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Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions
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We discuss the desynchronization transition in networks of globally coupled identical oscillators with attractive
and repulsive interactions. We show that, if attractive and repulsive groups act in antiphase or close to that, a
solitary state emerges with a single repulsive oscillator split up from the others fully synchronized. With further
increase of the repulsing strength, the synchronized cluster becomes fuzzy and the dynamics is given by a variety
of stationary states with zero common forcing. Intriguingly, solitary states represent the natural link between
coherence and incoherence. The phenomenon is described analytically for phase oscillators with sine coupling
and demonstrated numerically for more general amplitude models.
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Mean field approximation, or global coupling, is widely
used in the description of oscillator networks with high degree
of connectivity. In the case of weak interactions, the theoretical
analysis of the dynamics is typically performed with the
help of phase approximation [1,2], most frequently with the
use of the analytically solvable Kuramoto-Sakaguchi model
[1,3–5]. A topic of recent interest is the investigation of
interactions of several globally coupled ensembles [6,7], in
particular, with attracting (positive) and repulsive (negative)
couplings [8,9]. These studies are partially motivated by
the problems of neuroscience where many highly connected
groups of neurons interact via excitatory and inhibitory
connections [10].

One of the intriguing effects in ensembles of globally
coupled identical oscillators is clustering (see, e.g., [11,12],
and references therein). It appears that randomly chosen
initial states in the course of evolution can eventually become
identical, and the final configuration consists of clusters
of identically equal states. In this Rapid Communication,
we discuss the formation of clusters and desynchronization
transition in finite-size ensembles of identical oscillators
with attractive and repulsive coupling and demonstrate the
following scenario: when the repulsion starts to prevail over the
attraction, a solitary oscillator leaves the synchronous cluster
creating a so-called solitary state. With further increase of
the repulsion, the solitary state loses its stability. More and
more oscillators leave the synchronous group, which becomes
a fuzzy cluster. Our aim is to describe this scenario for the
M-group Kuramoto-Sakaguchi model

θ̇ σ
i = ω +

M∑
σ ′=1

Kσσ ′

N

Nσ ′∑
j=1

sin
(
θσ ′
j − θσ

i + ασσ ′
)
,

where θσ
i is the phase of the ith oscillator in group σ , Nσ is the

number of oscillators in the group, and N = N1 + · · · + NM .
Elements of the M × M matrices Kσσ ′ and ασσ ′ represent the
coupling strength and the phase shift of each oscillator in group
σ ′ acting on each oscillator in group σ . By transformation to
a corotating coordinate frame we can put ω = 0.

We introduce the effect starting with the two-group model
(M = 2), assuming Kσσ ′ = Kσ ′ , ασσ ′ = ασ ′ for all σ,σ ′ =
1,2, i.e., that the coupling strengths and the phase shifts are
determined by the acting group only:

θ̇ σ
i =

2∑
σ ′=1

Kσ ′

N

Nσ ′∑
j=1

sin
(
θσ ′
j − θσ

i + ασ ′
)
. (1)

Furthermore, we suppose K1 > 0, K2 < 0 and −π/2 <

α1, α2 < π/2 such that the first group acts attractively on all
oscillators in the network and the second group acts repulsively
(cf. [13]). Such coupling configuration is a prototype of
neuronal networks with excitatory (K1 > 0) and inhibitory
(K2 < 0) neurons [10].

