is no
heat release intrinsically associated to equilibrium first-order
quantum phase transitions.

For ε �= 0, the Landau-Zener Hamiltonian in Eq. (3)
exhibits an avoided crossing, analogous to a second-order
QPT (see Fig. 1). Combining Eq. (5) with Eq. (2), we are
able to evaluate the irreversible work done following a weak
sudden quench of the magnetic field strength. For a sudden
quench beginning at the critical value of the external parameter
λc = �/(2a), the irreversible work reduces to

〈Wirr〉 = −δλ2

2

∂2E0(ε �= 0)

∂λ2

∣∣∣∣
λ=λc

= δλ2a2

2ε
. (8)

We see that as ε → 0 in Eq. (8), consistent with a second-order
QPT in the thermodynamic limit, the irreversible work for
finite quenches at criticality diverges. This is consistent with
the results of Refs. [9–13,19], where the irreversible work
is shown to indicate second-order QPTs. We also point out
the similarity between the irreversible work and the fidelity
susceptibility, which is also a good indicator of second-order
QPTs [26–29] analagous to the thermal susceptibility in a
thermally driven second-order CPT.

Recalling that low-order transitions are associated with
nonanalytical behavior in derivative of the energy of cor-
responding order, we have explicitly shown how this ther-
modynamical approach detects low-order transitions. Having
elucidated the physical lack of latency in first-order QPTs and
reiterated the utility of the irreversible work as a susceptibility
in second-order QPTs, we now proceed to demonstrate these
ideas in quantum spin chains.

IV. QUANTUM MANY-BODY SYSTEMS

We choose the one-dimensional anisotropic XYZ spin
chain as the starting point for our investigation. This model is
fully equivalent to a spin-polarized extended Hubbard model at
half-filling, describing an effective system of spinless fermions
[30,31]. The Hamiltonian is given by

H =
∑
〈i,j 〉

[
Jxσ

x
i σ x

j + Jyσ
y

i σ
y

j + λ

2
σ z

i σ z
j + hσ z

i

]
, (9)

where Jx(y) is the spin coupling along the X(Y ) axis, λ is the
coupling along the Z axis, and h is the external magnetic field
along the Z axis. For a full discussion of the XYZ model and
its mapping to the fermion chain, see Ref. [20].

To proceed, we consider the XXZ Hamiltonian (Jx = Jy =
J ) with no external field (h = 0). In the parameter regime
λ/J < −2, the ground state is ferromagnetically ordered (a
fully filled band insulator in the Fermi picture). A first-order
QPT to a Luttinger liquid phase is brought about by tuning λ/J

FIG. 2. (Color online) Density matrix renormalization group
(DMRG) data (in units of J = 1) for the average work (filled
blue circles) and irreversible work (empty green circles) done in
a weak sudden quench of the XXZ Hamiltonian with 112 sites and
δλ = 10−5. Here, we assume the presence of a small local energy
shift at one lattice site, which lifts the degeneracy in the ground
state of the Hamiltonian. The data has a DMRG truncation error and
energy convergence of ≈10−9. The quench protocol we consider is an
instantaneous change of the Z-coupling δλ = λf − λi � 1, with the
system initialized in the ground state of the initial Hamiltonian. Both
the average and irreversible work display a discontinuity at the critical
point of the first-order transition at λ = −2. On the left-hand side of
the first-order transition, the gapped spectrum of the ferromagnetic
phase enforces adiabaticity as the system cannot be taken out of
equilibrium by weak quenches within the same phase. This means
that the system is not excited by the quench and the sole contribution to
the average work is the change in internal energy. The discontinuities
at the critical point indicate work required to drive the system from
the ferromagnetic phase to the Luttinger liquid phase. The new phase
is characterized by a continuous energy spectrum and so subsequent
quenches can excite the system, leading to the dissipation of work. In
contrast, neither the average work nor the irreversible work indicate
the Berezinskii-Kosterlitz-Thouless transition at λ = 2.

