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Loop-erased random walk on a percolation cluster: Crossover from Euclidean to fractal geometry
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We study loop-erased random walk (LERW) on the percolation cluster, with occupation probability p > p., in
two and three dimensions. We find that the fractal dimensions of LERW , are close to normal LERW in a Euclidean
lattice, for all p > p.. However, our results reveal that LERW on critical incipient percolation clusters is fractal
with dy = 1.217 £ 0.002 for d = 2 and 1.43 & 0.02 for d = 3, independent of the coordination number of the
lattice. These values are consistent with the known values for optimal path exponents in strongly disordered
media. We investigate how the behavior of the LERW, crosses over from Euclidean to fractal geometry by
gradually decreasing the value of the parameter p from 1 to p.. For finite systems, two crossover exponents and
a scaling relation can be derived. This work opens up a theoretical window regarding the diffusion process on

fractal and random landscapes.
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I. INTRODUCTION

The diffusion process in disordered media is anomalous,
i.e., the mean square displacement (MSD) of the diffusing
species has a nonlinear relationship with time, in contrast
to diffusion on Euclidean lattices, where their MSD is
proportional to time in all dimensions [1]. Such disordered
media are typically simulated through percolation systems,
and diffusion on percolation clusters has been studied in
great detail [2,3]. One could restrict the diffusion of a simple
random walk (RW) to the incipient infinite cluster; in this
case finite-sized clusters are irrelevant. It is known that, above
criticality p > p,, diffusion is anomalous over short distances
and normal over long distances [3]. As the occupation
probability approaches the percolation threshold, diffusion
becomes more anomalous over longer distances. Diffusion on
critical incipient percolation clusters is anomalous on all length
scales. On the other hand, one could erase the loops from the
trajectory of the RW chronologically, and this operation results
in a loop-erased random walk (LERW) [4]. This model is
equivalent to the classical uniform spanning tree (UST) [5], the
g-state Potts model in the limit ¢ — O [6], and the avalanche
frontier in the Abelian sandpile model (ASM) [7]. It is known
that the fractal dimension of LERW in D = 2 is 5/4 and the
upper critical dimension for LERW is D = 4, withd; = 2 for
D > 4. Although scaling and the universality class of LERW in
an integer lattice are known, the universality class of this model
in a fractal landscape and especially in critical percolation still
need to be studied. In this paper we study the LERW on a
percolation cluster, with an occupation probability above and
equal to the critical value p > p.. Our results show that, for all
D > P, the scaling behavior of the obtained LERW , curves is
close to the exact results for LERW on Euclidean lattices [7].
However, our results reveal that the scaling behavior of this
model near critical percolation is completely different, with
a fractal dimension d; ~ 1.22 in two dimensions (2D) and
dy ~ 1.43 in three dimensions (3D). Surprisingly, these values
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are close to a family of curves appearing in different contexts
such as, e.g., polymers in strongly disordered media [8],
watershed of random landscapes [9-11], ranked percolation
[12], and optimal path cracks [13]. A crossover from Euclidean
to fractal geometry can be observed by decreasing the value
of the parameter p from 1 to p.. To investigate how the
behavior of the LERW, crosses over from between these two
universality classes, we have considered the mean total length
of LERW,, as a homogeneous function on the lattice size and
occupation probability. For the finite systems, two crossover
exponents and a scaling relation can be derived. Our results for
the crossover regime demonstrate that for a fixed lattice size L
there are three distinct scaling regimes, as it has been reported
in similar systems [13,14]. These regimes are separated by
two crossovers. Finally, there is a scaling relation between the
corresponding crossover exponents and the fractal dimension
of LERW.

II. SIMULATION DETAILS

We start by constructing a porous landscape: We simulate
a site percolation model on the square, triangular, honeycomb,
and simple-cubic lattices of linear size L with free boundary
conditions. We are especially interested in studying the
diffusion properties in single percolation clusters with a
fraction of occupied sites p > p.; particularly, the single
cluster containing the middle point of the lattice is generated
in the same way as the algorithm [15]. To avoid an imprecise
definition of the middle point for the lattice, we consider
a lattice with an odd number of the side length L. If the
obtained cluster is large enough to connect to at least one
of the outer edges, we accept it; otherwise, we simply ignore
it and produce another one. Once a large cluster is obtained,
we start the diffusion process by setting a RW on the middle
of the lattice and stop when it touches the outer edges for
the first time. The LERW curve can be obtained by erasing
the loops chronologically. In Fig. 1, a sample of LERW on a
critical percolation cluster p = p, is shown. In planar LERW,
simulations on critical percolation clusters were performed
on a square lattice of size L = 24 4 1,n=1,2,...,8. The
number of samples generated for each lattice size ranges
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—— LERW curve

