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Selection of the Taylor-Saffman bubble does not require surface tension
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A new general class of exact solutions is presented for the time evolution of a bubble of arbitrary initial
shape in a Hele-Shaw cell when surface tension effects are neglected. These solutions are obtained by conformal
mapping the viscous flow domain to an annulus in an auxiliary complex plane. It is then demonstrated that
the only stable fixed point (attractor) of the nonsingular bubble dynamics corresponds precisely to the selected
pattern. This thus shows that, contrary to the established theory, bubble selection in a Hele-Shaw cell does not
require surface tension. The solutions reported here significantly extend previous results for a simply connected
geometry (finger) to a doubly connected one (bubble). We conjecture that the same selection rule without surface
tension holds for Hele-Shaw flows of arbitrary connectivity.
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Introduction. It is remarkable that numerous processes of
pattern formation, ranging from dendritic and fractal growth
to viscous fingering and bacterial colony growth, have (after
some idealization) the same compact mathematical formula-
tion [1,2]. Subsequent development of this formulation, called
Laplacian growth, significantly widened the list of connections
by including one-dimensional (1D) turbulence and generation
of complex shapes [3], quantum gravity, integrable systems,
random matrices, and conformal theories [4]. The problem
of great importance in some processes mentioned above was
selection of the observed pattern from continuously many
solutions.

Background. It has been widely accepted that surface
tension is necessary for selecting a single pattern (moving two
times faster than the background flow) from a continuum of
solutions in interface dynamics after it was first conjectured by
Saffman and Taylor for viscous fingers in a Hele-Shaw cell [5].
But verifying this selection scenario was not possible until
much later because of significant mathematical difficulties
related to including surface tension. After the seminal work of
Kruskal and Segur [6], these difficulties were finally resolved,
and in a series of works [7] it was shown that surface tension
indeed selects the observed pattern; see [8] for details.

Recent development and new challenges. More recently,
however, it was demonstrated in [9], by using time-dependent
exact solutions without surface tension, that contrary to
the previously mentioned works, selection of the Saffman-
Taylor finger is determined entirely by the zero surface
tension dynamics. This result makes us reconsider the role
of surface tension in a more general problem: selection of
multi-connected patterns. The significance of the multi-
connected case is that simple conformal mappings used in [9]
are no longer applicable, and even a steady-state case requires
advanced mathematics that is less traditional for physical
applications [10,11]. No wonder, then, that searching for
time-dependent exact solutions in multi-connected geometry,
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the crucial step of studying selection, presents a mathematical
challenge.

Outline of main results. In the present work we solve
the selection problem for a doubly connected geometry and
significantly extend the results obtained in [9] by addressing
the dynamics of a bubble in a Hele-Shaw cell instead of a finger.
This extension allows us to conjecture that surface tension
(when small enough) is not required for pattern selection in
Laplacian growth in domains of arbitrary connectivity.

The pattern selection problem for an inviscid bubble
dragged by a viscous flow in a Hele-Shaw cell was posed by
Taylor and Saffman [12] and was later addressed experimen-
tally [13] and theoretically [14]. The problem was to select,
from the continuum of steady-state solutions obtained for zero
surface tension, the unique bubble [12] with velocity twice the
background flow velocity. While it has long been known that
the inclusion of surface tension leads to velocity selection [14],
we demonstrate here that the selection mechanism does not
require surface tension because the selected pattern is the
only stable fixed point (attractor) of the nonsingular bubble
dynamics without surface tension.

Problem formulation and plan of the paper. A top view
of a Hele-Shaw channel with lateral walls at y = ±π in our
scaled units and with the bubble moving to the right is shown
in Fig. 1(a). The fluid (oil) velocity obeys the two-dimensional
(2D) Darcy law, v = −∇p, where p is scaled pressure. Far
from the bubble the oil flows along the Ox axis with uniform
velocity, V = 1; thus p = −x, when |x| → ∞. Owing to
incompressibility, ∇ · v = 0, p is harmonic, ∇2p = 0, in
the viscous domain D(t), where t denotes time. It is thus
convenient to introduce a complex potential, W = � + i�,
where � = −p and � is the stream function. In view of the
uniform far-field velocity, one has W ≈ z for |x| → ∞, so
� = ±π at y = ±π since the lateral walls are streamlines.
Because pressure is constant (taken to be zero) in the inviscid
bubble and continuous across the oil-bubble interface �(t)
if surface tension is neglected, then � = 0 at �(t). The fluid
domain in the W plane is shown in Fig. 1(b), where the vertical
slit maps to the interface �(t) and the rest of the horizontal
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FIG. 1. (a) The fluid domain D(t) for a moving bubble in a Hele-
Shaw channel and the corresponding domains (b) in the complex
potential plane and (c) in the auxiliary ζ plane.

