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Effective field theory of thermal Casimir interactions between anisotropic particles
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We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects
bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of
particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles’ boundaries
from the calculation of the interaction free energy by constructing an equivalent point particle description. The
finite-size information is captured in a derivative expansion that encodes the particles’ response to external fields.
The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by
matching the results of a linear response boundary value problem computed in both the full and effective theories.
We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a
collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we
discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive
a complete description for elliptical particles. We compute the pairwise interaction energies to several orders
for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred
pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned
particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are
exponentially suppressed by the leading-order interaction energies.
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I. INTRODUCTION

When constraints such as extended or compact boundaries
are imposed on a fluctuating field, this alters the underlying
energy spectrum. If these boundary constraints are due to
physical objects, field-mediated interactions are generally
induced between them. A typical example, first discussed
by Casimir in 1948, is a pair of neutral, conducting plates
placed in a vacuum. Such plates experience attractive forces
because their boundaries constrain the vacuum fluctuations
of the electromagnetic field [1,2]. Casimir-type interactions,
however, naturally arise in a variety of classical systems as
well. In particular, particles or other localized inhomogeneities
bound to a soft surface will constrain the surface locally and
modify its thermal fluctuation spectrum, leading to surface-
mediated interactions [3–14]. In this article, we will consider
a collection of anisotropic particles bound to a fluid surface,
whose energetics is dominated by surface tension.

The study of fluctuation-induced interactions between
compact objects is complicated by the fact that the boundaries
break translational symmetry, rendering the partition function
more difficult than that of the free field. Even if the latter
is trivial (say, because the action is quadratic in the field), the
constraints imposed by the objects, which themselves might be
subject to rigid body motions or even more complicated modes
of deformation, need to be enforced—either in the functional
integrals or by suitably scale separating the problem. For the
case of axisymmetric objects (such as spheres or circular disks)
on surface-tension dominated fluid surfaces, this problem
has been investigated in a number of studies, either by
constraining the partition function [5–7,9,11,15,16] or by scale
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separating the problem using the tools of effective field theory
(EFT) [12,13]. In the asymptotic regime of large distances one
finds power-law interactions in the separation r , unless the
objects are pinned (stationary), in which case the interactions
become very long ranged, proportional to log log r . Of course,
at closer distances higher-order terms add corrections to
the asymptotic power law, which become substantial as the
separation between particles become comparable to their size,
since in fact the interaction is known to diverge upon surface
contact [6,13,17].

Relaxing axisymmetry leads to a number of interesting
anisotropic effects, but the interaction exhibits the same
leading-order r-dependence as the symmetric case, as found
by Oettel and coworkers [7,8] by explicitly studying ellipses.
However, at higher orders in the pinned case, their analysis [8]
found additional terms ∼ (r2n log[4r/(a + b)])−1, where a

and b are the principle axes of the ellipse. This is remark-
able, because such terms do not vanish in the symmetric
(circular) limit a → b, whereas a regularized diagrammatic
approach shows that every Feynman diagram involving both
pinned (“monopole”) and nonpinned (“higher-order multi-
pole”) boundary constraints vanishes in the relevant limit of a
free surface. Here we trace back the origin of this discrepancy
to a subtle noncommutation problem for two limits: Since
the pinned constraints in a perturbative expansion do not
affect the order of a diagram, they must be resummed, and
the regularization of this infinite sum can only be removed
afterward. This leads to the logarithmic corrections found
by Noruzifar et al. [8], but derived in a very different
manner.

As we have mentioned, calculating surface-mediated in-
teractions between objects is surprisingly nontrivial, with the
major difficulty arising from the constraints imposed on the
partition sum. Previously, these constraints were managed
by including appropriate delta functions in the integration
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measure, which in turn was handled by introducing a set
of auxiliary fields (see, for instance, Ref. [11]). A more
general version of this approach has been developed in an
electromagnetic context by Emig et al. [18,19], in which the
particle constraints enter into the effective energy through
scattering matrix coefficients. This method has also recently
been appropriated for particles at a fluid interface by Noruzifar
et al. [15,16]. In the case of two-dimensional critical systems,
conformal field theory (CFT) techniques have been developed
to treat special cases [17,20,21], and further generalized for
pairs of arbitrarily shaped objects by Bimonte et al. [22].
Although the CFT technique is powerful, and in certain cases
leads to exact solutions, it is limited to systems with conformal
symmetry.

To get an alternative handle on the abovementioned
difficulties, we will instead employ an effective field theory
(EFT) approach and generalize the methods introduced in
Refs. [12,13]. Typically, one is interested in the physics at
a certain scale of a potentially multiscale problem. In our
case, we are interested in the long distance physics. The EFT
approach makes this scale manifest by effectively integrating
out the short distance physics and systematically encoding
the small scale information (finite size of particles, boundary
conditions, etc.) as numerical couplings in the Hamiltonian.
In doing so, we are reverting to a controlled point-particle
description that allows for calculations of interaction energies
to high orders (or in the case of Ref. [13], to all orders) without
any conceptual difficulties.

In this paper, we will investigate the effects of anisotropies
by objects with arbitrary geometries, with particular emphasis
on the case of elliptic boundaries to make connection with
previous studies. To our knowledge this is the first application
of EFT to thermally fluctuating systems that explores the
full tensorial nature of Wilson coefficients on the worldline,
and thus serves as a good illustration for how the power
of EFT is not restricted to highly symmetric situations. In
the next section, we will discuss the surface energetics and
boundary conditions imposed by the particles, as well as
elaborate on the EFT formalism. In Sec. III we will construct
the effective Hamiltonian for particles of arbitrary shape and
then discuss the simplification for ellipses. We then discuss
a matching procedure that takes advantage of conformal
mapping, valid for arbitrarily shaped particles, and then
compute the full set of Wilson coefficients (polarizabilities)
for ellipses of arbitrary aspect ratio. Since the case of pinned
particles exhibits short-distance divergences, we introduce an
appropriate regularization procedure and provide a detailed
discussion of the matching for monopolelike terms. Finally,
we comment on the limiting cases of rods and disks. In
Sec. IV we discuss pair and multibody interactions. We begin
with a pedagogical discussion of the diagrammatic rules for
computing the interaction energies. Next, we calculate the pair
interactions to several orders for various nonpinned boundary
conditions and discuss preferred orientations. Furthermore,
we calculate the leading-order multibody interactions and
discuss the preferred three-body particle configurations and
orientations. Since the monopole interactions require extra
care, we relegate their discussion to Sec. V and provide a
detailed account of the resummation of interaction terms. We
then provide higher-order corrections to the pair and three-

body interactions for pinned particles. Finally, we summarize
and conclude in Sec. VI.

We note before proceeding that the reader may find
the following pages rather dense with lengthy mathematical
expressions. This is not due to complications in the EFT
approach, but rather a result of demonstrating how far the
analysis can be extended. In particular, we provide a detailed
calculation of the full theory boundary value problem from
a conformal mapping trick to determine the complete set of
polarizabilities. However, the EFT approach disentangles this
calculation from the rest of the description, and solving the
boundary value problem for a complicated particle shape is
generally difficult, but it is independent of EFT. In fact, this
calculation may be done in any manner most convenient—even
numerically—and the EFT approach will proceed in the same
systematic fashion. Furthermore, we provide a fairly detailed
discussion of the diagrammatic rules in hopes that this work
may be approachable to a wide audience, regardless of their
exposure to standard field theory techniques.

II. ENERGETICS AND FORMALISM

A. Surface energetics

The energetics of fluid-fluid interfaces is well described by
the coarse grained Hamiltonian H = σ

∫
dA, where σ is the

surface tension (excess free energy per area). Since we will be
interested in deviations about a flat ground-state surface, it is
convenient to work in the Monge gauge [23] in which h(x) is
the orthogonal displacement from a base plane parametrized
by x = (x,y) (see Fig. 1). In this representation the energy
functional over the surface becomes

H[h] = σ

∫
Spr

d2x
√

g = σ

∫
Spr

d2x

√
1 + (∇h(x)

)2
, (1)

where Spr is projection of the surface onto the base plane and
g is the metric determinant. In the linearized Monge gauge,
applicable for small deformations in which |∇h| � 1, we can
perform a gradient expansion and keep the leading term. Up

FIG. 1. (Color online) Illustration of the height function h(x) in
the Monge gauge. A flat particle is bound to a fluctuating surface and
projects an area A onto the base plane.
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(BC 1)

(BC 2)
η(0)

(BC 3)
η(0)

η(1)

FIG. 2. Visual representation of the three boundary conditions.
The freedom of the particle to fluctuate in height and tilt is
parametrized by η(0) and η(1), respectively.

to an irrelevant constant, the Hamiltonian becomes

H[h] = σ

∫
Spr

d2x
1

2
(∇h)2 + const. (2)

With the inclusion of particles, the surface domain is given
generally by Spr = R2 \⋃i Ai where Ai is the area of the ith
particle projected onto the base plane. The height function will
assume a contact profile h(x)|∂Ai

= hct
i (x)|∂Ai

at each particle
boundary ∂Ai . In this paper we will consider flat particles, for
which the contact profile may be written as hct

i (x) = η
(0)
i +

η
(1)
i · x, where η(0) and η(1) parametrize the vertical position

and tilt of the particle. Following the categorization of Ref. [6],
we will consider three types of boundary conditions for each
particle (see Fig. 2):

(BC 1) The position and orientation is fixed: h|∂Ai
= 0.

(BC 2) The vertical position is allowed to fluctuate:
h|∂Ai

= η
(0)
i .

(BC 3) The vertical position and tilt are both allowed to
fluctuate: h|∂Ai

= (η(0)
i + η

(1)
i · x)|∂Ai

.
In the above categories, η(0) and η(1) take on the role of

free parameters and reflect the zero mode(s) of the boundary
conditions. That is, these parameters may fluctuate freely with-
out costing any energy. The implications of these boundary
conditions will be explored further when we construct the
effective theory.

B. Fluctuation-induced interactions

The particle boundaries locally constrain the thermal fluc-
tuations which thereby induce surface-mediated interactions,
even for flat particles. The interaction potentials will appear
as differences associated free energy F , and will depend on
the spatial arrangements and orientations of the particles. The
free energy is related to the partition function Z, and is given
formally by the functional integral,

e−βF = Z ≡
∫

D′h e−βH[h], (3)

where β = 1/kBT . The prime on the measure reminds us
that we integrate only over the field configurations that
obey the constraints at the particle boundaries. As mentioned
previously, the computational difficulties lie in enforcing this
constraint.

Since we are interested in the long-distance physics, we
will instead reformulate the problem by treating the particles
as points in such a way that the short-distance physics is still

retained. This entails including a series of additional terms
in the Hamiltonian; however, these terms can be handled
perturbatively, for which standard field theory techniques are
applicable.