FIG. 1. (Color online) The generation process of a2D LERW on
a critical percolation cluster on a 81 x 81 lattice. A random walk
starts at the middle of the lattice in a critical large cluster (shown
in black color) and diffuses to the outer boundaries; the visited sites
are shown in gray, and then the LERW curve (shown in red) can be
obtained by erasing the loops chronologically.

from 4 x 10° for the smallest system sizes until about 10*
for the largest system sizes. Moreover, to study this model
in higher spatial dimensions, we simulate the same problem
on a simple-cubic lattice. The actual numerical values of
the site percolation threshold used for the square, triangular,
honeycomb, and simple-cubic lattices are 0.592 746 02 [16],
0.5, 0.697 040 2 [16], and 0.311 607 7 [17], respectively.

III. THE FRACTAL DIMENSION

We estimate the fractal dimension for the obtained LERW ,
by computing the mean total length S for different lattice
sizes L, comparing it with S ~ L% . In the case of normal
LERW (p = 1), the total length of the curves increases
with system size as S(L) ~ L%, consistent with the fractal
dimension of Euclidean LERW. By decreasing the occupation
probability p, the fractal dimension of these random curves
remains unchanged. At percolation threshold, these curves
are smoother than normal LERW, and the mean total length
diverges with system size with a different exponent S(L) ~
L%, with dy ~ 1.22. Figure 2 shows the dependence of the
S(L)/L3 on p’ for different system sizes, where p’ is p — p..
The overlap of the different curves confirms that the fractal
dimension of the LERW , above p, is 5/4. A small deviation is
observed due to finite-size effects. There is a crossover between
two different regimes near the critical point p = p., which can
be observed in Fig. 2. The mean total length of LERW on a
critical percolation cluster for different lattice sizes L is shown
in the inset of Fig. 2. We obtain d; = 1.217 & 0.002. In order
to check the universality of this exponent and to show that
it does not vary with the coordination number of the lattices,
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FIG. 2. (Color online) Dependence of the mean total length
normalized with system size, S(L, p')/L'?, on p’ for different lattice
sizes. Above criticality, LERW , behaves as expected for Euclidean
lattices. However, near the criticality, S(L,0) grows slower than L i
A crossover between two regimes can be observed for p in the
neighborhood of p.. Inset: Mean total length of LERW on a critical
percolation cluster as a function of lattice size L for three different
lattices (the statistical error bars are shown, but are quite shorter and
appear as horizontal lines). The solid line represents the least-square
fit of log[S(L,0)] to a function of the form d, log(L) + a, where the
parameter a is an irrelevant constant that depends upon the lattice
and the details of the definitions. We find dy = 1.217 £ 0.002 for the
square lattice. The fit has a x2 statistic of 4.84 with six degrees of
freedom for a p value of 0.57, so the fit passes the x? test with a 95%
confidence level.

we perform the same simulations on the triangular and the
honeycomb lattices. We found the same result (see the inset of
Fig. 2), which provides strong evidence for the universality of
this exponent.

IV. CROSSOVER SCALING FUNCTION

As shown in Fig. 2, the mean total length of LERW,
increases with increasing occupation probability. For large
systems, the mean total length of LERW , grows with p’, such
that S(L,p’) ~ p’f, where B &~ 0.04 is a different exponent,
which we call the length-growth exponent. It is known that the
anomalous diffusion in percolation clusters occurs only within
the correlation length [3]. At high occupation probability, the
correlation length is so small, therefore the mean length of
LERW , can be described as a LERW in Euclidean geometry.
When the occupation probability is reduced, the correlation
length increases as p’'/V diverging at p., where v is the
correlation length exponent of the percolation model, with
v =4/3 in 2D, so the system becomes a self-similar random
fractal leading to a different universality class. There is a
crossover behavior, as depicted in Fig. 2, from Euclidean to
fractal geometry. For the complete crossover scaling of the
mean length, S can be considered as a homogeneous function
on the relevant scaling fields, S(bL,b*» p’) = b= S(L,p’),
where b is a scaling parameter and y,; and y, are relevant
exponents for S and p scaling parameters, respectively. One
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FIG. 3. (Color online) Crossover scaling and data collapse for
LERW, in different system sizes. (a) Rescaled mean total length
S/Lr, where d; = 1.217, vs p’L? for different system sizes. The
scaling function given by Eq. (1) is applied, with 8 = 0.90 £ 0.05.
(b) Rescaled mean total length S/L'"» vs p’L", with n = 0.15 £
0.02, for different system sizes. For each finite lattice size L, there
are three regimes separated by two crossovers. These crossovers scale
with two crossover exponents, i.e., 6 and n. By collapsing the data
of different lattice sizes in the intermediate regime, a more precise
estimate for B can be obtained, which is g = 0.044 = 0.002. All
results have been averaged over 4 x 10* samples.