to the regime |λ/J | < 2. At λ/J = 2 the system undergoes
an infinite-order Berezinskii-Kosterlitz-Thouless QPT to an
antiferromagnetic phase (a charge density wave phase in the
fermionic picture). In Fig. 2 we show numerical results for the
average work and irreversible work done following a series
of weak sudden quenches across the phase diagram, passing
through both critical points. The work and irreversible work
exhibit the discontinuous behavior predicted in our analysis of
the Landau-Zener model. The origin of the discontinuity in the
irreversible work can also be explained phenomenologically
in this instance; as the magnetization of the two phases is
different, the dynamics induced by quenching the Hamiltonian
in Eq. (9), which preserves the total magnetization, are not able
to convert one phase to the other. To drive the transition, a zero-
temperature reservoir must be attached to the system at the end
of the quench protocol, bringing the system to its new ground
state. Physically, this corresponds to electromagnetic energy
exchange between the system and the environment, which is
consistent with heat exchange during a cooling process.
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FIG. 3. (Color online) Exact numerical results for the average
work and irreversible work induced by a sudden quench of the
external magnetic field h in the XX model. This model incorporates
a second-order QPT from a ferromagnetic phase for h/J � 1 to a
paramagnetic phase for h/J 	 1, with the critical point occurring
when the external field is two times the internal coupling h = 2J .
The phase diagram exhibits a discontinuity in the average work
and a divergent irreversible work at the critical point. This behavior
reflects the relationship between the irreversible work and fidelity
susceptibility discussed in the main text.

For completeness, we mention that neither the work nor the
irreversible work indicate the Berezinskii-Kosterlitz-Thouless
transition at λ/J = 2 (see Fig. 2). This is expected since
the Berezinskii-Kosterlitz-Thouless transition is of infinite
order and is, therefore, not captured by the finite order
nonequilibrium thermodynamical approach we adopt here.

We now turn our attention to second-order QPTs. In
Fig. 3, we plot the numerically exact results for the average
work and irreversible work done by quenching the external
field in the XX model [λ = 0 and Jx = Jy = J in Eq. (9)].
We see that the average work has a discontinuous derivative
at the QPT and, thus, the irreversible work shows singular
behavior at the critical point, consistent with its interpretation
as a susceptibility. The thermodynamic properties of the
second-order QPT in the transverse Ising model [λ = Jy = 0
and Jx = J in Eq. (9)] have been extensively studied [9–13,19]
and shown to exhibit the same global features in the phase

diagram. We also note that, in these specific cases, the average
work 〈W 〉 = δh

∑
i〈σ z

i 〉 is given by the order parameter of the
model. The XX spin chain thermodynamical analysis seems
to be connected to a geometric analysis given in Ref. [32].
There the geometric phase and its derivative can be written as
a function of the derivatives of the ground-state energy with
respect to the field strength, i.e., the order parameter of the
model.

V. CONCLUSION

In this work we have analyzed the statistics of work done
on general classes of quantum critical models by infinitesimal
sudden quenches of a control parameter. We show that first-
order QPTs exhibit a discontinuity in the work distribution
similar but not analogous to the classical latent heat, such
that quantum latency is intrinsically a nonequilibrium phe-
nomenon. As a final remark, we point out that recent proposals
to measure the statistics of work by means of an ancillary
system [33,34] (see also Ref. [35] for an extension to open
systems) can be extended to the many-body domain [36]
and used to verify our findings, hence bringing pure state
thermodynamics into the laboratory.

ACKNOWLEDGMENTS

The authors thank T. J. G. Apollaro, S. Montangero,
M. C. de Oliveira Aguiar, R. Pereira, and M. Terra Cunha
for helpful discussions and insightful comments. E.M., H.B.,
and M.F.S. thank CNPq (Brazil) for financial support. R.D.
and V.V. are grateful for financial support from the EPSRC
(UK). K.M. and V.V. acknowledge financial support from the
John Templeton Foundation, National Research Foundation,
and the Ministry of Education (Singapore). V.V. acknowledges
funding from the Leverhulme Trust, the Oxford Martin
School and the EU Collaborative Project TherMiQ (Grant
Agreement 618074). E.M. thanks University of Oxford for
their hospitality, and J.G. thanks Universidade Federal de
Minas Gerais for their hospitality.