C. The EFT approach

The key to the EFT approach is that at large distances,
the effects of an embedded particle will appear as coming
from a localized source. That is, the short-distance particle
characteristics will manifest themselves as local terms in the
Hamiltonian. As the interactions should diminish at large
distances, these local terms should scale as powers of s/r ,
where s is a length scale representing the object size and r is
the distance from the particle. Accordingly, we construct the
effective Hamiltonian as Heff = H0 + �H, where the bulk
Hamiltonian H0 describes the free surface [Eq. (1) with Spr =
R2] and the worldline Hamiltonian �H contains the local
terms resulting from boundary conditions of the particles. The
partition function then becomes the unconstrained functional
integral,

Z =
∫

Dh e−βHeff =
∫

Dh e−βH0e−β�H. (4)

It will prove useful to cast the exponential of Eq. (4) in terms
of the dimensionless field φ = h/λ, where we have introduced
the molecular length scale λ = 1/

√
βσ .1 In particular, the

gradient expansion of the bulk term becomes

βH0[φ] = 1

λ2

∫
R2

d2x
√

1 + λ2(∇φ)2

= 1

λ2

∫
R2

d2x

{
1 + λ2

2
(∇φ)2 − λ4

8
[(∇φ)2]2 + · · ·

}

=
∫
R2

d2x
1

2
(∇φ)2 + const + O(λ2). (5)

The overall constant is irrelevant and λ is very small so we are
justified in dropping the remaining nonlinear O(λ2) terms.

In general, to construct �Hwe must write down all possible
local terms C(k)Ok(φ), or operators in the EFT language,
that obey the symmetries of the particles. The prefactors
C(k), called Wilson coefficients, encode the short distance
particle information and will be determined later by a matching
procedure. The sum of operators can be organized to form a
power series in each of the physical scales, which will allow
us to truncate the series to the desired order of accuracy in a
consistent and controlled way. This series then appears as a
derivative expansion, evaluated at the position of each particle.
In our case, we note that there are two length scales: the
characteristic particle size s, and the molecular scale λ. Since
φ is dimensionless, the dimensions of each operator Ok(φ)
are carried by the derivatives. The length scale λ is associated
with powers of φ, so to ensure β�H is dimensionless, we find
that the number of derivatives is associated with the powers
of the particle size s. Hence, denoting the overall power of φ

1For water at room temperature, the surface tension is about
73 mN/m and hence the length scale λ ≈ 2 Å, which is indeed
comparable to the size of a water molecule.
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by nk and the total number of derivatives by dk , we can write
β�H up to some unknown dimensionless (possibly tensor)
coefficients c(k),

β�H[φ] =
∑

α

∑
k

C(k)
α Ok(φ(xα))

=
∑

α

∑
k

c(k)
α sdk

α λnk−2Ok(φ(xα)), (6)

where for each particle α, the operator is evaluated at its
position xα . This series, although complete, may include some
redundancy. In particular, terms proportional to the Euler-
Langrange equation of the bulk term are deemed redundant, as
they can be removed by appropriate field redefinitions without
affecting the physics [24]. We will later exploit this to simplify
the construction of the particle EFT.

To determine the Wilson coefficients C(k), we must perform
a matching procedure such that the EFT correctly repro-
duces the physics at large distances. That is, any observable
calculated in the EFT must asymptotically match the result
obtained by the full theory in Eq. (3). The aim then is to find
a convenient observable such that its calculation in the full
theory is as simple as possible. Given that we are interested
in fluctuations, we employ the background field method in
which we decompose the field via φ = φbg + δφ, where φbg

is an imposed (fixed) background field and δφ is the response,
and match the response calculated in the full and effective
theories.

III. EFT OF ELLIPSOIDAL PARTICLES

A. Effective Hamiltonian

We begin by noting that minimizing the surface Hamil-
tonian in the small gradient approximation gives the two-
dimensional Laplace equation ∇2φ = 0, whose solutions
can always be broken up into a sum of holomorphic and
antiholomorphic functions. This provides motivation to work
directly in complex variables z = (z,z̄) with z = x + iy and
z̄ = z∗ = x − iy. The metric then becomes

gαβ
.= 1

2

(
0 1
1 0

)
, gαβ .= 2

(
1 0
0 1

)
. (7)

The derivatives are given by ∂ ≡ ∂z = (∂x − i∂y)/2 and ∂̄ ≡
∂z̄ = (∂x + i∂y)/2, and Laplace’s equation takes the form
4∂∂̄φ = 0. The benefit of this coordinate transformation is
that mixed derivatives on the field will always vanish. That is,
in our derivative expansion we need only consider exclusively
∂ or ∂̄ derivatives on each instance of the field.2

To construct the general EFT for anisotropic particles,
we must be explicit about the symmetries and boundary
conditions. Implied in the surface Hamiltonian is an up-
down symmetry φ → −φ; this carries over for particles with

2Strictly speaking, z and z∗ are not independent. However, the
formal manipulations can be justified by promoting x and y to
complex numbers so that (z,z̄) ∈ C2. The ∂ and ∂̄ derivatives then
follow the standard rules. After performing computations we can
restrict the results to the “real surface” {(z,z̄) ∈ C2 : z̄ = z∗}.

flat contact lines, limiting Ok(φ) to even powers of φ.3

Additionally, since O(λ2) terms are neglected in the linear
Monge gauge, β�H can be at most quadratic in the field φ.
Hence, β�H must be a derivative expansion strictly quadratic
in φ. As mentioned previously, we are also free to remove
terms containing the bulk Euler-Lagrange equations (i.e., terms
containing ∂∂̄φ), so instances of the field will never appear
with mixed ∂ , ∂̄ derivatives. Together these conditions imply
the worldline Hamiltonian for a single particle sitting at origin
must take the form,

β�H[φ] =
∑

n,m�0

[
Cnm∂nφ∂̄mφ

+ 1

2
χnm∂nφ∂mφ + 1

2
χ̄nm∂̄nφ∂̄mφ

]
z=0

, (8)

where the Wilson coefficients scale as powers of the char-
acteristic particle size: [Cnm] ∼ [χnm] ∼ [χ̄nm] ∼ sn+m. Since
β�H must be real, Cmn = (Cnm)∗ and χ̄ = χ∗. Furthermore,
from the symmetry of derivatives it follows that χ and χ̄ are
both symmetric tensors.

Equation (8) is the general form for any anisotropic particle.
However, additional symmetries associated with the particle
boundary conditions may lead to the vanishing of some terms.
For example, in the case of circular disks considered in
Refs. [12] and [13], there is a complete rotational symmetry
z → eiϕz for any angle ϕ, implying Cnm → Cnmδnm and
χnm = χ̄nm = 0. Hence anisotropies are encoded in the off-
diagonal terms of Cnm as well as the χ and χ̄ tensors. For
an ellipse, the symmetry is limited to discrete rotations by
an angle π (z → −z). Since the worldline Hamiltonian must
obey this same symmetry, we find that Wilson coefficients
for an ellipse are reduced to only those whose indices obey
n + m ∈ 2N0.

The particle boundary conditions also put constraints on
the Wilson coefficients. For (BC 1), Eq. (8) is the complete
EFT, including the n = m = 0 terms. The vertical fluctuation
freedom of (BC 2) implies a φ → φ + const translation
symmetry at the particle boundary, which therefore forbids
any n = m = 0 terms. The additional tilt freedom of (BC 3)
implies that the Hamiltonian should be invariant under a shift
of the field linear in z. This amounts to forbidding single
derivatives on the field. That is, (BC 3) will additionally forbid
any terms with n = 1 or m = 1.

B. Matching

As mentioned previously, to fix the Wilson coefficients we
impose a background field and compare the corresponding re-
sponse from the full and effective theories for a single particle.
We first examine the EFT response for a general background.
The form of the response will motivate a convenient choice of
background field, which we will then apply to the full theory
boundary value problem. We will perform the calculations first

3A permanently deformed contact profile can be enforced by adding
a source term linear in φ and localized to the particle position. For
more details, see Ref. [13].
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for (BC 2), and later discuss the modifications to accommodate
(BC 1) and (BC 3).

1. Effective response

For a quadratic theory, the background field method
amounts to a linear response problem. Setting φ = φbg + δφ

in Eq. (8) and taking the terms linear in δφ gives the effective
source for this background. Without loss of generality, we will
take the particle to be positioned at the origin as in Eq. (8) and
the effective source becomes

J (z) = − δ(β�H)

δφ(z)

∣∣∣∣
φ=φbg

=
∑
n,m

(−1)n
{
Cnm∂n[δ(z)∂̄mφbg]

+ χnm∂n[δ(z)∂mφbg]
}+ c.c., (9)

where c.c. stands for complex conjugate. The response is given
by the convolution,

δφEFT(z) =
∫

d2ζ G(z − ζ )J (ζ ), (10)

where

G(z − ζ ) = − 1

4π
log[(z − ζ )(z̄ − ζ̄ )] (11)

is the Green function of the bulk Euler-Lagrange equation
−4∂∂̄φ = 0, and d2ζ = d(Re ζ )d(Im ζ ). The final result is

δφEFT(z) = −
∑
n,m

(−1)n∂nG(z)

× [Cnm∂̄mφbg(0) + χnm∂mφbg(0)] + c.c. (12)

The form of both the effective source (9) and response (12)
suggests choosing a general set of background multipole fields
(rotated by an arbitrary angle ϕ),

φ
(n)
bg (ζ ; ϕ) = A(n)(ζ ne−inϕ + ζ̄ neinϕ), (13)

since

∂mφ
(n)
bg (0) = A(n)n!e−inϕδnm (14)

is nonzero only for n = m. This immediately implies an
interpretation analogous to two-dimensional electrostatics:
The background field polarizes the object, leading to an
induced source of boundary “charges” which generate the
response field (12). With this analogy in mind, we will refer
to the Wilson coefficients as polarizabilities. Plugging the
multipole background into Eq. (12) and using

∂nG(z) = (−1)n

4π

(n − 1)!

zn
(15)

gives the effective response,

δφ
(n)
EFT(z; ϕ) = − A(n)n!

∑
k

(k − 1)!

4πzk

× [Ckne
inϕ + χkne

−inϕ] + c.c. (16)

z = f(w)

w = f−1(z)w-space z-space

FIG. 3. Conformal mapping between circle (w space) and ellipse
(z space) boundaries. The mapping takes a background field φ(z)
imposed on an ellipse to a new field (φ ◦ f )(w) imposed on a circle,
for which the response δφ(w) follows from Eq. (18). Mapping back
gives the response (δφ ◦ f −1)(z).