could restrict attention to the p — p, regime, and then for a
finite size of L, it is expected that S scales with d, so in this
regime y; = dy. The next exponent can be found by trying to
collapse the data (setting b = L~'). The scaling ansatz for the
mean total length is given by

S(L,p"y = LUG[p'L"], (1)

where G [u]is a scaling function, such that G [u] ~ u” for small
values of u, and is nonzero at u — 0. The exponent 6 =y,
is the crossover exponent in the p — p. regime. Figure 3(a)
shows crossover scaling for different lattice sizes, close to the
critical point. As it is shown, we have a good data collapse
for small values of u# with 6 = 0.90 £ 0.05. For each finite
lattice size L, there is a crossover point such that p’ ~scales
as L7, which, for u « 1, we have a saturation regime, and
for u > 1 the results are consistent with «# for all lattice sizes
L. However, for large values of p/Le, we do not observe a
data collapse and the mean total length behaves as L!'>~%,
On the other hand, one could look at large values of p, and
it is expected that the mean total length scales with a fractal
dimension of Euclidean geometry, so d; = % in this regime. If
we follow the same strategy as above, we could find another
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scaling function,
S(L.p') = LiF[p'L"], )

where the scaling function F[x] has a saturation regime for
large values of x, and the exponent = y, is the corresponding
crossover exponent in this regime. In fact, we could find
another crossover point, p’ , scaling with L=, for which the
mean total length behaves as F[x] ~ x? for x « 1, and is
a constant value for x > 1. Figure 3(b) shows the scaling
behaviors for different lattice sizes of L. As it is shown, we
have a good data collapse with n = 0.15+£ 0.02, and this
clearly shows that the argument of p’L” in the crossover
point should be independent of lattice size, so the crossing
probability p’ , scales as L™ with system size. The overlap
of the different curves confirms that the fractal dimension of
the LERW,, curves above p, is 2. Three different regimes, as
shown in Fig. 3, are clearly identified; for p’ < p’XI , the mean
total length scales as S ~ L%, for Py, <p <p.,Shasa
power law behavior as p’#, and finally, for p., < p',itscales
with a Euclidean exponent, i.e., L 125 Therefore, the following
relation can be obtained,

0—n=p"(3-ds) 3)

which is in good agreement with our obtained numerical values
for the exponents.

V. THREE-DIMENSIONAL LERW,

Our interesting results for planar LERW ,, motivate us to
investigate it on higher dimensions, i.e., 3D. The scaling
exponents of LERW on a Euclidean lattice in three dimensions
are not rigorously known. However, the fractal dimension
of this model, based on Monte Carlo simulations, has been
reported to be ~1.624 [18-20]. Since a single exponent would
not be enough to describe the scaling behavior of the mean
total length S, as discussed in Refs. [19,20], we cannot
study S(L,p")/L% for all p’ values as in Fig. 2. In fact,
in three dimensions, due to stronger finite-size effects than
two-dimensional LERW, corrections to scaling are needed
to be considered. Here, we restrict our attention to only
the problem of LERW on a critical percolation cluster. We
compute the mean total length S for different lattice sizes L,
and Fig. 4 shows the dependence of S(L,0) on lattice size L.
The best fit to our data collected for sizes 25 < L < 257 yields
the fractal dimensiond; = 1.43 &£ 0.02. To estimate d s to four
decimals from the data, corrections to scaling are necessary.
Interestingly, this value is similar to the fractal dimensions of
the optimal paths in strongly disordered media in 3D [21].
Our results, which are summarized in Table I, indicate that the
LERW on a percolation cluster can be classified into distinct
universality classes.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated the geometrical behavior
of LERW, on a percolation cluster, with an occupation
probability above and equal to the critical value p > p,.
Our results show that the scaling behavior of planar LERW,,
for p > p. is the same as the LERW on Euclidean lattices,
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FIG. 4. (Color online) Mean total length of 3D LERW on a
critical percolation cluster as a function of lattice size L. Simulations
were performed on a simple-cubic lattice of size L ranging from 25
to 257. The number of samples generated for each lattice size ranges
from 10° for the smallest system sizes down to about 2 x 10° for the
largest system sizes. Error bars are smaller than the symbol size. The
solid line represents the least-square fit of log[S(L,0)] to a function
of the form d log(L) + a, where d; = 1.43 & 0.02. The fit has a 2
statistic of 5.7 with six degrees of freedom for a p value of 0.46, so
the fit passes the x? test.