strip, −π < � < π , maps to the domain D(t) in the physical
plane [Fig. 1(a)]. The kinematic identity, Vn = vn, stating the
equality of the normal velocities of the interface, Vn, and of
the fluid, vn, completes the formulation of this free-boundary
problem of finding �(t) given �(0).

This long-standing nonlinear unstable problem [15] was
shown to have an integrable structure and to possess deep
connections with other branches of mathematical physics [4].
While numerous time-dependent solutions were obtained
(listed in [16]), almost all of them described simply connected
domains.

Here we present exact solutions for an evolving bubble
in a Hele-Shaw cell when the fluid domain D(t) is doubly
connected [see Fig. 1(b)]. We then show that these solutions
explain not only how the moving bubble eventually reaches
a stationary shape when t → ∞ but also why the selected
bubble moves precisely twice as fast as the background flow
when surface tension effects become negligible, in agreement
with [13].

In what follows, we first address the dynamics of a bubble
with a shape symmetric with respect to the channel center line.
The solutions we obtain for this simpler case illustrate our
main result, namely, that all nonsingular solutions describing
bubble shapes converge to the only stable fixed point of this
infinitely dimensional dynamical system, which is precisely
the selected member of the continuous family [12]. After that,
we extend our solutions to asymmetric bubbles and arrive at
the conclusion that U = 2 is still the selected value.

The conformal map and the equation of motion. For a
symmetric bubble we introduce a conformal map z = f (t,ζ )
from the exterior of the unit circle with a cut in the complex
plane, ζ = ξ + iη [see Fig. 1(c)], onto the fluid domain
D(t) in the z plane, z = x + iy. The unit circle, |ζ | = 1,
maps onto the interface �(t), and the cut sides, ζ = ξ ± i0,
where 1 < 1/ν(t) < ξ < ∞, map onto the channel walls,
y = ±π , so that ζ = 1/ν and ξ = +∞ are mapped to
x = +∞ and x = −∞, respectively. Thus, the polar angle
φ = arg(ζ ) parametrizes �(t): z = f (t,eiφ). It is easy to
see that the complex potential, W = � + i�, satisfying all

aforementioned boundary conditions, is

W (t,ζ ) = log
1 − ν/ζ

1 − νζ
. (1)

Let us express the normal velocity of the interface Vn as

Vn = V1l2 − V1l1 = Im(V̄ l) = Im(z̄t zs),

where l = l1 + il2 = dz/ds is the unit tangent vector along the
interface, �(t) = z(t,s), parametrized by an arclength s, and
the subscripts are partial derivatives. The normal fluid velocity
we rewrite as

vn = ∂n� = ∂s�

(the Cauchy-Riemann condition). Equating the two last formu-
las, as required by the kinematic identity, and reparametrizing
s → φ, we obtain Im(z̄t zφ) = �φ . Calculating �φ from (1)
for ζ = eiφ , we obtain the equation for the moving interface,
z(t,φ) = f (t,eiφ):

Im(z̄t zφ) = Re
2ν

eiφ − ν
. (2)

For stationary solutions, z(t,φ) = Ut + Z(φ), where the ve-
locity U is a constant, Eq. (2) is simplified to

Im(Zφ) = 2ν

U
Re

1

eiφ − ν
. (3)

The solution of (3) is the sum of two logarithms:

Z = − log(1 − νeiφ) + α log(1 − νe−iφ), (4)

where the coefficient of the first term is chosen to satisfy
W = z in (1) when z → ∞. Expression (4) is precisely the
one-parameter family of stationary bubbles obtained in [12].
Substituting (4) into (3), we obtain

U = 2

1 + α
. (5)

We will show below that all solutions with α �= 0 are unstable
and, if perturbed, move to the solution with α = 0, which
corresponds to the selected value, U = 2 [12,13].