2. Full theory

We will first consider the full theory solution for the (BC
2) case and discuss the modifications required for the other
boundary conditions shortly after. The full theory response is
a solution to the Laplace boundary value problem ∂∂̄δφ = 0
for the outer domain z ∈ R2 \ A, where A is the area of
the ellipse projected onto the base plane, subject to the
boundary condition φ|∂A = (φbg + δφ)|∂A = η̃(0), where η̃(0)

is the dimensionless free parameter mentioned in Sec. II A

describing the height above the base plane, and δφ
|z|→∞−−−→ 0.

Since global height translations are a symmetry of the (BC 2)
theory, without loss of generality it suffices to take η̃(0) ≡ 0.

This Dirichlet problem is simple for a circular boundary
of radius R. Indeed, for backgrounds that can be put into a
Laurent series,

φ(z,z̄) =
∑
k>0

[
ak

(
z

R

)k

+ bk

(
R

z

)k
]

+ c.c., (17)

the response is given by

δφ(z,z̄) = −
∑
k>0

[
(a∗

k + bk)

(
R

z

)k

+ c.c.

]
, (18)

as can be seen by plugging in z = Reiθ . With this in mind,
we exploit the conformal symmetry of Laplace’s equations
and map the ellipse BVP to a circle, solve using the simple
replacement, and map back (see Fig. 3).

The conformal transformations between an ellipse (z space)
of semimajor axis a and semiminor axis b, with the major axis
aligned along the real axis, and a circle (w space) of radius R

are

z = f (w) = 1

2

(
s+

w

R
+ s−

R

w

)
, (19)

and

w = f −1(z) = R

s+

(
z +

√
z2 − s+s−

)
, (20)

where s+ ≡ a + b and s− ≡ a − b. The expression for f −1(z)
results from solving a quadratic equation, where it is necessary
to chose the (+) sign so that the ellipse and circle boundaries
correspond. Since we are considering z far outside the ellipse,
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the branch cut for the square root can be conveniently chosen
as the interval (−√

s+s−,
√

s+s−), which lies within the ellipse.
Under this transformation, the background field becomes

φ
(n)
bg (w; ϕ) = A(n)

2n

[(
s+

w

R
+ s−

R

w

)n

e−inϕ

+
(

s+
w̄

R
+ s−

R

w̄

)n

einϕ

]
. (21)

To solve the circle BVP, we first expand (21) as a binomial
series using

(
s+

w

R
+ s−

R

w

)n

=
∑

�<n/2

(
n

�

)
sn−�
+ s�

−
(w

R

)n−2�

+
∑

�<n/2

(
n

�

)
s�
+sn−�

−

(
R

w

)n−2�

+
even

(
n

n/2

)
(s+s−)n/2, (22)

where the last term only appears when n is even. This extra
constant term can be ignored due to the height-translation
symmetry of (BC 2); however, we must revisit it later when
we discuss (BC 1). Using (18) we get the response,

δφ
(n)
full(w; ϕ) = −A(n)

2n

∑
�<n/2

[
(sn−�

+ s�
−einϕ (23)

+ s�
+sn−�

− e−inϕ)

(
R

w

)n−2�

+ c.c.

]
. (24)

To transform back to z space, we set w = f −1(z) and use the
expansion,

1

(1 + √
1 − x)n

= n

2n

∞∑
k=0

1

n + 2k

(
n + 2k

k

)(x

4

)k

(25)

to give

δφ
(n)
full(w; ϕ) =

∑
�<n/2

∞∑
k=0

C(n,�,k)
1

zn−2�+2k
+ c.c., (26)

where

C(n,�,k) = − A(n)

2n

(
n

�

)
(sn−�

+ s�
−einϕ + s�

+sn−�
− e−inϕ)

×
( s+

2

)n−2� n − 2�

n − 2� + 2k

(
n − 2� + 2k

k

)

×
( s+s−

4

)k

. (27)

3. Matching

To match the polarizabilities, we wish to set δφ(n)
EFT

!= δφ
(n)
full.

So that we can directly compare coefficients, we first put (26)
into more convenient form by re-indexing the sums:

δφ

(
n even
n odd

)
full =

∞∑
k=
{even

odd

}
min[n,k]∑

�=
{even

odd

} C
(

n,
n − �

2
,
k − �

2

)
1

zk
+ c.c.,

(28)
where both sums are over only positive even (odd) integers
when n is even (odd). Comparing the coefficients to that of (16)
and simplifying finally gives the full set of polarizabilities:

Cnm =
min[n,m]∑
�=
{even

odd

}
4π�

2n+mn!m!

(
n

n−�
2

)(
m

m−�
2

)
(s+s−)

n+m
2

(
s+
s−

)�

,

{
n,m even
n,m odd

}
(29)

χnm =
min[n,m]∑
�=
{even

odd

}
4π�

2n+mn!m!

(
n

n−�
2

)(
m

m−�
2

)
(s+s−)

n+m
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2πnm

2n+m(n + m)

(s+s−)
n+m

2

[( n
2 )!]2[(m

2 )!]2
, n,m even

8π

2n+m(n + m)

(s+s−)
n+m

2

[( n−1
2 )!]2[(m−1

2 )!]2
, n,m odd,

(30)

where we recall that if n + m �∈ 2N, then Cnm = χnm = 0.
This matching procedure gives the polarizabilities for a single
ellipse aligned with the x axis, but if we instead consider an
ellipse rotated an angle θ from the x axis (z → eiθ z), then
∂ → eiθ ∂ and it follows that the polarizabilities are modified
by

Cnm → ei(n−m)θCnm, χnm → ei(n+m)θχnm. (31)

4. Modifications for other boundary conditions

Although we have only performed the matching for
(BC 2), we can also solve for the full set of polarizabilities
for (BC 1) and (BC 3) with a few modifications. For the case
of (BC 3), the tilt degree of freedom allows the ellipse to
align with a dipole background field, so we immediately have

that Cnm = χnm = 0 if n = 1 or m = 1. Since the higher-order
multipole fields do not contain tilt, it follows that the remaining
polarizabilities are the same as in (BC 3).

For the case of (BC 1), there is no vertical translation
symmetry, so we must also include in the effective Hamiltonian
the n = 0 and m = 0 terms. We will refer to these as monopole
terms and explicitly distinguish them by writing

β�HM [φ] = 1

2
M0φ

2(0) +
∑
n>0
even

[Mnφ∂nφ + M̄nφ∂̄nφ]z=0,

(32)

where M̄ = M∗ and the condition that n is even follows from
the rotation symmetry of the ellipse. These terms present
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a particular challenge: the monopole field, proportional to
log |x|, exhibits a long-distance divergence and is therefore
ill-defined as it stands. For a sensible theory, we must
regulate the Hamiltonian so as to dampen the long-range
correlations.

Regularization can be realized in a physically motivated
way by accounting for the gravitational energy of the surface.
The effect is the addition of a small “mass” term into the bulk
Hamiltonian4:

βH0[φ] = 1

2

∫
d2x
[
(∇φ)2 + �−2

c φ2
]
. (33)

For fluid interfaces with a mass density difference |�ρ|, the
capillary length �c is given by �c = √

σ/|�ρ|g, where g is
the gravitational acceleration. The capillary length is assumed
large, so that we have the scaling hierarchy a,b � r = |x| �
�c.

With the regulator in place, the bulk Euler-Lagrange
equation becomes (− ∇2 + �−2

c

)
φ = 0. (34)

The bulk Green function is then the modified Bessel func-
tion of the second kind, which limits to a logarithm for
large �c:

G(x) = 1

2π
K0(r/�c)

�c→∞−−−→ − 1

2π
log

(
r

2�c

γe

)
, (35)

where γe = eγE and γE is the Euler-Mascheroni constant.
To match the coefficients, we proceed as before by

introducing a background field φbg, computing the response
δφM in both the effective and full theories, and comparing.
Considering only the monopole terms, the background induces
an effective source,

JM (z) = − M0δ(z)φbg(z) −
∑
n>0
even

[
Mn(δ(z)∂nφbg(z)

+ (−1)n∂n[δ(z)φbg(z)]) + c.c.
]
. (36)

Convolving with the bulk Green function gives effective linear
response,

δφM (z) = − M0G(z)φbg(0) −
∑
n>0
even

[
Mn(G(z)∂nφbg(0)

+ (−1)n∂nG(z)φbg(0)) + c.c.
]
. (37)

4Note that this change in the bulk Hamiltonian does not alter
our effective worldline Hamiltonian. The appearance of ∂∂̄φ in
any operator can be traded for �−2

c φ by the bulk Euler-Lagrange
equation (34), and can therefore be absorbed into one of the
preexisting terms.

Using the asymptotic form of the Green function, the final
result is

δφM (z) = M0

2π
log

( |z|γe

2�c

)
φbg(0)

−
∑
n>0
even

{
Mn

[
− 1

2π
log

( |z|γe

2�c

)
∂nφbg(0)

+ 1

4π

(n − 1)!

zn
φbg(0)

]
+ c.c.

}
. (38)

Since the bulk Hamiltonian with the “mass” term is no
longer conformal, we unfortunately cannot use the mapping
trick as before to compute the full-theory response. However,
based on the geometry of the system, it will prove convenient
to work in confocal elliptic coordinates, defined by

x = f cosh ξ cos η, y = f sinh ξ sin η, (39)

where ξ ∈ [0,∞), η ∈ (−π,π ], and the focus f = √
a2 − b2.

Curves of constant ξ give ellipses, as can be seen by
rearranging the defining equations:(

x

f cosh ξ

)2

+
(

y

f sinh ξ

)2

= cos2 η + sin2 η = 1.

In particular, the boundary of our ellipse results from setting
f cosh ξ0 = a and f sinh ξ0 = b, which leads to

f e±ξ0 = a ± b ⇒ ξ0 = 1

2
log

(
a + b

a − b

)
. (40)

In complex variables, the defining relations (39) can be written
simply as

z = f cosh(ξ + iη). (41)

To extract ξ we must invert the hyperbolic cosine. From the
definition of cosh, we find

f eξ+iη = z ±
√

z2 − f 2. (42)

The sign ambiguity is resolved by defining the branch cuts of
the multivalued square root as before and requiring the ellipse
boundary to be consistent. Just as in Eq. (20), we take the (+)
sign. Consistency is checked by evaluating (42) at any point
(ξ0,η) on the boundary, for which the left side gives

f eξ0+iη = (a + b)eiη.

The set of solutions for the full theory is found in
Appendix A. Using the n = 0 background field of Eq. (B5), for
which φ

(0)
bg = A(0) and ∂nφ

(0)
bg (0) = 0, the full-theory response

is

δφfull = −A(0)
log
(

f eξ

4�c
γe

)
log
(

a+b
4�c

γe

) . (43)

To proceed, we must express (43) in complex variables.
This is accomplished by first noting that

e2ξ = ∣∣z/f +
√

(z/f )2 − 1
∣∣2, (44)

which follows from multiplying Eq. (42) by its complex
conjugate, and then expanding the logarithm of (43) for
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large z:

log

(
f eξγe

4�c

)
= 1

2
log

(
f 2e2ξ γ 2

e

16�2
c

)

= 1

2
log

(∣∣∣∣zγe

4�c

∣∣∣∣
2 ∣∣1 +

√
1 − (f/z)2

∣∣2)

= log

( |z|γe

2�c

)
− 1

2

∑
n>0
even

(n − 1)!