By renormalizing the time, t → K1t , we write the cou-
pling coefficients as K1 = 1, K2 = −(1 + ε), where the new
coupling parameter

ε = −(1 + K2/K1) (2)

quantifies the excess of the repulsion over the attraction.
Introducing the complex order parameter for both groups
Zσ = N−1

σ

∑Nσ

j=1 eiθσ
j = ρσ ei	σ and relabeling the phases as

θj = θσ
i , where j = 1, . . . ,N , j = (σ − 1)N1 + i, we bring

the system to the form θ̇j = h sin(
 − θj ) with the common
forcing

H = hei
 = N1

N
eiαZ1 − N2

N
(1 + ε)eiβZ2, (3)

where, for convenience, we rename α = α1 and β = α2.
We emphasize that, although the oscillators of two groups

contribute differently to H , they evolve under the common
forcing and therefore the whole population is effectively three
dimensional: It can be described by three Watanabe-Strogatz
(WS) equations [4,7,14]. This feature distinguishes our model
from the six-dimensional “conformists and contrarians” model
by Hong and Strogatz [9]. The WS equations describe the
system via collective variables κ,,�, where 0 � κ � 1 and
,� are angles; these variables describe the amplitude and the
phase of the collective mode (which roughly correspond to
amplitude and phase of the complex Kuramoto order parame-
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ter), and the phase shift of individual oscillators, respectively.
The WS equations also contain N constants of motion
(angles) χj , determined from initial conditions; χj obey three
additional constraints. The original phases θj are restored by
the transformation eiθj = ei�(κ + ei(χj −))(κei(χj −) + 1)−1.
If the system evolves to a state with κ = 1, then all initially
different phases become identical (one-cluster state). Excep-
tional is the case when κ = 1 and χj −  = π for some
j = n [15]; then θn may differ from all other phases. Such
solitary states, when all the phases but one are identical, are of
our main interest here. Below we show that stable solitary
states naturally appear in our model in the course of the
desynchronization transition. Notice that other clustered states,
except for fully synchronous and solitary ones, are not allowed
by WS theory. Instead, the model exhibits a variety of neutrally
stable fuzzy clusters, where some number of oscillators are split
up from the others “almost” synchronized.

To describe the desynchronization transition we first check
that the fully synchronous state θj ≡ ϕ of model (1) is stable
for

ε < εcr = N1 cos α

N2 cos β
− 1. (4)

For ε > εcr, we look for a solitary state θ1 = · · · = θN−1 ≡ ϕ,
θN ≡ ψ , i.e., when one repulsive unit splits up from all others
[16]. Dynamics of this state are given by two equations which
can be easily obtained by direct substitution of ϕ and ψ into
Eq. (1):

ϕ̇ = −1 + ε

N
[sin(η + β) + (N2 − 1) sin β]+N1

N
sin α,

(5)

ψ̇ = 1 + ε

N
[(N2 − 1) sin(η − β) − sin β]−N1

N
sin(η − α),

where we denote η = ψ − ϕ. After straightforward manipu-
lations, this system can be reduced to a scalar equation for the
phase difference η:

η̇ = A[sin(η − η∗) + sin η∗]. (6)

Here A � 0, and η∗ is expressed, using p = N1/N , as

η∗ = arctan
(1 − p − 2N−1)(1 + ε) sin β − p sin α

(1 − p)(1 + ε) cos β − p cos α
. (7)

Equation (6) has two equilibria ηsyn = 0 and ηsol = 2η∗ + π

which describe, respectively, the full synchrony (ψ = ϕ) and
the solitary state (ψ = ϕ + ηsol) in the original model (1). It
can be easily checked [17] that these states exchange their
stability exactly at εcr. Hence, the solitary state is stable for all
ε > εcr within the two-cluster manifold (ϕ,ψ). To complete
the stability analysis of the solitary state we have to examine
in the phase space the directions, transversal to the manifold
(ϕ,ψ), i.e., to quantify the stability of the main synchronized
cluster of N − 1 elements. For this goal we write the Jacobian
for the system (1) at solitary state ψ = ϕ + ηsol. Due to the
matrix symmetry we find that the Jacobian has N − 2 equal
eigenvalues [18] which are, actually, transversal Lyapunov

exponents (LE) of the solitary state, all equal:

λ⊥ = −p cos α +
(

1 − p − 1

N

)
(1 + ε) cos β

− 1 + ε

N
cos(2η∗ + β). (8)
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FIG. 1. (Color online) Desynchronization transition for N1,2 =
5, α = β = 0. (a) Bifurcation diagram. Dashed vertical line at εcr = 0
shows the border between the full synchrony and the solitary state, and
the solid hyperbolic curve shows where the latter loses its stability,
i.e., ε+

sol. The inset (b) presents an example of the solitary state,
here for ε = 0.25: There exists a cluster of nine elements and one
oscillator is exactly in antiphase to it, hence, ρ1 = 1, ρ2 = 0.6 [cf.
panel (e)]. Insets (c) and (d) present two examples for ε = 1 > ε+

sol;
(c) is a state with a fuzzy cluster, where all phases but two are
very close though not identical (“mercedes state”), while (d) is a
distributed state without fuzzy clusters. (e) Order parameters ρ1,2 and
the amplitude of the common forcing h (blue circles, red pluses,
and black diamonds, respectively) as functions of ε, for 100 runs;
in each run the initial phases are chosen from the uniform random
distribution in 0,2π . For full synchrony and for the solitary state the
dependence h(ε) perfectly agrees with Eq. (3) which yields for these
states h = −ε/2 and h = 0.2 − 0.3ε, respectively. (f) The ratio r of
nonsolitary states (blue circles), i.e., of states with h = 0, obtained
in 104 runs with random initial conditions; it is well approximated
by r ∼ ε10/3 (the slope of the solid red line in the inset is 10/3).
(g) Histogram of ρ1 for ε = 1, obtained from 104 runs with random
initial conditions, demonstrates that the fuzzy clusters with ρ1 � 1
are dominating. Thus, the desynchronized states h = 0 typically
correspond to coherence of subpopulations.
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For interpretation of the results we concentrate first on
the simplest nontrivial case N1 = N2 = N/2 and α = β = 0.
Then ηsol = π , i.e., the solitary oscillator stays strictly in
antiphase to all others, and Eqs. (4) and (8) yield the stability
domain of this state:

0 < ε < ε+
sol = 4(N − 4)−1 (9)

[see Fig. 1(a)] . It follows that the solitary state exists for
arbitrary large network size N and that the ε width of the
stability domain remains finite for any N , decreasing as 1/N

as N → ∞. Our numerical studies reveal, however, that the
basin of attraction for the solitary state can be not of full
measure. Indeed, solutions with h = 0 [see Eq. (3)], which are
also stationary, coexist with the solitary state in the stability
domain (9). As is illustrated in Fig. 1(e), immediately after
the transition at εcr solitary states appear with probability one;
soon after, the h = 0 states arise with nonzero probability
which grows ∼ε10/3 as ε approaches ε+

sol. For ε > ε+
sol solitary

state does not exist anymore. All stationary states fulfill the
condition h = 0; then Eq. (3) yields ρ1 = ρ2(1 + ε). It turns
out, that most likely are the states when the attractive units form
a fuzzy cluster with ρ1 � 1, and, respectively, ρ2 ≈ (1 + ε)−1.
This is illustrated in Figs. 1(e)–1(g), where we present the
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FIG. 2. (Color online) (a) Domains of solitary state for N1 = N2,
α = 0.05, and for different β. The dashed vertical line marks εcr,
where the full synchrony becomes unstable. The bold line 1 marks
the right border ε+

sol of the domain for α = β = 0.05 [notice that it
coincides with the curve 4(N − 4)−1 shown in Fig. 1(a) for the case
α = β = 0]. Curves 2–6 show the domains for β = 0.1, 0.15, 0.2,
0.25, and 0.35, respectively; these domains shrink with the increase
of |α − β|. Interestingly, for α 
= β the full synchrony and the solitary
states are separated by an interval of incoherent dynamics. (b) Solitary
angle ηsol as a function of the coupling parameter ε, for N1 = N2 = 5,
α = 0.05, and β = −0.2, 0, 0.05, 0.15, and 0.2 (curves 1–5), dashed
lines; the intervals where the solitary state is stable are shown by bold
red lines. Bold horizontal dashed lines show limε→∞ ηsol; here it is
≈3.275. For β = 0.0832, ηsol equals this value for all ε > εcr.

results for numerical analysis with random initial conditions
[19].