The finite-parametric solutions. Being integrable, Eq. (2)
possesses a rich list of exact solutions, many of which blow up
in finite time. Leaving those aside as physically nonrealizable,
we present here a new class of finite-parametric nonsingular
solutions (analogous of those obtained earlier [17] for finger
dynamics), which remain finite for all times:

z = τ (t) − log[1 − ν(t)eiφ] +
N∑

k=0

αk log[1 − ak(t)e−iφ],

(6)

where α0 = α and τ are both real, a0 = ν, |ak| < 1 for all
times, and αk are constants. These parameters must be chosen
so that critical points of the conformal map always stay inside
the unit circle to prevent blow ups [18]. Also, the symmetry of
the bubble requires that each term with complex αk , ak implies
the term with ᾱk , āk in the sum. It is easy to verify that (6) is
indeed a solution of (2), where the time dependence of τ , ν,
and ak is given by the following N + 2 equations:

βk = τ + log āk/(āk − ν) +
N∑

l=0

αl log(1 − alāk), (7a)
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2t + 2t0 = (1 + α)τ + (α2 − 1) log(1 − ν2)

+α

N∑
k=1

αk log(1 − νak) +
N∑

k=1

αk log(1 − ak/ν)

(7b)

A = − log(1 − ν2)

+
N∑

k=0

N∑
l=0

αkᾱl log(1 − akāl), (7c)

with k = 1, . . . ,N in (7a). Here the βk’s, the initial time t0,
and the bubble area A are the constants of motion.

The attractor. It follows from (7b) and (7c) that τ (t) → Ut

when t → +∞. Since βk is a constant, a real part of at least
one logarithm in (7a) should go to −∞ in large times so as
to compensate a divergent positive τ (t). This is possible only
if all ak(t) → 0 for k > 0, as t → ∞. Thus, we conclude that
the origin, ζ = 0, attracts all ak(t) for k � 1. Thus, for t → ∞
the only nonvanishing parameter among the ak’s is a0, which
we have identified with ν, so a0(t) = ν(t) for all times. But in
this case, solution (6) asymptotically approaches the family of
stationary bubbles (4) discussed above, namely,

z = 2t

1 + α
− log(1 − ν eiφ) + α log(1 − νe−iφ).

To test the stability of the trajectory a0(t) = ν(t),
we deviate a0(0) slightly from ν(0). Namely, we re-
place the α log(1 − νe−iφ) in (6) by α

2 log(1 − a0e
−iφ) +

α
2 log(1 − ā0e

−iφ) following the symmetry mentioned earlier.
Thus, we obtain the following dynamics for a0, ν, and τ :

β0 = τ + log ā0/(ā0− ν) + (α/2) log
[
(1− |a0|2)

(
1− ā2

0

)]
,

2(t + t0)= τ − log(1 − ν2) + α log |1 − a0/ν|,
A=− log(1 − ν2) + (α2/2) log

[
(1 − |a0|2)

∣∣1 − a2
0

∣∣].
These equations clearly show that a0 → 0, τ → 2t , and ν →√

1 − e−A when t → ∞, so the interface becomes

z = 2t − log(1 − νeiφ). (8)

This is precisely the selected pattern with U = 2. Thus,
ζ = ν repels nearby singularities, which move toward zero.
Therefore, the selected bubble (8) represents the only attractor,
ζ = 0, of the nonsingular subset of the finite-dimensional
dynamical systems (6).

The infinite-parametric solutions. Extending (6) to the case
of an infinite number of parameters, we obtain

z = τ (t) + log
1

1 − ν(t)eiφ
+

N∑
k=0

∫ ak (t)

0

ρk(t,w)

w − eiφ
dw, (9)

where a0 = ν and |ak| < 1 for all k. Solution (9) coincides
with (6), if the functions ρk(t,w) are constants, and contains
all previously known solutions for simply connected and
symmetric doubly connected cases [19]. The constants of
motion for (9), analogous to βk in (7), are Bk = f [1/āk(t)],
which yield [20]

Bk = τ (t) + log
āk(t)

1 − ν(t)āk(t)
+

N∑
l=0

∫ al (t)

0

ρl(t,w)

w − 1/āk(t)
dζ

FIG. 2. Flow domain (shaded region) in the ζ plane for an
asymmetric bubble; see text.

for k = 1, . . . ,N . Both a proof that τ ∼ t , as t → ∞, and
procedure of testing the points, ν and 0, for stability are the
same as above with the same conclusion, that all ak → 0 for
t → ∞, implying that an arbitrary shape, expressed by (9),
moves toward the selected bubble (8) with U = 2.