2n
[(

n
2

)
!
]2

×
[(

f

z

)n

+
(

f

z̄

)n]
. (45)

Plugging this into (43) and comparing to (38) yields the
monopole polarizabilities,

Mn = 2π

2n
[(

n
2

)
!
]2 (a2 − b2)n/2

log
( 4�c

(a+b)γe

) . (46)

For an ellipse rotated an angle θ from the x axis, the
polarizability Mn → einθMn.

Since the bulk Hamiltonian has been modified, the question
arises as to whether the higher-order polarizabilities will be
affected. At first glance, it appears they may be unaltered
since the higher-order terms are conformal and the associated
effective response involves only derivatives of the Green
function, which are nonsingular in the �c → ∞ limit. But,
due to the boundary conditions we cannot ignore the constant
term generated in (22). However, this term behaves like the
constant background field introduced above and, as shown in
Appendix C, the monopole terms conspire to exactly cancel it,
thereby leaving Cnm, χnm, and χ̄nm with the same values found
for (BC 2).

5. Rods and disks

The polarizabilities of thin rods and disks are natural
limiting cases of our ellipse model. For a thin rod of length
L, the full set of polarizabilities is given by (29), (30),
and (46)—with subsets vanishing depending on the boundary
conditions—with a → L/2 and b → 0 (s± → L/2), which
does not change the overall form of the equations. However,
for a rotationally symmetric disk we expect the anisotropic
terms to vanish. Indeed, setting a,b → R (s+ → 2R, s− → 0)
gives χ = χ̄ = 0. For Cnm, the only nonvanishing terms are
those for which � = (n + m)/2. Since � � min[n,m], taking
n � m leads to (n + m)/2 � m ⇒ n � m, therefore n = m.
Hence, for disks,

Cnm = 4πR2n

n!(n − 1)!
δnm, (47)

which agrees with [13] and [17] up to a factor of 2−n due to
the difference in definition. Additionally, the only surviving
monopole term is

M0 = 2π

log
( 2�c

Rγe

) ,
in agreement with [13] up to normalization.

IV. INTERACTIONS

As mentioned previously, the interaction potentials appear
in the free energy F in (3). In particular, we can write the
interaction potential U as the difference in the free energy
with respect to the particle-free surface,

−βU = −β(F − F0) = log(Z/Z0)

=
∞∑

k=0

1

k!
〈(−β�H[φ])k〉c, (48)

where Z0 is the free (bulk) partition function (�H = 0), the
correlation functions are (Gaussian) averages over the free
Hamiltonian,

〈O〉 = 1

Z0

∫
Dφ O e−βH0[φ], (49)

and the sum is over all connected correlation functions (i.e.,
cumulants).

Equation (48) can be recast in terms of Feynman diagrams
using the standard rules. Since the Hamiltonian is strictly
quadratic in φ, we assign to each vertex and line, respectively,

y

y

= −δ2(β�H[φ])

δφ( y)δφ( y′)
, x y = G(x, y).

Each diagram is calculated by integrating over all internal
points and dividing by the symmetry factor (the order of the
diagram’s group of automorphisms). Equation (48) is then
recognized as the sum of all connected bubble diagrams, which
in our case consists of diagrams with the topology of a ring. A
ring of k vertices possess the symmetries of the dihedral group
Dk (k rotations and k reflections), so the symmetry factor is
simply |Dk| = 2k. Equation (48) is therefore given by5

−βU =
∞∑

k=1

k

=
∞∑

k=1

1

2k
Tr

(
−
∫

d2y ′ G(x, y′)
δ2(β�H)

δφ( y′)δφ( y)

)k

.

(50)

To add a bit more physical intuition to the diagrams, we can
also explicitly expand the vertices over the particle worldlines
(particle positions) in the same manner as Refs. [12,13]:

w

w

=
∑

α

( w

w

α

)
. (51)

In this way, the particle interactions become more transparent
as exchanges of capillary wave excitations which “propagate”

5The functional trace is defined analogously to a matrix trace, but
the repeated arguments are integrated over:

Tr[K(x, y)]n =
∫

d2x1 · · · d2xn

n∏
i=1

K(xi ,xi+1),

where xn+1 = x1.
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between each particle’s respective worldline, as illustrated in
the following k = 4 diagram for two particles located at x1

and x2, respectively:

=
∑
{αi }
pairs

⎛
⎜⎜⎜⎜⎜⎜⎝

α1

α2

α3

α4

⎞
⎟⎟⎟⎟⎟⎟⎠

= 2

⎛
⎜⎝

x1

x2

⎞
⎟⎠ .

In what follows, we will forgo the explicit diagrammatic
expansion over particle worldlines for the sake of brevity,
instead containing the sum within the vertices.

To make headway in our calculations, we need to examine
all the terms contained within the vertex. For the moment, we
will ignore the monopole terms and relegate their discussion
to Sec. V.

If we were to calculate the functional derivatives and
expand (50), or equivalently perform the Wick contractions
in (48), we would encounter the following terms:〈

∂n
zα

φ(zα)∂m
zβ

φ(zβ)
〉 = ∂n

zα
∂m
zβ

Gαβ, (52a)〈
∂̄n
zα

φ(zα)∂̄m
zβ

φ(zβ)
〉 = ∂̄n

zα
∂̄m
zβ

Gαβ, (52b)〈
∂n
zα

φ(zα)∂̄m
zβ

φ(zβ)
〉 = ∂n

zα
∂̄m
zβ

Gαβ, (52c)

where Gαβ ≡ G(zα − zβ). For interactions on the same
particle worldline, zα = zβ , all three terms diverge and
require a renormalization treatment. These “self-interaction”
divergences, however, are all powerlike and can therefore
be removed by pure counterterms—a reflection that these
divergences contain no physical information. As a result,
we can safely set to zero any diagram that contains self-
interactions. In terms of diagrammar, a vertex assigned to
particle α cannot connect to another vertex assigned to α.
For more details, see [13].

If we instead consider zα �= zβ , all three terms of (52) are
regular, but we notice that (52c) = 0 as expected from the
Euler-Lagrange equation. We can make this relation manifest
diagrammatically by expanding the vertex in the following
way:

w

w

= −
∑

α

∑
n,m�1

{
Cα

nm∂n
zα

δzα

w ∂̄m
zα

δ
zα

w′

+ 1

2
χα

nm∂n
zα

δzα

w ∂m
zα

δ
zα

w′

+ 1

2
χ̄α

nm∂̄n
zα

δzα

w ∂̄m
zα

δ
zα

w′ + (w ↔ w′)
}

≡
w

w

+
w

w

+
w

w

+ (w ↔ w′),

(53)

or

(a)

2π/3

d1

d2

d3

(b)

FIG. 4. Two distinct orientations of a k = 6 diagram are shown
in (a). The weight of the diagram is then 2/(2 × 6) = 1/6. The group
of diagram automorphisms consist of the identity, two rotations by
2π/3, and three reflections about the lines d1, d2, and d3 as shown in
(b). The symmetry factor of the diagram is then S� = 1 + 2 + 3 = 6.
The weight of the diagram is then 1/S� = 1/6, in agreement with the
previous argument.

where δz
w ≡ δ(z − w). The single and double lines indicate

how to connect the various vertices to ensure each diagram is
nonvanishing.

Calculating the free energy then consists of expanding the
vertices for each diagram of (50) according to (53), at which
point the number of diagrams quickly proliferates. We can
group the diagrams by noting that two diagrams are equivalent
if they can be reflected or rotated into one another. Under this
grouping, each representative diagram then carries an extra
factor given by the number of distinct orientations multiplied
by a factor of 2 for each χ and χ̄ vertices, due to the symmetry
of their indices. The powers of 2 are canceled by the factors
of 1/2 in (53). What remains simplifies to the expected 1/S� ,
where S� = | Aut(�)| is the symmetry factor for the diagram �.
For an example, see Fig. 4. The number of expected diagrams
with k vertices is equivalent to the standard combinatorial
problem of the number of ways to paint a necklace of k

beads with only two colors. However, relationships among the
diagrams effectively reduce this number; exchanging single
lines and double lines gives the complex conjugate of the
diagram. Diagrams with equal numbers of single line and
double line edges, which can only occur for those with an even
number of vertices, give diagrams in the same equivalency
class of the original under this exchange (they are related
by reflections and rotations) and therefore are their own
conjugate; i.e., they are real.

To illustrate the diagrammatic rules, we calculate an
example k = 4 diagram. After assigning dummy particle labels
and indices to each vertex, we write down the product of vertex
factors and Green functions, sum over all labels and indices,
and divide by the symmetry factor:

= 1

2

∑
{αi }

∑
{ni ,mi }

⎛
⎜⎜⎜⎜⎝

n1m1

m2
n2

n3 m3

m4

n4

α1

α2

α3

α4

⎞
⎟⎟⎟⎟⎠

= 1

2

∑
{αi }

∑
{ni ,mi }

Cα1
n1m1

Cα2
n2m2

χα3
n3m3

χα4
n4m4

× Ḡm1m2
α1α2

Gn2n3
α2α3

Gm3m4
α3α4

Gn4n1
α4α1

,
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θ1
θ2

z1 z2r = |z1 − z2|

FIG. 5. Configuration for two ellipses as viewed from above.

where we have used the abbreviated notation,

G
ninj

αiαj
≡ ∂ni

αi
∂

nj

αj
Gαiαj , Ḡ

ninj

αiαj
≡ ∂̄ni

αi
∂̄

nj

αj
Gαiαj .