Now, we consider the case α 
= 0, β 
= 0 (see Fig. 2). The
solitary state is not stationary anymore [as follows from Eq. (5),
all units rotate with a constant velocity], and its stability
domain is obtained from Eqs. (7) and (8) as

N <
cos β + cos(2η∗ + β)

(1 − p) cos β − p(1 + ε)−1 cos α
. (10)

If α = β 
= 0, the solitary stability region coincides with those
for the α = β = 0 case. If α 
= β, the region pulls down and
shrinks rapidly as the difference between α and β increases.
The solitary phenomenon becomes essentially low dimen-
sional, i.e., it does not arise for large N [Fig. 2(a)]. Withal,
the solitary angle ηsol = 2η∗ + π is not equal to π anymore,
contrary to the case α = β = 0. As ε crosses εcr, ηsol splits
up from 0 and monotonically increases or decreases with ε,
eventually approaching the value (1 − 2/N) tan β as ε → ∞
[see Fig. 2(b)]. The increase or decrease of ηsol is determined
by the sign of the difference tan α − (1 − 4/N ) tan β; if the
difference equals 0, ηsol = 2(N − 2)/(N − 4) tan α + π for
all ε > εcr.

We conclude that the desynchronization transitions at
ε = εcr immediately yield the solitary state only if α = β.
Otherwise, there is always a gap between the full synchroniza-
tion and the solitary behavior. Solitary states stabilize later at
some ε−

sol > εcr, and they lose their stability at ε+
sol > ε−

sol. The
bifurcation values ε−

sol and ε+
sol depend on N,α,β,p, and can

be obtained from Eq. (10). For α 
= β and N large enough,
the solitary behavior does not appear and the transition can
occur via the mechanism of coherency exchange, illustrated
in Fig. 3 for N1,2 = 5, α = 2π/3, and β = 0. As follows
from Eq. (3), the condition h = 0 implies that for ε = −1
and arbitrary N , the order parameter ρ1 = 0, i.e., the first,
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FIG. 3. (Color online) (a) An example of coherence exchange for
N1,2 = 5, α = 2π/3, β = 0. Here ρ1,2 and h are shown by blue circles,
red pluses, and black diamonds, respectively. For ε < εcr = −1.5
all oscillators are synchronized. For ε > εcr the repulsive units
form a fuzzy cluster, ρ2 � 1, while the attractive oscillators first
desynchronize, so that ρ ≈ 0 for ε = −1 and then synchronize again.
When ε becomes positive, the attractive oscillators form a fuzzy
cluster, while the repulsive desynchronize. Initial phases for both
groups are placed on two arcs of arbitrary length, shifted by π . Panels
(b)–(d) are snapshots for ε = −1, ε = −0.5, and ε = 0.5.

060901-3



RAPID COMMUNICATIONS

MAISTRENKO, PENKOVSKY, AND ROSENBLUM PHYSICAL REVIEW E 89, 060901(R) (2014)

-2 0 2
x

i

-6

-3

0

3

6

x i

-10 0 10
x

i

-10

0

10

y i

(a) (b)

FIG. 4. (Color online) Solitary state in the ensemble of van der
Pol oscillators (a) and of chaotic Rössler oscillators (b). Blue circles
and red diamonds show the elements of the attractive and the
repulsive group, respectively. Gray line shows the limit cycle of
a single oscillator (a) and projection of the strange attractor of an
autonomous Rössler system (b). In (a) all oscillators except one are
in the cluster at xj ≈ −1; the solitary element is at xj ≈ 1, i.e., nearly
in antiphase. In (b) all oscillators except for one repulsive element
group with approximately the same phase (fuzzy cluster), as is typical
for chaotic oscillators, where phase locking is generally not perfect.

attractive group necessarily desynchronizes. The straight lines
for −1.5 < ε < 0 and the hyperbolic curve for ε > 0 are also
explained by Eq. (3).

