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For a shell model of the fully developed turbulence and the incompressible Navier-Stokes equations in the
Fourier space, when a Gaussian white noise is artificially added to the equation of each mode, an expression
of the mean linear response function in terms of the velocity correlation functions is derived by applying the
method developed for nonequilibrium Langevin systems [Harada and Sasa, Phys. Rev. Lett. 95, 130602 (2005)].
We verify numerically for the shell-model case that the derived expression of the response function, as the noise
tends to zero, converges to the response function of the noiseless shell model.
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Introduction. Tools of statistical mechanics are indis-
pensable for research of fluid turbulence. We here focus
on the relation between the linear response function and
the correlation function, known as the fluctuation-response
relation (FRR). The simplest form of the FRR is realized
in thermally equilibrium systems, where the linear response
function is proportional to the autocorrelation function of
a dynamical variable, with the proportional constant being
the inverse temperature. This classical FRR does not hold, in
general, for a driven dissipative system with a non-Gaussian
distribution function in a nonequilibrium steady state as
reviewed in [1]. For statistically steady-state, homogeneous
and isotropic turbulence, researchers have asked the following
questions: (1) What kind of FRR holds? (2) Can its linear
response function be expressed in terms of velocity correlation
functions?

The FRR of turbulence was studied first by Kraichnan in
his influential closure approximation, known as the direct-
interaction approximation (DIA) [2] (see also [3]). A major
goal of statistical theories is to derive the Kolmogorov en-
ergy spectrum E(k) ∝ k−5/3 from the incompressible Navier-
Stokes equations [4,5]. The energy spectrum E(k) is the
average of the equal-time autocorrelation function of the
velocity Fourier modes on the spherical surface with radius
k in the wave-number space. To obtain a closure for E(k),
Kraichnan considered the mean linear response function in
DIA. In the latest versions of DIA in the Lagrangian frame of
reference [6,7], successfully reproducing the k−5/3 spectrum,
the autocorrelation function and the response function are
proportional as a result of the closure approximation. A direct
numerical simulation result, though available for the Eulerian
frame only, indicates that the correlation function and the
response function are not proportional at the Kolmogorov
dissipation scale with moderate Reynolds numbers [8]. For
a dynamical system model of turbulence in the Lagrangian
frame, known as the Gledzer-Ohkitani-Yamada (GOY) shell
model [9–11], the FRR is numerically studied in [12],
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demonstrating that the proportionality does not hold for the
shell variables in the inertial range. This is consistent with the
strong non-Gaussianity of the shell variables. We here consider
expressions of the response functions of the last two cases
in a unified manner using a recent result of nonequilibrium
statistical mechanics. The result we rely on is established
by Harada and Sasa [13,14] to derive a general FRR for a
class of nonlinear Langevin systems, which has been verified
experimentally in a thermally activated system since [15] (for
FRR in a deterministic setting, see, e.g., [16–18]).

Obviously the macroscopic fluid dynamical system describ-
ing turbulence, where the thermal driving is unnecessary, is
different from the nonlinear Langevin system. Nevertheless
there appears to be a simple way to bridge the two systems: We
formally add the Gaussian white noise to the fluid dynamical
equations without worrying about its physical origin; next we
derive various relations with the powerful weaponry of the
stochastic systems [19]; finally we consider the zero limit
of the noise, hoping that the relations survive, which is an
approach similar to, e.g., [20–22]. Although this limit can be
difficult to study theoretically, the derived relations can be
studied numerically to check whether or not, with sufficiently
small noise, they are good approximations for the noiseless
original system.