Nonsymmetric case. The complex potential for a nonsym-
metric (with respect to the channel center line) shape requires
infinite reflected images, so we conformally map the annulus,
0 <

√
q < |ζ | < 1, in the ζ plane (see Fig. 2) onto the fluid

domain D(t) in the z plane, so that the inner circle, |ζ | = √
q,

is mapped onto the interface �(t). The unit circle, |ζ | = 1,
is mapped onto the channel walls, y = π and y = 0. Under
inversion with respect to the unit circle (see Fig. 2), we
obtain the preimage of the domain D̄(t), which is the complex
conjugate of D(t). We map

{√q < |ζ | < 1/
√

q} → {D(t) ∪ D̄(t)},
where the annulus

√
q < |ζ | < 1/

√
q is cut along the part of

the unit circle where 0 < arg ζ < γ , so that the inner (outer)
cut side is mapped onto the upper wall (its mirror image),
where y = � = ±π , while the complimentary arc along the
unit circle, γ < arg ζ < 2π , is mapped onto the south wall,
where y = � = 0. We fix the map by sending the points ζ = 1
to x = +∞ and ζ = eiγ to x = −∞.

The complex potential for the nonsymmetric case is

W (ζ ) = iγ /2 + log
�(e−iγ ζ ) �(qζ )

�(qe−iγ ζ ) �(ζ )
,

where

�(ζ ) = (1 − ζ )
+∞∏
m=1

(1 − q2mζ )(1 − q2m/ζ )

= ϑ4( log(
√

ζ/q),q)∏+∞
m=1(1 − q2m)

and

ϑ4(w,q) =
∞∑

n=−∞
(−1)nqn2

exp(2nw)
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is the Jacobi theta function [21]. It is easy to verify that W (ζ )
satisfies the boundary conditions stated above.

Finite-parametric solutions for the interface in this case
have the form

z(t,φ) = τ (t) + iγ (t)/2 + log
�(ei(φ−γ (t)))

�(eiφ)

+
N∑

k=1

[αk log �(ak(t)e−iφ) + ᾱk log �(āk(t)eiφ)].

(10)

Here all |ak| < 1, and
∑N

k=1 αk = 0. Since y is a multiple
of π when |ζ | = 1, τ is purely real. Inserting (10) into (2)
and integrating the resulting equations of motion, we obtain
N + 2 complex constants of motion: βk = f (t,q/āk) for k =
1, . . . ,N , β+ = f (t,q), and β− = f (t,qeiγ ), where

βk = τ + iγ /2 + log [�(q eiγ āk)/�(qāk)]

+
N∑

l=1

[αl log �(alāk/q) + ᾱl log �(qāl/āk)], (11a)

β± = τ − 2t + iγ /2 ± log [�(q eiγ )/�(q)]

+
N∑

l=1

[αl log �(e−iγ± al/q) + ᾱl log �(qeiγ± āl)],

(11b)

where γ+ = 1 and γ− = γ . The constants β+ and β− are not in-
dependent since Im β+ = Im β− = γ /2 + Im

∑N
l=1 αl log al .

Formulas (11) constitute the full dynamics of ak , γ , q, and τ .
The bubble area A, while fixed in time, is not an independent
constant of motion; it is neatly expressed through other
constants as

A/π = β+ − β− + 2Re
N∑

k=1

ᾱkβk.

The attractor. After eliminating τ from (11a), by sub-
tracting β+ (or β−) from βk , we see that the term 2t in the
resulting equation must be canceled by a divergent logarithmic
term. This implies that all ak �= q move to the point qeiγ when
t → ∞. The points q and qeiγ are the repeller and the attractor,
respectively, for the dynamical system (11). If one of the ak’s,
say, a1, was initially at the repeller, a1 = q, then β1 diverges,
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FIG. 3. Examples of bubble evolution: (a) symmetric solution
and (b) asymmetric solution.

and U = 2/(1 + α1) �= 2 when t → ∞. After relocating a1

out of q [by setting a1(0) �= q(0)], the asymptotic velocity of
the bubble reaches the same selected value, U = 2, as in the
symmetric case.