A. Pair interactions

1. Interaction energies

Consider two ellipses of semimajor axes a1,a2 and semimi-
nor axes b1,b2, respectively, positioned and oriented as shown
in Fig. 5. The interaction energy expansion will only contain
diagrams with an even number of vertices to prevent self-
interactions once the particle assignments are made at each
vertex. We provide explicitly the relevant diagrams and their
corresponding symmetry factors in Fig. 6 for reference. To
order the expansion in powers of r , we note that each vertex
places derivatives on the propagators (Green functions), and
∂nG ∼ r−n [as per Eq. (15)]. It follows that each diagram
with a set of vertex indices {ni,mi} will be of the order
r−∑i (ni+mi ). Determining which diagrams are relevant at
O(r−p) is therefore equivalent to the problem of partitioning
the integer p into 2k integers and distributing them across
the index pairs {ni,mi}i�k at each of the k vertices (while
satisfying our constraint that ni + mi ∈ 2N). The resulting
interaction energy can then be written in the form,

− βU =
∑
p>0
even

u(p)

rp
. (54)

The leading-order terms come from the k = 2 diagrams.
For (BC 2), the polarizabilities begin at n = m = 1 and hence
the leading-order interaction energy is O(r−4). For (BC 3),
however, these coefficients vanish and the polarizabilities
begin at n = m = 2, implying the leading-order interaction
energy is O(r−8). Following the diagrammatic rules and
accounting for the angular dependence using (31), we calculate
the diagrams in Fig. 6 and find for (BC 2):

u(4) = 1

16

[
(s+

1 s+
2 )2 + f 2

1 f 2
2 cos(2θ1 + 2θ2)

]
, (55)

u(6) = 1

32

{
(s+

1 s+
2 )2
[
(s+

1 )2 + 3f 2
1 cos(2θ1)

]
+ 4f 4

1 f 2
2 cos(4θ1 + 2θ2)

}+ (1 ↔ 2), (56)

u(8) = 1

210

{
19(s+

1 s+
2 )4 + f 2

1 f 2
2 (s+

1 s+
2 )2[36 cos(2θ1 − 2θ2)

+ 124 cos(2θ1 + 2θ2)] + 271f 4
1 f 4

2 cos(4θ1 + 4θ2)

+ 12(s+
1 )6(s+

2 )2 + 36f 4
1 (s+

1 s+
2 )2 + 2f 4

1 (s+
2 )4

=

S[Γ
(2)
1 ]=4

+

S[Γ
(2)
2 ]=2

+

S[Γ
(2)
3 ]=4

=

S[Γ
(4)
1 ]=8

+

S[Γ
(4)
2 ]=2

+

S[Γ
(4)
3 ]=2

+

S[Γ(4)]4=4

+

S[Γ
(4)
5 ]=2

+

S[Γ
(4)
6 ]=8

=

S[Γ
(6)
1 ]=12

+

S[Γ
(6)
2 ]=2

+

S[Γ
(6)
3 ]=2

+

S[Γ
(6)
4 ]=2

+

S[Γ
(6)
5 ]=4

+

S[Γ
(6)
6 ]=2

+

S[Γ
(6)
7 ]=1

+

S[Γ
(6)
8 ]=6

+

S[Γ
(6)
9 ]=2

+

S[Γ
(6)
10 ]=2

+

S[Γ
(6)
11 ]=4

+

S[Γ
(6)
12 ]=2

+

S[Γ
(6)
13 ]=12

FIG. 6. Relevant diagram expansions for pair interactions up to
k = 6 vertices, complete with symmetry factors. Note that diagrams
containing a nonequal number of single line to double line edges have
complex conjugate partners. In particular, we have �

(2)
3 = (�(2)

1 )∗,
�

(4)
6 + �

(4)
5 = (�(4)

1 + �
(4)
2 )∗, and �

(6)
13 + �

(6)
12 + �

(6)
11 + �

(6)
10 + �

(6)
9 =

(�(6)
1 + �

(6)
2 + �

(6)
3 + �

(6)
4 + �

(6)
5 )∗.

+ 32(s+
1 s+

2 )2f 2
1 [2(s+

1 )2 + 3(s+
2 )2] cos(2θ1)

+ 80f 4
1 (s+

1 s+
2 )2 cos(4θ1) + 192f 6

1 f 2
2 cos(6θ1 + 2θ2)

}
+ (1 ↔ 2), (57)

where f 2 = s+s− as before. Since the expressions become
increasingly more lengthy, we have only included the
interactions up to and including O(r−10), which only require
diagrams with k = 2 and k = 4 vertices. The k = 6 diagrams
appear at O(r−12).

For (BC 3) we find

u(8) = 9

256

[
(s+

1 s+
2 )4 + f 4

1 f 4
2 cos(4θ1 + 4θ2)

]
, (58)

u(10) = 3

128

[
(s+

1 )6(s+
2 )4 + 5f 2

1 (s+
1 s+

2 )4 cos(2θ1)

+ 3f 4
1 (s+

1 )2(s+
2 )4 + 9f 6

1 f 4
2 cos(6θ1 + 4θ2)

]
+ (1 ↔ 2), (59)
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u(12) = 5

211

{
5(s+

1 s+
2 )6 + 45(s+

1 s+
2 )2f 4

1 f 4
2 + 4(s+

1 s+
2 )4f 2

1 f 2
2

× [10 cos(2θ1 − 2θ2) + 21 cos(2θ1 + 2θ2)]

+ 396f 6
1 f 6

2 cos(6θ1 + 6θ2) + 5(s+
1 s+

2 )2
[
(s+

1 )6(s+
2 )2

+ 6(s+
1 )4f 4

2 + 8(s+
1 s+

2 )2f 4
2

]+ 12(s+
1 s+

2 )2f 2
1 cos(2θ1)

× [3(s+
1 )4(s+

2 )2 + 4(s+
1 )2(s+

2 )4 + 6f 4
1 (s+

2 )2

+ 12(s+
1 )2f 4

2

]+ 63(s+
1 s+

2 )4f 4
1 cos(4θ1)

+ 216f 8
1 f 4

2 cos(8θ1 + 4θ2)
}+ (1 ↔ 2). (60)

To this order, only the diagrams with k = 2 vertices contribute.
The k = 4 diagrams do not contribute until O(r−16).

For identical ellipses, we simply set s±
1 = s±

2 in the above
expressions. The leading-order terms then reproduce the
results of [8] up to powers of 2p for O(r−p), where the
discrepancy is due to differing assignments of a and b ([8]
refers to the principal axes, which are twice the values of the
semimajor and semiminor axes used here). Setting s+

i = 2Ri

and s−
i = 0 gives the interaction energy between two disks of

radii R1 and R2, respectively, and reproduce the results of [13]
for (BC 2). Since the expression for disks obeying (BC 3)
appears to be absent from the literature, we provide the first
few terms explicitly:

βU = − 9
R4

1R
4
2

r8
− 24

R6
1R

4
2 + R4

1R
6
2

r10

− 50
R8

1R
4
2 + 2R6

1R
6
2 + R4

1R
8
2

r12
+ · · · (61)

Furthermore, setting s±
i = Li/2 in Eqs. (57) and (60) gives the

interaction energy between rods.
Since we have computed the interaction energies between

nonidentical ellipses, we can also consider the limiting cases
of disks and rods for each particle independently. Doing so
gives new results for the interactions between an ellipse and
rod, ellipse and disk, and a rod and disk. Furthermore, since the
boundary constraints are contained within the polarizabilities,
it is straightforward to compute the interactions between
particles with different boundary conditions. For example,
the leading-order interactions between a bobbing disk and an
ellipse free to bob and tilt is given by the polarizabilities CD

11
and CE

22 for the disk and ellipse, respectively, yielding

βU = −R2(a + b)4

16r6
+ O(r−8). (62)

2. Orientational dependence

At leading order for (BC 2), the energy is minimized for
θ1 + θ2 = nπ , n ∈ Z, which is degenerate for a full range
of angles. Similarly, there is a degenerate maximum energy
state given by θ1 + θ2 = (n + 1/2)π , n ∈ Z. This degeneracy
was noted in Ref. [11] with the speculation that it should
be broken by higher-order terms. Indeed, at the very next
order, the angular dependence breaks this symmetry and
we find the true minimum energy configuration occurs for
θ1 = θ2 = 0 (up to integer multiples of π ) which aligns the
major principal axes (tip-to-tip). The energy is maximized for
two unique values θ1 = θ2 � π/4 and � 3π/4 which depend
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FIG. 7. (Color online) Plots of the pair interaction free energy
between identical rods of length L separated by a distance r = 1.25L.
The leading-order O(r−4) result is shown on the left, while the right
plot includes the O(r−6) correction.

on particle size and separation. This symmetry breaking is
illustrated in Fig. 7 for the limiting case of identical rods.
Although the leading-order angular dependence for (BC 3)
differs by an additional factor of two from (BC 2), we find
similar behavior, but the least-preferred orientations—which
depend on particle size and separation—lie within the intervals
(π/4,π/2) and (π/2,3π/4). It is interesting to compare the
preferred orientations with those observed for ellipsoidal
objects in the three-dimensional electromagnetic case [25]—
the preferred orientations are similar, but the least preferred
orientations are different.

B. Multibody interactions

In addition to pairwise interactions, the energy also receives
contributions from multibody terms. In general, N -body
interactions will begin to appear in diagrams with N vertices
of lowest multipole order. However, in special cases the
symmetry of the particles may lead to the vanishing of some
terms. In particular, for axisymmetric particles (disks), only the
Cnn polarizabilities are nonzero and all diagrams with an odd
number of vertices vanish. This is obvious diagrammatically,
since it is impossible to connect an odd number of C

vertices such that each vertex possesses both a single and
double line. This property was first stated in Ref. [13] (with
slightly different diagrammatic rules), and simply reflects the
vanishing of ∂∂̄G. With this symmetry relaxed, however, the χ

vertices allow for nonvanishing diagrams with an odd number
of vertices and represent pure anisotropic effects. For brevity,
we will restrict our discussion to the (BC 2) case, but the results
for (BC 3) will follow similarly.

Since the multibody interactions mix the particle coor-
dinates, it is desirable to define a suitable parametrization
that relates to the geometry of the particle configuration in a
coordinate-free manner. To this aim, we define zij ≡ zj − zi ≡
rij e

iϕij as well as the exterior vertex angle ϕ
j

ik ≡ −ϕij + ϕjk as
shown in Fig. 8. Furthermore, we parametrize the orientation
of the particles with respect to the exterior vertex angles
via θ

(j )
ij ≡ θj − ϕij , where θi is the angle the particle makes

from the x axis. Note that ϕji ≡ ϕij (mod π ), and therefore
under the exchange of indices we can equate ϕ

j

ki = −ϕ
j

ik and
θ

(i)
ij = θ

(i)
ji up to integer multiples of π .
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θ
(j)
ij

ϕ j
ik

zi zj

zk

zij = rije
iϕij

z jk
=

r jk
e
iϕ

jk

FIG. 8. An illustration of the angle definitions for a particle at
position zj .

We first consider the leading-order triplet (three-body)
interaction, which comes from the diagrams,

+ , (63)

and their complex conjugates. Since self-interactions are set
to zero, the sum over particle labels becomes the sum over
permutations of {1,2,3}. Computing the diagrams results in

βU (6)
{1,2,3} = − 1

64

perm.

{1,2,3}∑
i,j,k

1

r2
ij r

2
jkr

2
ki

{
1

3
f 2

i f 2
j f 2

k

× cos
[
2
(
θ

(i)
ki + θ

(j )
ij + θ

(k)
jk

)]
+ f 2

i (s+
j s+

k )2 cos
[
2
(
θ

(i)
ki + ϕ

j

ik

)]}
. (64)

This expression can be simplified by noting that the sum can be
split into the sum over even and odd cyclic permutations. If the
summand is invariant under the exchange of two indices, the
sum can be written as twice the sum over cyclic permutations.
The second term is seen to be invariant under j ↔ k by
noticing that

θ
(i)
ji + ϕ k

ij = θi − ϕji − ϕik + ϕkj

= θ
(i)
ki + ϕ

j

ik.