[1] H. B. Callen, Thermodynamics and an Introduction to Thermo-
statistics (Wiley, New Jersey, 1985).

[2] K. Binder, Rep. Prog. Phys. 50, 783 (1987).
[3] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, UK, 1999).
[4] H. Tasaki, arXiv:cond-mat/0009244.
[5] J. Kurchan, arXiv:cond-mat/0007360v2.
[6] S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003).
[7] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102(R)

(2007).
[8] C. M. Van Vliet, Phys. Rev. E 86, 051106 (2012).
[9] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).

[10] F. N. C. Paraan and A. Silva, Phys. Rev. E 80, 061130 (2009).
[11] A. Gambassi and A. Silva, Phys. Rev. Lett. 109, 250602

(2012).
[12] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral,

Phys. Rev. Lett. 109, 160601 (2012).

[13] P. Smacchia and A. Silva, Phys. Rev. Lett. 109, 037202 (2012).
[14] B. Dora, A. Bacsi, and G. Zarand, Phys. Rev. B 86, 161109(R)

(2012).
[15] A. Sindona, J. Goold, N. Lo Gullo, S. Lorenzo, and F. Plastina,

Phys. Rev. Lett. 111, 165303 (2013).
[16] A. Sindona, J. Goold, N. Lo Gullo, and F. Plastina, New J. Phys.

16, 045013 (2014).
[17] A. Carlisle, L. Mazzola, M. Campisi, J. Goold, F. L. Semio,

A. Ferraro, F. Plastina, V. Vedral, G. De Chiara, and
M. Paternostro, arXiv:1403.0629 [quant-ph].

[18] L. Fusco, S. Pigeon, T. J. G. Apollaro, A. Xuereb, L. Mazzola,
M. Campisi, A. Ferraro, M. Paternostro, and G. De Chiara,
arXiv:1404.3150 [quant-ph].

[19] S. Sotiriadis, A. Gambassi, and A. Silva, Phys. Rev. E 87, 052129
(2013).

[20] T. Giamarchi, Quantum Physics in one Dimension (Oxford
University Press, Oxford, UK, 2003).

062103-4

http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://dx.doi.org/10.1088/0034-4885/50/7/001
http://arxiv.org/abs/arXiv:cond-mat/0009244
http://arxiv.org/abs/arXiv:cond-mat/0007360v2
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.75.050102
http://dx.doi.org/10.1103/PhysRevE.86.051106
http://dx.doi.org/10.1103/PhysRevE.86.051106
http://dx.doi.org/10.1103/PhysRevE.86.051106
http://dx.doi.org/10.1103/PhysRevE.86.051106
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevE.80.061130
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.160601
http://dx.doi.org/10.1103/PhysRevLett.109.037202
http://dx.doi.org/10.1103/PhysRevLett.109.037202
http://dx.doi.org/10.1103/PhysRevLett.109.037202
http://dx.doi.org/10.1103/PhysRevLett.109.037202
http://dx.doi.org/10.1103/PhysRevB.86.161109
http://dx.doi.org/10.1103/PhysRevB.86.161109
http://dx.doi.org/10.1103/PhysRevB.86.161109
http://dx.doi.org/10.1103/PhysRevB.86.161109
http://dx.doi.org/10.1103/PhysRevLett.111.165303
http://dx.doi.org/10.1103/PhysRevLett.111.165303
http://dx.doi.org/10.1103/PhysRevLett.111.165303
http://dx.doi.org/10.1103/PhysRevLett.111.165303
http://dx.doi.org/10.1088/1367-2630/16/4/045013
http://dx.doi.org/10.1088/1367-2630/16/4/045013
http://dx.doi.org/10.1088/1367-2630/16/4/045013
http://dx.doi.org/10.1088/1367-2630/16/4/045013
http://arxiv.org/abs/arXiv:1403.0629
http://arxiv.org/abs/arXiv:1404.3150
http://dx.doi.org/10.1103/PhysRevE.87.052129
http://dx.doi.org/10.1103/PhysRevE.87.052129
http://dx.doi.org/10.1103/PhysRevE.87.052129
http://dx.doi.org/10.1103/PhysRevE.87.052129