For γ = π , solution (10) describes symmetric bubbles and
thus recovers (6), albeit in a different formulation. A symmetric
bubble evolution is shown in Fig. 3(a), where the asymptotic
shape corresponds to the Taylor-Saffman bubble [12] with
U = 2, as described by (8). In Fig. 3(b) we show an
asymmetric solution whose asymptotic shape coincides with
the asymmetric bubble obtained in [10,14] for U = 2 [22].
Without presenting here the analysis for a nonsymmetric
bubble with infinitely many parameters, let us mention that
in this case the selected velocity is also U = 2 when t → ∞.

Discussion. The results presented here and in [9] unam-
biguously indicate that the stability of the selected pattern, with
respect to the rest of the family, is built in the Laplacian growth
without surface tension [23]. In this context, surface tension
is just one of infinitely many perturbations (perhaps the most
relevant) which kick the system toward the attractor while also
regularizing high curvatures. The selected pattern, so obtained,
although linearly unstable in the absence of surface tension,
is stable asymptotically: if perturbed, it eventually recovers its
original shape.

Since the selection mechanism in both simply connected
and doubly connected geometries is due to the attractor for all
nonsingular solutions with zero surface tension, we conjecture
that the same holds for Laplacian growth in domains of
arbitrary connectivity.
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∑N

k=1 αk = 0, so γ (t) →
Imβ+ = Imβ−, which is a constant of motion provided by the
initial conditions. Thus it remains to be seen how to centralize
a bubble in our framework (if possible at all) so that γ → π as
t → ∞.

[23] With properly chosen parameters, the obtained solutions, ex-
pressed by (6), (9), and (10), can faithfully describe dynamics
with nonzero surface tension.

061003-5

http://dx.doi.org/10.1017/S0022112001005365
http://dx.doi.org/10.1017/S0022112001005365
http://dx.doi.org/10.1017/S0022112001005365
http://dx.doi.org/10.1017/S0022112001005365
http://dx.doi.org/10.1098/rspa.2008.0252
http://dx.doi.org/10.1098/rspa.2008.0252
http://dx.doi.org/10.1098/rspa.2008.0252
http://dx.doi.org/10.1098/rspa.2008.0252
http://dx.doi.org/10.1093/qjmam/12.3.265
http://dx.doi.org/10.1093/qjmam/12.3.265
http://dx.doi.org/10.1093/qjmam/12.3.265
http://dx.doi.org/10.1093/qjmam/12.3.265
http://dx.doi.org/10.1063/1.866566
http://dx.doi.org/10.1063/1.866566
http://dx.doi.org/10.1063/1.866566
http://dx.doi.org/10.1063/1.866566
http://dx.doi.org/10.1017/S002211208600109X
http://dx.doi.org/10.1017/S002211208600109X
http://dx.doi.org/10.1017/S002211208600109X
http://dx.doi.org/10.1017/S002211208600109X
http://dx.doi.org/10.1016/j.petrol.2010.03.005
http://dx.doi.org/10.1016/j.petrol.2010.03.005
http://dx.doi.org/10.1016/j.petrol.2010.03.005
http://dx.doi.org/10.1016/j.petrol.2010.03.005
http://dx.doi.org/10.1063/1.866369
http://dx.doi.org/10.1063/1.866369
http://dx.doi.org/10.1063/1.866369
http://dx.doi.org/10.1063/1.866369
http://people.maths.ox.ac.uk/howison/Hele-Shaw
http://dx.doi.org/10.1088/1751-8113/41/26/263001
http://dx.doi.org/10.1088/1751-8113/41/26/263001
http://dx.doi.org/10.1088/1751-8113/41/26/263001
http://dx.doi.org/10.1088/1751-8113/41/26/263001
http://dx.doi.org/10.1103/PhysRevE.50.R24
http://dx.doi.org/10.1103/PhysRevE.50.R24
http://dx.doi.org/10.1103/PhysRevE.50.R24
http://dx.doi.org/10.1103/PhysRevE.50.R24
http://dx.doi.org/10.1016/0167-2789(94)90106-6
http://dx.doi.org/10.1016/0167-2789(94)90106-6
http://dx.doi.org/10.1016/0167-2789(94)90106-6
http://dx.doi.org/10.1016/0167-2789(94)90106-6