Using this same property, we see the first term is also invariant
under j ↔ k:

θ
(i)
ji + θ

(k)
ik + θ

(j )
kj = θ

(i)
ki + θ

(j )
ij + θ

(k)
jk − ϕ

j

ik − ϕ k
ji − ϕ i

kj

= θ
(i)
ki + θ

(j )
ij + θ

(k)
jk − 2π,

where we have used that the sum over all external angles gives
2π . The result finally simplifies to

βU (6)
{1,2,3} = − 1

32

1

r2
12r

2
23r

2
31

{
f 2

1 f 2
2 f 2

3

× cos
[
2
(
θ

(1)
31 + θ

(2)
12 + θ

(3)
23

)]

+

cyc.
{1,2,3}∑
i,j,k

f 2
i (s+

j s+
k )2 cos

[
2
(
θ

(i)
ki + ϕ

j

ik

)]}
. (65)

From the above expression, we see that the minimum energy
configurations—suggested from the triplet interaction alone—
occur for θ

(i)
ki = −ϕ

j

ik , up to integer multiples of π . It is also

γ
α

β

α

β

γ

(a) (b)

(c) (d)

FIG. 9. Illustration of the various ellipse orientations for an ar-
bitrary three-body particle configuration. The pure triplet interaction
suggests configuration (a) is preferred (minimizes the energy), while
configuration (b) is preferred the least (maximizes the energy).
However, with the inclusion of all the pair interactions up to the
same order, this conclusion switches: (b) is actually preferred, while
(a) is just a local minimum. The least preferred configurations as
suggested by the pair interactions are shown in (c) and (d).

apparent that the least preferred configurations occur when
θ

(i)
ki = π/2 − ϕ

j

ik , which maximizes the energy. Note that we
can as well rewrite these expressions in terms of the interior
angles by noting that an interior angle α

j

ik = π − ϕ
j

ik , but all
expressions are equivalent modulo π . These configurations are
illustrated in Fig. 9.

Since pair interactions will of course also contribute to the
three-body interaction energy, it may be that the preferred
angular configuration suggested above could be modified.
From the leading-order pair interaction Eq. (55), we find

βU (4)
p = − 1

16

cyc.
{1,2,3}∑
i,j,k

1

r4
ij

{
(s+

i s+
j )2

+ f 2
i f 2

j cos
[
2
(
θ

(i)
ki + θ

(j )
ij − ϕ i

kj

)]}
. (66)

The energy is minimized when

θ
(i)
ki + θ

(j )
ij − ϕ i

kj ≡ 0 (mod π ).

Solving this system of equations gives the solution,

θ
(i)
ki = π − ϕ

j

ik + nπ

2
= α

j

ik + nπ

2
, n ∈ Z. (67)

The angular configuration that maximizes the energy is similar,
but with π/4 subtracted from each angle. These configurations
again appear in Fig. 9.

At leading order, the interaction energy therefore suffers
from a double degeneracy. This degeneracy is broken at the
next order with the pair and triplet interactions. To simplify
the remainder of our discussion, we can take advantage
of the similarity of the solutions—the preferred ellipse
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orientations all depend similarly on the respective adjacent
interior angles of the particle configuration—and consider the
highly symmetric case of the particles sitting at the vertices
of an equilateral triangle with side lengths d. Furthermore,
consider the limiting case in which the ellipses become
identical rods of length L. This results in reducing the problem
to a one-dimensional angular subspace in which θ

(i)
ki = θ for

each rod. This simplification gives for the pair energies,

βU (4)
p = − 3

16

(
L

2d

)4 {
1 + cos

[
4

(
θ − π

3

)]}
, (68)

βU (6)
p = − 3

32

(
L

2d

)6 {
2 + 3 cos

[
2

(
θ − 2π

3

)]
+ 3 cos(2θ )

+ 4 cos

[
2

(
3θ − 4π

3

)]
+ 4 cos

[
2

(
3θ − 2π

3

)]}
;

(69)

and for the triplet energy,

βU (6)
t = − 1

32

(
L

2d

)6 {
cos(6θ ) + 3 cos

[
2

(
θ + 2π

3

)]}
.

(70)

The result, which is plotted in Fig. 10, is that the degeneracy
is broken, with the θ = 5π/6 configuration preferred. This
implies the θ

(i)
ki = α

j

ik + π/2 solution from before is the true
minimum. Surprisingly, there is a competition at O(d−6)
between the pairs and triplet: The preferred angular config-
urations are opposite one another, but with the pairs ultimately
dominating. That is, the triplet interaction alone suggests the
opposite conclusion of the full result, and simply decreases the
difference between the two minima.

βU (6)
t

βU (6)
p

βU (4)
p

θ

10
3
β
U

π5π/62π/3π/2π/3π/60

5

0

-5

-10

-15

FIG. 10. Plot of the pair and triplet contributions to the overall
interaction free energy for identical rods of length L sitting at the
vertices of an equilateral triangle of sides d = 1.25L. Notice the
competition between the triplet and pair interactions appearing at
O(d−6). The pair interactions ultimately dominate and we find the
preferred orientations occur for θ = 5π/6, in which all rods point
inwards.

V. MONOPOLES

Computing interactions that include monopole vertices
requires some care. The M0 polarizabilities are dimensionless,
so in order to express the interactions in a proper series in
increasing powers of particle size, we must sum up all possible
M0 insertions into each diagram. At first glance this seems
daunting, requiring a systematic way to categorize all possible
ways to place and permute particle labels on arbitrarily large
diagrams while avoiding self-interactions. However, we can
save ourselves from intimidating combinatorial gymnastics
with a little mathematical rephrasing: For a collection of N

particles, M0 interactions between particles i and j can be
thought of as the ij th element of an N × N matrix M. The sum
of all possible M0 insertions then appears as a summable series
in powers of M. This approach is particularly manageable for
strictly M0 interactions, so we first focus on the leading-order
interaction energy.

A. Leading order

The leading-order interactions consist of only M0 vertices
and are given by the infinite series,

−βU (0) =
∑
k�1

k , (71)

where the vertex represents an M0 insertion. This sum can
be computed by recasting it in a manner similar to Eq. (50):

−βU (0) =
∑
k�0

1

2k
Tr( )k = −1

2
Tr log(1 − )

= −1

2
log det(1 − )

≡ −1

2
log det(1 − M), (72)

where we have defined the previously mentioned interaction
matrix,

(M)ij ≡ i j = −Mi
0G

ij (1 − δij ). (73)

The indices of (M)ij run over all particle labels, and the factor
(1 − δij ) makes explicit the absence of self-interactions. For
a collection of N particles, we see the calculation of the
leading-order interaction reduces to taking the determinant
of the matrix,

1 − M =

⎛
⎜⎜⎜⎜⎝

1 M1
0 G12 · · · M1

0 G1N

M2
0 G21 1 · · · M2

0 G2N

...
...

. . .
...

MN
0 GN1 MN

0 GN2 · · · 1

⎞
⎟⎟⎟⎟⎠, (74)

and plugging the result into Eq. (72). For brevity—and with a
nod to Ref. [16]—we will express the results using the notation,

g2
ij ≡ Mi

0G
ijM

j

0 Gji =
log2

( 2�c

γerij

)
log
( 4�c

γes
+
i

)
log
( 4�c

γes
+
j

) , (75)
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and furthermore introduce the parameter,

�ij ≡ log

⎛
⎝ 4�c

γe

√
s+
i s+

j

⎞
⎠ , (76)

to massage the expression into a form better suited for later
expansions:

gij =
�ij − log

(
2rij√
s+
i s+

j

)
�ij (1 − log2

√
s+
i /s+

j )1/2

= 1 − 1

�ij

log

⎛
⎝ 2rij√

s+
i s+

j

⎞
⎠+

log2
√

s+
i /s+

j

2�2
ij

+ O(�−3).

(77)

For two particles we find the interaction energy,

βU (0) = 1
2 log

(
1 − g2

12

)
. (78)

With the help of Eq. (77), we expand this result in powers
of 1/� and find the divergences only appear as an irrelevant
(infinite) constant:

βU (0) = − 1
2 log �12 + βE12 + O(�−1), (79)

where

βE12 = 1

2
log

⎡
⎣2 log

⎛
⎝ 2r12√

s+
1 s+

2

⎞
⎠
⎤
⎦ (80)

contains the r-dependent terms. The r dependence, in agree-
ment with [8], shows that at this order the interaction is always
attractive.

For three particles, we find

βU (0) = 1
2 log

[
1 − (g2

12 + g2
23 + g2

31 − 2g12g23g31
)]

. (81)

Contained within this result are both pair and triplet interac-
tions, which we can make explicit by writing

U (0) = U (0)
{1,2} + U (0)

{2,3} + U (0)
{3,1} + U (0)

{1,2,3}, (82)

where U (0)
{i,j} is the pair interaction (79) between particles i and

j , and U (0)
{1,2,3} is the triplet interaction,

βU (0)
{1,2,3} = 1

2

[
1 − (g2

12 + g2
23 + g2

31 − 2g12g23g31
)

(
1 − g2

12

)(
1 − g2

23

)(
1 − g2

31

)
]

. (83)

In the limit of circular particles (s+
i = 2Ri), we recover the

result obtained by a scattering approach in Ref. [16].6

To understand the three-particle behavior, we again expand
using Eq. (77). After some simplification, the total interaction
energy of Eq. (81) becomes

βU (0) = − 1
3 log(�12�23�31) + βEtot + O(�−1), (84)

6However, there is a discrepancy with the published version of
Ref. [16]; the g3 term has the opposite sign. We have verified with
the authors that this is a typographical error, and our results indeed
agree.

with

βEtot = 1

2
log

⎛
⎜⎜⎝

cyc.
{1,2,3}∑
i,j,k

⎡
⎣2 log

⎛
⎝ 2rij√

s+
i s+

j

⎞
⎠ log

⎛
⎝ 2rjk√

s+
j s+

k

⎞
⎠

− log2

⎛
⎝ 2rij√

s+
i s+

j

⎞
⎠
⎤
⎦
⎞
⎠ . (85)

The triplet (pure three-body) interaction can be found by
subtracting off the pairs:

E123 = Etot − E12 − E23 − E31. (86)

Consider a collection of three identical particles (s+
i = s+

for all i) in two different configurations: sitting at the vertices of
an equilateral triangle of side lengths d (r12 = r23 = r31 = d),
and equally spaced on a line (r12 = r23 = r31/2 = d). For the
triangle configuration, Eq. (84) reduces to

βU (0) = − log � + 1
2 log[3 log2(2d/s+)] + O(�−1), (87)

which is overall attractive. To see what role the triplet
interaction plays, we can just subtract off the pairs as in
Eq. (83). Surprisingly, the triplet and pair interactions have
the same d dependence:

βU (0)
{1,2,3} = 1

2
log

3�

4
− 1

2
log

[
2 log

(
2d

s+

)]
+ O(�−1).