More specifically, by adapting the method in [13,14], we
here derive the FRR of a randomly perturbed GOY shell
model and the FRR of the velocity Fourier modes in the
Eulerian frame of the randomly perturbed incompressible
Navier-Stokes equations. We take the following steps: (i) We
add Gaussian white noise to the equation of each shell variable
and each velocity Fourier mode. (ii) Adapting the Harada-Sasa
argument, we derive formally the FRR for these randomly
perturbed shell variables and the velocity Fourier modes. (iii)
We consider numerically how small the noise should be so that
the randomly perturbed system recovers the noiseless system.
(iv) We numerically check whether or not the FRR derived
in (ii) is consistent with the linear response function of the
noiseless system with the sufficiently small noise. Concerning
(iii) and (iv) above, the numerical analysis is carried out only
for the shell-model case in this Rapid Communication.
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Derivation of the FRR. We consider a version of the
shell model [23], whose variables uj (t) (j = 0, . . . ,N) are
complex numbers. They are representatives of the velocity
Fourier modes of the incompressible Navier-Stokes equations
in the spherical shell kj � |k| < kj+1 of the wave-number
space, where kj = k02j . The equation of uj (t) with the
complex-number Gaussian white noise ξj (t) is

d

dt
uj (t) = �j (t) − νk2

j uj (t) + ξj (t) + f
(p)
j (t), (1)

where �j (t) includes the nonlinear term and the deterministic
large-scale forcing Fj (t) to keep the system statistically
steady: �j (t) = i[kjuj+2(t)u∗

j+1(t) − 1
2kj−1uj+1(t)u∗

j−1(t) +
1
2kj−2uj−1(t)uj−2(t)] + Fj (t). Here ∗ denotes the complex
conjugation. In Eq. (1), ν models the kinematic viscosity and
the noise ξj (t) has the mean and covariance

〈ξj (t)〉 = 0, 〈ξj (t)ξ ∗
l (s)〉 = 2σ 2

j T δjlδ(t − s), (2)

where T is the strength of the noise which we here call
“temperature.” We later compare numerically the FRR for
small T with that of the shell model without the noise. The
last term of Eq. (1), f

(p)
j (t), is the infinitesimal probe force by

which we define the linear response function.
To obtain an expression of the linear response function, we

follow the Onsager-Machlup path-integral approach [14]. The
starting point is the probability functional of the Brownian
paths ξj (t) (j = 0, . . . ,N) from time t0 to t , P (ξ ,t |ξ 0,t0) =∫ (ξ ,t)

(ξ 0,t0) D[ξ ] exp[− 1
2

∑N
j=0

∫ t

t0

|ξj (s)|2
σ 2

j T
ds]. The change of vari-

ables from ξ = (ξ0, . . . ,ξN ) to u = (u0, . . . ,uN ) yields the
path-integral representation of the transition probability as

P (u,t |u0,t0) =
∫ (u,t)

(u0,t0)
D[u] exp

(
−1

2

N∑
l=0

∫ t

t0

ds

×
{

1

σ 2
l T

|u̇l(s)−�l(s) + νk2
l ul(s) − f

(p)
l (s)|2

+ ∂

∂ul

[
�l(s) − νk2

l ul(s) + f
(p)
l (s)

]})
. (3)

The last divergence term can be interpreted as a contribution
from the Jacobian [24]. By linearizing Eq. (3) in regard to f

(p)
l ,

we obtain an expression of the ensemble average, 〈uj (t)〉p. The
mean linear response function G

(T )
j l can then be written as

G
(T )
j l (t − s) = δ〈uj (t)〉p

δf
(p)
l (s)

= 1

2σ 2
l T

[〈u̇∗
l (s)uj (t)〉

− 〈�∗
l (s)uj (t)〉 + νk2

l 〈u∗
l (s)uj (t)〉]. (4)

We denote the most right-hand side of Eq. (4) by H
(T )
j l (t − s).

Here 〈·〉 represents the ensemble average taken in the absence
of the probe force. For the diagonal part G

(T )
jj , we can simplify

the expression by using the causality of the response function

and the temporal symmetry of the autocorrelation function, as

G
(T )
jj (t − s) = 1

σ 2
j T

{
νk2

jC
(T )
jj (t − s) − 1

2
[〈�∗

j (t)uj (s)〉

+ 〈�∗
j (s)uj (t)〉]

}
, (5)

where C
(T )
jj (t − s) = 〈uj (t)u∗

j (s)〉 is the autocorrelation func-
tion. Equation (5) is the main FRR result of this Rapid
Communication, which we study numerically below.