which has been rigorously proven recently [26]. However,
the LERW on critical percolation clusters scales with an
anomalous exponent, and our results reveal that the fractal
dimension of this model is dy A~ 1.22 in 2D. Interestingly, this
value is statistically identical to a family of curves appearing in
different contexts such as, e.g., polymers in strongly disordered
media [8], watershed of random landscapes [9,10,27], ranked
percolation [12], minimum spanning tree (MST) [22], and
optimal path cracks [13]. Also, our attempts to understand
LERW, in three dimensions are focused on the critical
percolation cluster; the fractal dimension of this model on
3D percolation clusters is &1.43. These exponents in both
two and three dimensions are similar to the fractal dimensions
of the optimal paths in strongly disordered media [21]. This
fact clearly indicates that optimal paths in strongly disordered
media are related to the well-known LERW on a critical
percolation cluster. Since LERW is equivalent to UST and the

TABLE 1. Classification of LERW and some related models
into two distinct universality classes (the watershed and ranked
percolation in three dimensions are random surfaces).

Models d=2 d=3

MST 1.22 +£0.01 [22] 1.46 + 0.02 [23]
Optimal paths 1.22 [24,25] 1.44 [24,25]
Invasion percolation 1.22 +£0.01 [23] 1.42 £0.02 [23]
Watershed 1.217 £ 0.0015 [11]

Ranked percolation 1.215 + 0.003 [12]

LERW, at p = p, 1.217 £ 0.002 1.43 +0.02
Euclidean LERW

(UST, ASM, and % [6,7] 1.62400 = 0.00005
g-state Potts in ¢ — 0) [18]
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q-state Potts model (in the limit of ¢ — 0), it is interesting to
study these models in a diluted lattice generating by a sequence
of random deletions. Because of the negative specific heat
exponent of the pure system, the Harris criterion [28] claims
that the universality of this model should remain unchanged.
However, as it was reported for spanning trees on a critical
percolation cluster [29,30], it is in a different universality
class from the UST model. Although here we restrict our
attention to two and three dimensions, the findings for spanning
trees on a critical percolation cluster [29] indicate that the
upper critical dimension of this model is likely to be the
same as the percolation model. The LERW on a percolation
cluster is related to a more general concept of random walks
on a fractal landscape; as another example, it was shown
recently that the fractal dimension of LERW on a Sierpinski
gasket is ~1.194 [31,32]. Finally, our results, summarized in
Table I, demonstrate that this model can be classified into
two distinct universality classes, LERW on FEuclidean and
fractal geometries. Near the percolation threshold p,, there
is a crossover regime, shown in Fig. 2, between these two
universality classes. To achieve a better understanding of this
regime, we have considered the mean total length of LERW ,
as a homogeneous function on the lattice size and occupation
probability. Our findings for the crossover regime, shown in
Fig. 3, clearly demonstrate that for a fixed lattice size L,
three distinct scaling regimes have to be distinguished: (a) a
fractal regime for p’ < L™7; (b) a Euclidean geometry regime
for p’ > L7"; and (c) a transition regime from the fractal to
the Euclidean behaviors for L= < p’ < L™". These regimes
are separated by two crossovers. Finally, there is a scaling
relation between the corresponding crossover exponents and
the fractal dimension of LERW. In general, the existence of
three different scaling behaviors in a system often leads to
three distinct regimes, as it has been reported in both related
[13,14] and unrelated systems (for example, see Refs. [33,34]).
Although there are some similar reports in which the crossover
behavior has been investigated by just one crossover exponent
[12,35-37], the existence of three regimes clearly can be
observed in the related figures. Moreover, the proposed scaling
ansatz for the systems is not valid in the entire crossover
region. The connection between LERW , and other important
models such optimal paths in strongly disordered media and
the watershed model allows one to look at such random
paths with a different eye and to build bridges between the
connectivity in disordered media and other research areas
in mathematics, percolation, and quantum field theory. This
work opens up several challenges. Besides the need for more
precise numerical simulations in higher dimensions to study
the fractal properties and the crossover exponents, it would
be interesting to formulate a field theory scheme in a fractal
landscape. Since the continuum limit of the planar LERW
on the Euclidean lattice can be descried with the Schramm-
Loewner evolution [38], another interesting possibility is to
find a conformal field theory for LERW on critical percolation
clusters [39].
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