To test if the solitary states appear in more general networks,
we analyzed a three-group Kuramoto model

θ̇ σ
i =

3∑
σ ′=1

Kσ ′

N

N/3∑
j=1

sin

[
θσ ′
j − θσ

i − (σ ′ − 1)
2π

3

]
, (11)

where σ,σ ′ = 1,2,3, K1,2 = 1, and K3 = 1 + ε. Here the first
group is attractive, and two others are repulsive, quantified
by phase shifts ∓2π/3. If ε > 0, the repulsive action of
the third group is stronger. Then, a solitary state is born
at εcr = 0, and its stability region has the same shape
as in the two-group α = β case: 0 < ε < 6(N − 6)−1. As
expected, the solitary oscillator belongs to the third group;
it splits up from all others remaining fully synchronized by

the angle ηsol = arctan 3
√

3(1+ε)
Nε

+ arcsin
√

3(6(1+ε)−Nε

2
√

27(1+ε)2+N2ε2
+ π .

The analysis of M-group models, M � 4, remains a subject
of future studies; the preliminary analysis for M = 4 and
ασ = (σ ′ − 1)π

2 , σ ′ = 1, . . . ,4 does not reveal the solitary
states. To illustrate that the demonstrated effect is not restricted

to sine-coupled phase oscillators, we performed a numerical
analysis of two more realistic models. First, we simulated
globally coupled van der Pol oscillators (cf. [20]), for the case
N1,2 = 20:

ẍj − 3
(
1 − x2

j

)
ẋj + xj = K1(X1 − ẋj ) − K2(X2 − ẋj ),

where X1 = N−1
1

∑N1
k=1 ẋk , X2 = N−1

2

∑N
k=N1+1 ẋk .

Figure 4(a) exhibits a solitary state for K1 = 0.1, K2 = 0.105.
Next, we consider attractively repulsively coupled Rössler
oscillators, N1,2 = 5,

ẋj = −yj − zj + K1(X1 − xj ) − K2(X2 − xj ),

ẏj = x + 0.15y + K1(Y1 − yj ) − K2(Y2 − yj ),

żj = 0.4 + zj (xj − 8.5),

where X1 = N−1
1

∑N1
k=1 xk , X2 = N−1

2

∑N
k=N1+1 xk , Y1 =

N−1
1

∑N1
k=1 yk , and Y2 = N−1

2

∑N
k=N1+1 yk . Since the systems

are chaotic we can expect only some quantitative correspon-
dence with our theory. Indeed, we observe a narrow domain
with (approximately) solitary states [see Fig. 4(b)], where
K1,2 = 0.05.

In conclusion, we have identified a scenario for the
coherence-incoherence transition in networks of globally
coupled identical oscillators with attractive and repulsive
interactions. The transition occurs via solitary state at the edge
of synchrony. The phenomenon arises when attraction and
repulsion act in antiphase and diminishes and becomes low
dimensional when this condition is not exact. The solitary state
is asymptotically stable in the Lyapunov sense and hence, it is
robust with respect to small inhomogeneities; however, under
the perturbations, the perfectly synchronized main cluster of
the solitary state becomes generally a fuzzy one.

In the desynchronized state the system is highly multistable;
in particular, it exhibits fuzzy clustering. Finally, we have
found solitary states for more realistic oscillatory networks
with both periodic and chaotic local dynamics. This indicates
a general, probably universal desynchronization mechanism
in networks of very different nature, due to attractive and
repulsive interactions.
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