This pure three-body interaction is in fact repulsive, but not
enough so to overcome the attractive pair interactions. For the
linear configuration, the total energy is given by

βU (0) = 1

2
log

[
4 log

(
2d

s+

)
log

(
4d

s+

)
− log2

(
4d

s+

)]

− log � + O(�−1), (88)

which is also overall attractive. Although it is less obvious than
in the triangle configuration, the pure three-body interaction
in this case is also repulsive, as can be checked by subtracting
off the pairs.

B. Higher orders

To calculate higher orders, we must again include an infinite
number of M0 insertions. This has the effect of replacing each
propagator with the sum,

+ + + + · · ·
This infinite series, recognized as a type of Dyson equation,
is a geometric sum involving powers of M and is formally
convergent in the sense of matrices. Reorganizing the vertex
sum gives

+ + + · · ·
= (1 + + )

=
(∑

k�0

Mk

)
= (1 − M)−1 . (89)

This matrix inverse is relatively straightforward to compute,
especially for a small number of particles. It follows from the
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Cayley-Hamilton theorem that for N particles, the inverse will
contain an overall factor of 1/ det(1 − M) and up to N − 1
powers of M and their traces.

The vertex sum contains two possibilities: either the vertices
begin and end on the same particle worldlines (diagonal
entries), or begin and end on different particle worldlines
(off-diagonal entries). This motivates grouping the elements
of Eq. (89) into the following effective vertices:

i j = −(1 − M)−1
ij M

j

0 δij , (90)

i j = −(1 − M)−1
ij M

j

0 (1 − δij ). (91)

These effective vertices can be incorporated into interaction
diagrams, and the symmetry factors can be determined in the
normal way. The interaction energy for (BC 1) is therefore
given by

−βUBC1 =
∑
k�1

k +
∑
k�1

k +

+ + +

+ + + + · · · ,

(92)

where the vertex now contains Mn>0 terms.
To account for the Mn>0 terms, first observe that for n � m

the product,

(M0)n
(
G00

αγ

)m �c→∞−−−→ δnm. (93)

Since Mn ∝ M0, this suggests that for every Mn>0 vertex in a
given diagram, there must be a compensating propagator with
no derivatives; otherwise the diagram vanishes. To make this
apparent in the diagrams, we represent the Mn and M̄n vertices,
respectively, by

and ,

where the dashed line represents (and enforces) a propagator
with no derivatives. For example,

= + 2 Re

⎡
⎣ +

⎤
⎦ .

1. Pairs

For two particles, the (2 × 2) matrix inverse is

(1 − M)−1 = 1 + M
det(1 − M)

,

and the effective vertices take particularly simple forms in the
limit �c → ∞:

i j

α

= −2πδiα

1

2�12
δαj , (94)

i j

α γ

= 2πδiα

1 − δαγ

2�12
δγj , (95)

where we have introduced the frequently appearing parameter
�ij , which interestingly resembles a screening factor,

�ij = log

⎛
⎝ 2rij√

s+
i s+

j

⎞
⎠ = 1

2
e2βEij , (96)

where Eij is the pair energy of (80).
Expanding out the vertices and using the notation,

−βUBC1 = −βU (0) +
∑
p>0
even

u(p)(r)

rp
,

we find the higher-order terms,

u
(2)
BC1 = 1

16�12

[
(s+

1 )2 + 3f 2
1 cos(2θ1)

]+ (1 ↔ 2), (97)

u
(4)
BC1 = u

(4)
BC2 + 1

128�12

{
(s+

1 )4 + 2(s+
1 s+

2 )2

+ 4f 2
1 [(s+

1 )2 + 3(s+
2 )2] cos(2θ1) + 11f 4

1 cos(4θ1)

+ 22f 2
1 f 2

2 cos(2θ1 + 2θ2) + (1 ↔ 2)
}+ (u(2)

BC1

)2
.

(98)

At all orders these terms contain contributions with logarithmic
prefactors in the form of �12, and they do not vanish in the
isotropic limit. These terms exist between two particles, both of
which are pinned, and they originate from cross-talk between
monopoles and higher-order multipoles. They were previously
claimed to vanish [13], based on the argument that every di-
agram involving monopoles and higher-order multipoles van-
ishes in the limit �c → ∞. However, adding extra monopole
insertions to such a diagram does not change its order, hence
consistency requires we sum over the complete (infinite) set
of insertions, as we have done here. After this resummation,
the final result no longer vanishes in the �c → ∞ limit.

The higher-order terms in Eqs. (97) and (98) agree with
what has been calculated by Noruzifar et al. [8] (up to differing
definitions of a and b), except for a prefactor in the last term of
Eq. (98). This term is a consequence of the single and double
effective vertices limiting to the same value and results from

+

→ 1

4

2∑
α �=γ

(
2π

2�12

)2
⎡
⎣( α

)2

+
(

α
)⎛⎝ γ

⎞
⎠
⎤
⎦

=
⎡
⎣1

2

2∑
α �=γ

2π

2�12

(
α
)⎤⎦

2

=
⎡
⎣

⎤
⎦

2

.
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In Ref. [8] it occurs with an extra prefactor of 1/2, the origin
of which is unclear.

We can also compare these results to those obtained using
conformal field theory techniques in Ref. [22], for which the
authors provide expansions for a couple of special cases. For
two identical disks of radius R, and using x = r/R, our results
reduce to

βU = 1

2
log(2 log x) − 1

2x2 log x

− 1

x4

(
1 + 3

4 log x
+ 1

4 log2 x

)
+ · · · ,

in agreement with Ref. [22].7 For two identical aligned rods
(θ1 = θ2 = 0) of length L (s+ = L/2 and f 2 = L2/4), our
results reduce to

βU = 1

2
log

(
2 log

4r

L

)
− 1

2(2r/L)2 log(4r/L)

−
(

L

2r

)4
(

1

8
+ 13

16 log
(

4r
L

) + 1

4 log2
(

4r
L

)
)

+ · · ·

If we calculate the total force F = −∂rU and expand in terms
of the tip-to-tip distance d, we find (with x = d/(2L))

2LF = − 1

2x log(8x)
+ 1 + log(8x)

4x2 log2(8x)
+ · · · ,

again in agreement with Ref. [22].

2. Three-body and higher

For three particles, the (3 × 3) matrix inverse is given by

(1 − M)−1 =
(
1 − 1

2 Tr M2
)
1 + M + M2

det(1 − M)
. (99)

The �c → ∞ limit for the effective vertices follows after a
short calculation, ultimately yielding for the effective single
vertex,

i j

α

= −2πδiα

2�k�∑
cyc.

(
2�ab�bc − �2

ab

) δαj ,

= −2πδiα e−2β(Ekα+Eα�+E123) δαj , (100)

where α,k,� ∈ {1,2,3} with α �= k,�, and k �= � [for example,
(α,k,�) = (2,3,1)]. The second line shows that the effective
monopole interaction of particle α effectively “screens”
according to its pair (80) and triplet (86) interactions with
the other two particles. The effective double vertex becomes

i j

α γ

= 2πδiα

�αk + �kγ − �αγ∑
cyc.

(
2�ab�bc − �2

ab

) δγj ,

= 2πδiα

1

2
e−2β(E123+Eαγ )

× [e−2βEαk + e−2βEkγ

− e−2β(Eαk+Ekγ −Eαγ )
]
δγj , (101)

7We have taken the liberty of expanding their result by an additional
order for comparison.

in which α,γ,k ∈ {1,2,3} with k �= α,γ , and α �= γ . Note that
if there are only two particles, the constraints on α, γ , k, and
� reduce both three-body effective vertices to the two-body
vertices (94) and (95). However, as long as the system has
three pinned particles, the monopole interactions will always
be “screened” by the triplet energy, in addition to the pairs.

To demonstrate, we calculate the first subleading correction
to the energy of a three-particle configuration:

−βU (2) = 1

8

cyc.
{1,2,3}∑
i,j,k

e−2β(Eij +Ejk+E123) 1

r2
ij

[
(s+

i )2 + (s+
j )2

+ 3f 2
i cos(2θi) + 3f 2

j cos(2θj )
]

+ 1

8

cyc.
{1,2,3}∑
i,j,k

e−2βE123+Ejk

rkirij

[
e−2βEki + e−2βEij

− e−2β(Eki+Eij −Ejk )
]
(s+

i )2 cos
(
ϕ i

jk

)
. (102)

The first sum is due to only pairs, whereas the second sum is
purely three-body and would vanish in a two-particle system.
Observe that the first sum is exponentially suppressed by the
leading-order pair energies between one particle and the other
two, as well as the triplet energy. This result differs from
simply adding the two-particle result (97) pairwise because of
this suppression term. We note, however, that the three-particle
result is still consistent with the two-particle result—for a
two-particle system, E123 and Ejk both vanish in Eq. (102),
as does the second sum. Since e2βEij = 2�ij , the result then
reduces to Eq. (97). Continuing to even higher orders will
follow similarly as straightforward computations of Feynman
diagrams, including the proper insertions of the effective
monopole vertices.

The “screening” behavior of the monopole interactions by
the leading-order pair and multibody energies will persist for
more numerous collections of particles. Since, by way of the
Cayley-Hamilton theorem, the effective vertices will always
carry with them the factor det−1(1 − M), it follows that all
monopole interactions will be exponentially suppressed by
the total leading-order multibody monopole energy. As this
suppression will always contain multibody energies specific
to the total number of particles, these interactions are not just
simply sums over partitions (pairwise, tripletwise, and so on)
of the collection of particles.

VI. CONCLUSIONS

We have generalized the EFT formalism of fluctuation-
induced interactions between particles embedded in a surface
to account for possible anisotropies in the particles’ shapes.
For interactions at large particle separation, the particles can
be treated as points with their finite-size effects appearing as
a derivative expansion in the effective Hamiltonian. The EFT
prescription constrains the possible forms of the individual
terms in this expansion through considerations of the particles’
symmetries—both the boundary shape and dynamical free-
dom. By examining and characterizing a hierarchy of relevant
system scales, these terms can be ordered in increasing powers
of s/r , the ratio of the characteristic particle size and distance
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from the particle, allowing systematic control over the desired
accuracy of the final results.