It is straightforward to extend the above argument to
the case of the three-dimensional incompressible Navier-
Stokes equations in a periodic cube, which are writ-
ten in terms of the velocity Fourier coefficients (û1(k,t),
û2(k,t), û3(k,t)), as d

dt
ûa(k,t) = −i

∑3
b,c=1 kb(δac − kakc

k2 )∑
p,q ( p+q=k) ûb( p,t)ûc(q,t) + F̂a(k,t) − νk2ûa(k,t). Here

k = |k| and we assume that the deterministic large-scale
forcing F̂a is solenoidal, and that the number of the Fourier
coefficients is finite. Due to the incompressibility k · û(k,t) =
0, û(k,t) has only two independent components, which we
express as û(k,t) = ûϕ(k,t)eϕ + ûθ (k,t)eθ [25]. To the equa-
tions of the two components, we add the probe force (f (p)

ϕ ,f
(p)
θ )

and the Langevin noise (ξϕ,ξθ ) satisfying 〈ξα(k,t)ξβ(q,s)〉 =
2σ (k)2T δαβδk,−qδ(t − s) with the indices α,β = ϕ,θ . The
mean linear response function in the Navier-Stokes case is
expressed as

G
(T )
αβ (k,t |q,s) = δ〈ûα(k,t)〉p

δf
(p)
β (q,s)

= 1

2σ (k)2T
[〈 ˙̂u∗

β(q,s)ûα(k,t)〉

− 〈�∗
β (q,s)ûα(k,t)〉 + νk2〈û∗

β(q,s)ûα(k,t)〉].
(6)

Here �α(k,t) is the α component of the sum of the first
and second terms on the right-hand side of the Navier-Stokes
equations, defined similarly as in the shell-model case. Further
simplification can be made for the sum of the diagonal parts
as

1

2

∑
α=ϕ,θ

∫
G(T )

αα (k,t |k,s)
d�k

4πk2

= 1

σ (k)2T

{
νk2E(k; t−s)−1

2
[T (k; t,s)+T (k; s,t)]

}
1

4πk2
,

(7)

where the integral is over the surface of the sphere of
radius k. Here we assume isotropy of the second-order
tensors 〈û∗

c (k,s)ûa(k,t)〉 and 〈�∗
c (k,s)ûa(k,t)〉 with respect

to k and use the two-time energy spectrum function E(k; t −
s) = 1

2

∫ ∑3
a=1〈û∗

a(k,s)ûa(k,t)〉d�k and the two-time energy

transfer function T (k; t,s) = 1
2

∫ ∑3
a=1〈�∗

a(k,s)ûa(k,t)〉d�k .
The FRRs of the diagonal parts, Eqs. (5) and (7), have an

interesting structure: Deviation from the proportional relation
between the linear response function and the autocorrelation
function is ascribed to the correlations between the nonlinear
term and the velocity, which is the nonlinear energy transfer
for the equal-time case. This suggests that the energy transfer
between scales, or the energy cascade, causes the deviation.
We observe also that the condition H

(T )
jj (0) = 1 is satisfied if
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FIG. 1. (Color online) Second-order moment of the absolute
value of the shell-model variable uj (t) with and without the Gaussian
white noise, as a function of the shell index. Here σ 2

j = 1 in
Eq. (2). Inset: The energy flux function Π (kj ) showing that the
constant-energy-flux structure is preserved for T � 10−3.

the squared modulus of each mode is in a statistically steady
state.