WORK AND QUANTUM PHASE TRANSITIONS: QUANTUM . . . PHYSICAL REVIEW E 89, 062103 (2014)

[21] F. Ticozzi and L. Viola, arXiv:1403.8143 [quant-ph].
[22] D. McKay and B. DeMarco, Rep. Prog. Phys. 74, 054401 (2011).
[23] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[24] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771

(2011).
[25] S. Deffner and E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).
[26] P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98, 110601

(2007).
[27] P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun, Phys. Rev. A

75, 032109 (2007).
[28] S. Chen, L. Wang, Y. Hao, and Y. Wang, Phys. Rev. A 77, 032111

(2008).
[29] S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).

[30] T. Mishra, J. Carrasquilla, and M. Rigol, Phys. Rev. B 84, 115135
(2011).

[31] R. G. Pereira, S. R. White, and I. Affleck, Phys. Rev. B 79,
165113 (2009).

[32] Shi-Liang Zhu, Phys. Rev. Lett. 96, 077206 (2006).
[33] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and

V. Vedral, Phys. Rev. Lett. 110, 230601 (2013).
[34] L. Mazzola, G. De Chiara, and M. Paternostro, Phys. Rev. Lett.

110, 230602 (2013).
[35] M. Campisi, R. Blattmann, S. Kohler, D. Zueco, and P. Hänggi,

New J. Phys. 15, 105028 (2013).
[36] J. Goold, T. Fogarty, N. LoGullo, M. Paternostro, and T. Busch,

Phys. Rev. A 84, 063632 (2011).

062103-5

http://arxiv.org/abs/arXiv:1403.8143
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1088/0034-4885/74/5/054401
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.105.170402
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevLett.98.110601
http://dx.doi.org/10.1103/PhysRevA.75.032109
http://dx.doi.org/10.1103/PhysRevA.75.032109
http://dx.doi.org/10.1103/PhysRevA.75.032109
http://dx.doi.org/10.1103/PhysRevA.75.032109
http://dx.doi.org/10.1103/PhysRevA.77.032111
http://dx.doi.org/10.1103/PhysRevA.77.032111
http://dx.doi.org/10.1103/PhysRevA.77.032111
http://dx.doi.org/10.1103/PhysRevA.77.032111
http://dx.doi.org/10.1142/S0217979210056335
http://dx.doi.org/10.1142/S0217979210056335
http://dx.doi.org/10.1142/S0217979210056335
http://dx.doi.org/10.1142/S0217979210056335
http://dx.doi.org/10.1103/PhysRevB.84.115135
http://dx.doi.org/10.1103/PhysRevB.84.115135
http://dx.doi.org/10.1103/PhysRevB.84.115135
http://dx.doi.org/10.1103/PhysRevB.84.115135
http://dx.doi.org/10.1103/PhysRevB.79.165113
http://dx.doi.org/10.1103/PhysRevB.79.165113
http://dx.doi.org/10.1103/PhysRevB.79.165113
http://dx.doi.org/10.1103/PhysRevB.79.165113
http://dx.doi.org/10.1103/PhysRevLett.96.077206
http://dx.doi.org/10.1103/PhysRevLett.96.077206
http://dx.doi.org/10.1103/PhysRevLett.96.077206
http://dx.doi.org/10.1103/PhysRevLett.96.077206
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230601
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1103/PhysRevLett.110.230602
http://dx.doi.org/10.1088/1367-2630/15/10/105028
http://dx.doi.org/10.1088/1367-2630/15/10/105028
http://dx.doi.org/10.1088/1367-2630/15/10/105028
http://dx.doi.org/10.1088/1367-2630/15/10/105028
http://dx.doi.org/10.1103/PhysRevA.84.063632
http://dx.doi.org/10.1103/PhysRevA.84.063632
http://dx.doi.org/10.1103/PhysRevA.84.063632
http://dx.doi.org/10.1103/PhysRevA.84.063632