We have constructed the general effective Hamiltonian
for anisotropic particles in Eq. (8). The coefficients of this
expansion have the simple interpretation of polarizabilities: an
nth-order multipole background field will induce a multipole
response characterized by Cnm and χnm (m ∈ N0) in which
anisotropies are encoded in the χ and off-diagonal C terms.
In the case of ellipses, we could solve for the complete set of
polarizabilities. This was accomplished by taking advantage
of the Hamiltonian’s conformal symmetry and mapping the
BVP to a simpler problem with a circular boundary. As a
consequence of the Riemann mapping theorem, this trick is
readily generalizable to particles of any shape. Once a Laurent
expansion of the mapping between the particle shape and a disk
is determined, up to some desired accuracy, the calculation
proceeds just as in Sec. III B.

Once the effective theory has been constructed, the inter-
action free energy can be computed as a cumulant expansion
and identified as a series of connected Feynman diagrams.
We discussed the diagrammatics in Sec. IV and calculated the
pair interactions to several orders, as well as the leading-order
triplet interaction. We found that elliptic particles minimize
the free energy by aligning tip to tip and that in three-body
configurations the particles will minimize the free energy by
aligning their tips to a common center.

Triplet and higher-order interactions become stronger at
closer distances, hence they will be especially relevant in dense
bulk phases, in which many particles coat a fluid surface. The
free energy of such phases can be written as a sum over all
pairs, all triplets, and so on. We expect the resulting system to
give rise to nontrivial ordered phases; for instance, it is easy to
see that a regular triangular lattice would be frustrated, since
three close particles minimize their free energy if they all point
their tips together, but this is a local conformation that cannot
be assumed by every close triplet. While the terms beyond the
pair level are only a small correction to the overall free energy,
they would shift the location of phase boundaries between such
dense phases, but this is beyond the scope of our present work.

We have also provided a detailed examination of the case
of fixed particles to elucidate the subtleties of monopole
interactions. Field theory has been historically approached
by physicists in a manner of “calculate until something goes
wrong.” The monopole interactions serve as a warning to
approach infinite limits with care. In this case, although each
M0-interaction diagram vanishes in the asymptotic limit �c →
∞, the full sum remains finite; the limits do not commute.
The resulting resummation shows that the expected powerlike
corrections are exponentially suppressed by the leading-order
interaction energies.

It is worth emphasizing that in our approach the free
energy calculation can proceed even without determining
the numerical values of the polarizabilities. The constraints
imposed by the particle boundaries provide sufficient in-
formation to determine the scaling behavior as well as the
angular dependence. For instance, the change in leading-order
asymptotics between (BC 2) and (BC 3) from ∼ r−4 to
∼ r−8, respectively, is easily seen to be a consequence of the
vanishing of the C1m and χ1m polarizabilities. This validates
the speculation in Ref. [8] that this is a general feature that

holds for arbitrary particle shapes. Furthermore, since the EFT
prescription separates out the invariably complicated BVP,
the determination of the polarizabilities can be performed
in any fashion most convenient for the given problem, even
numerically.
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APPENDIX A: MONOPOLE ASYMPTOTICS

We first recast the partial differential equation (34) in
elliptic coordinates. Under this change of variables, it becomes

1

f 2(sinh2 ξ + sin2 η)

(
∂2φ

∂ξ 2
+ ∂2φ

∂η2

)
− 1

�2
c

φ = 0. (A1)

Now, we separate variables by assuming a solution of the form
φ(ξ,η) = R(ξ )�(η). Plugging this in gives

R′′

R
+ �′′

�
− f 2

�2
c

(sinh2 ξ + sin2 η) = 0. (A2)

The squares can be removed by using the identities sinh2 ξ =
(cosh 2ξ − 1)/2 and sin2 η = (1 − cos 2η)/2. Letting c be the
separation constant, we get two ordinary differential equations
(ODEs):

R′′ −
[(

c − f 2

2�2
c

)
+ f 2

2�2
c

cosh 2ξ

]
R = 0,

�′′ +
[(

c − f 2

2�2
c

)
+ f 2

2�2
c

cos 2η

]
� = 0.

Finally, we define p = c − f 2/2�2
c and q = −f 2/4�2

c , which
puts the ODEs into the form,

R′′ − (p − 2q cosh 2ξ ) R = 0, (A3)

�′′ + (p − 2q cos 2η) � = 0. (A4)

The angular ODE can be recognized as the Mathieu equation.
The periodic boundary condition �(η) = �(η + 2π ) implies
that p depends on a positive integer n. The two families
of solutions are given by the (even) cosine-elliptic function
cen(q; η), where n ∈ N0, and the (odd) sine-elliptic function
sen(q; η), where n ∈ N. The general solution of �(η) is then
the linear superposition,

�n(η) = An cen(q; η) + Bn sen(q; η), B0 = 0. (A5)

With these pn eigenvalues, the radial ODE becomes the
modified Mathieu DE with solutions given by the even and
odd evanescent (since q < 0) radial Mathieu functions of
the first kind, Ien(q; ξ ) and Ion(−q; ξ ), and second kind,
Ken(−q; ξ ) and Kon(−q; ξ ). The general solution is again a
linear superposition,

Rn(ξ ) = an Ien(−q; ξ ) + bn Ion(−q; ξ )

+ cn Ken(−q; ξ ) + dn Kon(−q; ξ ), (A6)

where b0 = d0 = 0. The notation highlights the analogy
between the modified Mathieu functions from an elliptic
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geometry with the modified Bessel functions of a circular
geometry. Indeed, the behavior of the modified Mathieu
functions is analogous to the modified Bessel functions: Ken

and Kon decay at infinity, whereas Ien and Ion diverge at
infinity. Finally, the complete general solution is given by

φ(ξ,η) =
∞∑

n=0

Rn(ξ )�n(η). (A7)

We could continue and find the explicit solution to our
boundary value problem; however, we are only interested in
the limiting case of �c → ∞.

Since the capillary length �c is being used as a regulator,
we must consider the solution behavior for q = −f 2/4�2

c →
0. Although asymptotic series expansions for the Mathieu
functions exist in the literature, we can easily get the relevant
terms by reconsidering the original differential Equations (A3)
and (A4).

The angular solution for q → 0 simply gives cos(
√

pη) and
sin(

√
pη), but periodicity requires p = n2 for some integer n.

For the radial solution, we must be a little more careful since
cosh 2ξ is not bounded above. However, since ξ ∈ [0,∞),

2q cosh 2ξ = q(e2ξ + e−2ξ ) ∼ qe2ξ ,

as q → 0. Recalling that q < 0, we introduce an effective
elliptic radius ρ = √−qeξ and rewrite (A3) using dρ = ρ dξ

to give

ρ
d

dρ

(
ρ

dR

dρ

)
− (n2 + ρ2)R = 0. (A8)

This is recognized as the modified Bessel equation, whose
solutions In(ρ) and Kn(ρ) are the modified Bessel functions
of the first and second kind, respectively, again reflecting the
analogy with the Mathieu functions.

APPENDIX B: BACKGROUND FIELD RESPONSE

In order to match the monopole polarizabilities, we need a
convenient set of background fields as well as the full theory
response. Based on the previous section, we should consider
the set of background fields,

φ
(n)
bg = A(n)

(
In(ρ)

In(ρ0)

)
cos[n(η − ϕ)], (B1)

where we have included a possible phase ϕ that may be useful
for matching later on, and ρ0 = f eξ0/2�c = (a + b)/2�c. The
corresponding responses are given by

δφ
(n)
full = −A(n)

(
Kn(ρ)

Kn(ρ0)

)
cos[n(η − ϕ)]. (B2)

Since ρ ∼ �−1
c , we can simplify matters by taking

the asymptotics further, keeping only the singular terms since
the remaining terms will vanish in the �c → ∞ limit. To
make the expressions more transparent in powers of �c, we
set ρ ≡ ρ̃/�c. The expansions then become

In(ρ̃/�c)

In(ρ̃0/�c)
=
(

ρ̃

ρ̃0

)n

+ O
(
�−2

c

)
, (B3)

and

Kn(ρ̃/�c)

Kn(ρ̃0/�c)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log
(

ρ̃

2�c
γe

)
log
(

ρ̃0

2�c
γe

) + O
(
�−2

c

)
, n = 0

(
ρ̃0

ρ̃

)n

+ O
(
�−2

c

)
, n � 1,

(B4)

where γe = eγE and γE is the Euler-Mascheroni constant.
Using the definitions of ρ and ρ̃, the background and response
fields finally become

φ
(n)
bg (ξ,η) = A(n)en(ξ−ξ0) cos[n(η − ϕ)], (B5)

and

δφ
(n)
full =

⎧⎪⎪⎨
⎪⎪⎩

−A(n)
log
(

f eξ

4�c
γe

)
log
(

a+b
4�c

γe

) , n = 0

−A(n)e−n(ξ−ξ0) cos[n(η − ϕ)], n � 1.

(B6)

APPENDIX C: INDEPENDENCE OF MATCHING

The conformal transformation of the background field in
Sec. III B requires the expansion,(

s+
w

R
+ s−

R

w

)n

=
∑

�<n/2

(
n

�

)
sn−�
+ s�

−
(w

R

)n−2�

+
∑

�<n/2

(
n

�

)
s�
+sn−�

−

(
R

w

)n−2�

+
even

(
n

n/2

)
(s+s−)n/2, (C1)

where the last term only appears when n is even (hence
the “ +

even” notation). As seen in Eqs. (B5) and (B6), a
nonzero constant background generates a monopole response.
In particular, the response to the full constant term in w space
is similar to (B6) and given by

δφC = −A(n)(s+s−)n/2

2n

(
n

n/2

) log
( |w|γe

2�c

)
log
(

Rγe

2�c

) (e−inϕ + einϕ).

(C2)
Since there is no singular behavior in mapping back to the
ellipse via w → w(z), we can safely take the limit �c → ∞,
giving

δφC = −A(n)

2n

(
n

n/2

)
(s+s−)n/2(e−inϕ + einϕ). (C3)

Now let’s consider the effect of the background field in the
monopole EFT in (38). From φ

(n�1)
bg (0) = 0 and ∂mφ

(n�1)
bg (0) =

A(n)n!δmne
−inϕ , we see the only nonvanishing term is

δφM =
∑
n>0
even

Mn

2π
log

( |z|γe

2�c

)
∂nφbg(0) + c.c.

= −
∑
k>0
even

log
( |z|γe

2�c

)
log
( (a+b)γe

4�c

) f kA(n)n!δkne
−inϕ

2k
[(

k
2

)
!
]2 + c.c.,

�c→∞−−−→ − f nA(n)n!

2n
[(

n
2

)
!
]2 (e−inϕ + einϕ) (n even). (C4)
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Recalling that f n = (s+s−)n/2 and ( n
n/2) = n!/[( n

2 )!]2, we
find (C4) is precisely equal to (C3). Therefore, we find that
the higher-order polarizabilities can be matched independently

of the monopole terms without contamination by simply
ignoring the constant term in the binomial expansion of
Eq. (C1).
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