Numerical analysis of the shell model. The shell model,
Eq. (1), with the total 19 shell variables (N = 18) is
numerically solved to check whether or not the expres-
sion of the response function H

(T )
jj with the noise [the

right-hand side of Eq. (5)] as T → 0 approaches the one
without the noise. We use a fourth-order Runge-Kutta
scheme with the time step �t = 10−4. The parameter values
are k0 = 6.25 × 10−2, Fj = 5 × 10−2(1 + i)δj0, ν = 1.66 ×
10−5, yielding the shell-model analog of the Taylor-microscale
Reynolds number Reλ = 3.9 × 106 and of the large-scale
turnover time τL = 0.60 = 6000�t [26].

We use a common numerical method to directly measure
G

(T )
jj (t − s), without using the probe force, by following

difference between a pair of orbits, �uj (t) with one orbit
being slightly displaced from the other at time s by �uj (s).
This yields G

(T )
jj (t − s) = 〈�uj (t)〉/�uj (s) [1,12]. The pair

share the same realization of the noise. The value of the
past displacement �uj (s), taken here to be real, is set to
5% of the standard deviation of the real part of uj . We
start with 20 different random initial conditions, where all
the real and imaginary parts of uj are set by a uniformly
distributed random variable between −1 and 1. We first discard
data up to t1 = 3.3 × 104τL as initial transients and measure
the correlation functions and the response functions from t1
to t = 8.3 × 105τL. The number of samples in calculation
of G

(T )
jj is 5 × 105. For the variance of the noise, we here

report the result with a simple choice σ 2
j = 1. We test two

other k-dependent settings, σ 2
j = νk2

j , νk
4/3
j , and find that

the case σ 2
j = 1 yields the fastest approach to the noiseless

system at temperature T = 10−4 as shown below. Here we
do not intend to study the system by varying the power of
the wave number in the variance in the framework of the
renormalization-group analysis of turbulence [27–29]. The
expression H

(T )
jj is obtained by calculating separately the three

correlation functions on the right-hand side of Eq. (5).
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FIG. 2. (Color online) Directly calculated response function of
the shell model G

(0)
jj (zero temperature), G(T )

jj with T = 10−4, and the

FRR expression of the response function H
(T )
jj with T = 10−4, the

right-hand side of Eq. (5), for the shell indices j = 9, 10, 11, and
12 (from top to bottom). The gray curve is C

(0)
jj (t − s)/C

(0)
jj (0) for

j = 12. Inset: Approach of G
(T )
jj to G

(0)
jj as T → 0 for j = 9, plotted

with H
(T )
jj .

In Fig. 1 we show the time-averaged second-order mo-
ment of |uj | exhibiting the inertial-range scaling k

−ζ2
j (ζ2 =

0.709) [26] and the averaged energy flux function 〈Π (kj )〉 =
〈∑N

l=j+1 Re[(�l − Fl)u∗
l ]〉 for various temperatures, indicat-

ing that the basic statistics of the Langevin shell model, as
T → 0, become closer to those of the noiseless shell model
(T = 0). For the lowest temperature T = 10−4, shown in
Fig. 1, now let us demonstrate that the expression of the
response function H

(T )
jj agrees both with the directly measured

response function G
(T )
jj and with that of the noiseless case G

(0)
jj

in Fig. 2 [30]. First, we observe that G
(T )
jj approaches G

(0)
jj

as decreasing T , which is displayed in the inset of Fig. 2.
With T = 10−4 the difference between G

(T )
jj and G

(0)
jj is less

than a few percent for all the shell indices. Secondly, the
autocorrelation function C

(T )
jj also approaches C

(0)
jj for all the

indices as well. As observed in [12], for any index j , G(0)
jj is not

proportional to C
(0)
jj (only the case for j = 12 is presented in

Fig. 2). Lastly, H
(T )
jj agrees with G

(0)
jj within a few percent for

the shells 9 � j � 18 covering from the middle of the inertial
range to the end of the dissipation range. Four of these shells,
9 � j � 12, are presented in Fig. 2. Note also that H (T )

jj agrees

with G
(T )
jj for the higher temperature cases, even though G

(T )
jj

is distinctly different from G
(0)
jj as shown in the inset of Fig. 2.

For the shells 0 � j � 8, a discrepancy is observed for
T = 10−4 as displayed in Fig. 3(a). The half widths of the
error bars of G

(0)
jj in Fig. 3(a) correspond to the standard

deviations among the 5 × 105 samples of G
(0)
jj . Now we argue

that this discrepancy between H
(T )
jj and G

(0)
jj observed for small

shell indices is not physical but numerical. This is caused by
cancellation of the significant digits in the sum of the last
two terms in Eq. (5). Empirically, if the sum of the two terms
Re[〈�∗

j (t)uj (s)〉] and Re[〈�∗
j (s)uj (t)〉], having opposite signs,

loses more than two significant digits, agreement between
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FIG. 3. (Color online) Numerical difficulty of the FRR. (a) Discrepancy between H
(T )
jj and G

(0)
jj for j = 4, 6, and 8 (from top to bottom)

with T = 10−4; The error bars of G
(0)
jj are shown for the index j = 6 up to t − s = 1.5. Inset: Same as the outset but for j = 2, 4, 6, and 8

with T = 10−3. (b) Cancellation between the real parts of 〈�∗
j (s)uj (t)〉 and 〈�∗

j (t)uj (s)〉 with T = 10−4. (c) Symmetry of the real parts of
〈�∗

j (s)uj (t)〉 and 〈�∗
j (t)uj (s)〉 for j = 8 (solid) and 11 (dashed) with T = 10−4.

H
(T )
jj and G

(0)
jj is lost as indicated in Fig. 3(b). It is difficult to

obtain third-order correlation functions of uj like 〈�∗
j (t)uj (s)〉

with three or more digit accuracy. In fact, for small j ’s, the
energy transfer correlations 〈�∗

j (t)uj (s)〉 and 〈�∗
j (s)uj (t)〉

become increasingly symmetric with the horizontal axis except
around the origin t = s as shown in Fig. 3(c), being a structure
likely in common to the Navier-Stokes case. Nevertheless, this
symmetry is weakened with a larger temperature T = 10−3

(since the noise breaks the time-reflection symmetry) and
a better agreement is obtained for j = 4 as in the inset of
Fig. 3(a).

Concluding remarks. We derived formally the FRR of a
statistically steady turbulent state of the shell model and the
incompressible Navier-Stokes equations with the Langevin
noise by using the method of [13,14]. For the shell-model case,
as decreasing the amplitude of the noise, we demonstrated
numerically that for the intermediate and small scales the
derived FRR expression of the linear response function is
indeed consistent with that of the noiseless shell model.
We consider the discrepancy observed in the large scales as
caused by the limited accuracy of the statistical quantities. Our
conclusion is that for all the shells the FRR, Eq. (5), as T → 0,
converges to the response function of the shell model without
the noise. For the Navier-Stokes case, our preliminary nu-
merical result on two-dimensional inverse-cascade turbulence
with a feasible averaging time indicates that Eq. (7) for

small T is a good approximation of the response function
of the noiseless system. We encounter numerical difficulties
similar to the shell-model case. A numerical assessment of
the FRR, Eq. (7), will be reported elsewhere. Regarding the
intermittency, it does affect each term in the FRR. However,
the FRR on the whole remains unaffected. This suggests that
the FRR may be a bridge relation of the intermittency or
dynamic multiscaling (see, e.g., [31,32]) among the second-
order, third-order correlation functions and the response func-
tion if the intermittency is not susceptible to the small Langevin
noise. With this bridge relation, however, the wave-number
dependence of the integral time of the response function may
not be described by the dominant multiscaling exponents of
the third-order correlation functions, since the cancellation
occurs as seen in Fig. 3(c). Future research directions to take
further advantage of the vanishing noise can be to develop
a spectral closure approximation with the FRR response
function obtained here and to consider saddle-point solutions
(instantons) in the integral, Eq. (3), as in [22,33], which may
yield an interesting dynamical approach to turbulence.
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