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Achieving realistic interface kinetics in phase-field models with a diffusional contrast
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Phase-field models are powerful tools to tackle free-boundary problems. For phase transformations involving
diffusion, the evolution of the nonconserved phase field is coupled to the evolution of the conserved diffusion
field. Introducing the kinetic cross coupling between these two fields [E. A. Brener and G. Boussinot, Phys.
Rev. E 86, 060601(R) (2012)], we solve the long-standing problem of a realistic description of interface kinetics
when a diffusional contrast between the phases is taken into account. Using the case of the solidification of a
pure substance, we show how to eliminate the temperature jump at the interface and to recover full equilibrium
boundary conditions. We confirm our results by numerical simulations.
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Introduction. The phase-field method is one of the most
important and powerful tools for modeling interface dynamics
and pattern formation processes. In particular, it has proven
its efficiency for the description of microstructure evolution
during phase transformations that are coupled to bulk dif-
fusion. However, anomalous interface kinetic effects exist
when the diffusion coefficients in the two phases differ [1–4].
Eliminating them remains a long-standing problem for a
realistic phase-field modeling.

The phase-field method tackles free-boundary problems
with the use of fields that are continuous across the interface.
They exhibit an intrinsic length scale, the interface width W ,
that has to be much smaller than the length scales of the
emerging pattern. For computationally tractable simulations,
W is usually chosen significantly larger than the actual width
of the physical interface. However, this leads to an artificial
enhancement of the interfacial kinetic effects (for an extended
discussion, see Refs. [1–4]). Therefore it is important to
eliminate these artificial effects by a proper adjustment of the
model parameters. For example, for the solidification of a pure
substance where the growth is coupled to the heat transport,
one may look for an elimination of the jump of temperature at
the interface (Kapitza jump). This is the usual approximation
in thermal problems. A more particular goal is to recover
full equilibrium boundary conditions (no kinetic effects), a
situation that corresponds to the limit of small driving forces
and that is often met in experiments.

Classical phase-field models do not contain a kinetic
cross coupling between the nonconserved phase field and the
conserved diffusion field, and in this respect are diagonal
(model C in the Hohenberg-Halperin nomenclature [5]).
Karma and Rappel developed the so-called thin interface
analysis to connect a phase-field model and the corresponding
macroscopic description [1]. They found that if the diffusivity
does not depend on the phase field, i.e., is the same in the two
phases, the Kapitza jump is automatically eliminated. They
calculated the growth kinetic coefficient and gave the relation
between the parameters of the phase-field model to recover
equilibrium boundary conditions. However, Almgren showed
that, in the presence of a diffusional contrast, the Kapitza
jump cannot be eliminated without producing anomalous
corrections to the energy conservation law at the interface
[2]. For isothermal phase transformations in alloys, the same

problem exists concerning the jump of the diffusion chemical
potential (relevant to the solute trapping effect). For the
solidification of alloys where the diffusion flux is neglected in
the solid (one-sided model), the so-called antitrapping model
was developed to tackle this problem [3,4]. In Ref. [6], an
attempt was made to extend this model to a finite diffusion in
the solid. Although, in this case, the diffusional fluxes on the
two sides of the interface and the interface velocity are related
by only one equation (the conservation law), the authors used
an additional relation between them [Eq. (5.1) in Ref. [6]].
Thus, they imposed an unjustified linear relation between two
quantities that are, in fact, linearly independent [7].

Recently, a kinetic cross coupling between the noncon-
served phase field and the conserved diffusion field was
introduced in the phase-field equations of motion [8–10].
With this cross coupling, in general allowed by Onsager
symmetry, the phase-field model becomes nondiagonal and
possesses an additional kinetic velocity scale compared to
classical diagonal models. This provides a full correspondence
between the number of independent kinetic parameters in the
phase field and the macroscopic descriptions. It was shown
that the cross coupling has a crucial importance for some
kinetic effects, such as solute trapping in alloys [8] and the
Ehrlich-Schwoebel effect in molecular-beam epitaxy [10].
Moreover, it was also successfully adapted to the case of
the one-sided model [9,10] recovering a full thermodynamical
consistency of the antitrapping model that originally does not
obey Onsager symmetry.

In this Rapid Communication, we use a nondiagonal phase-
field model [8,10] to address the long-standing problem of
achieving realistic simulations in the presence of a diffusional
contrast. In particular, we show that the introduction of the
kinetic cross coupling allows one to eliminate the Kapitza
jump and, in addition, to recover full equilibrium boundary
conditions at the interface. This provides a generalization of
the results by Karma and Rappel [1] in the presence of a
diffusional contrast. We test numerically these results using a
simple but illustrative example.

Variational phase-field model with kinetic cross coupling.
Complementary to our previous studies on alloys [8,10], we
focus here on the solidification of a pure material where the
phase transformation is coupled to the heat transport. We mea-
sure all energy densities in units of the latent heat of the
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transformation L = TM (SL − SS), where TM is the melting
temperature and SL (SS) is the entropy of the liquid (solid)
phase at TM . We start from an entropy functional S,

S =
∫

V

dV {s[e(T ,φ),φ] − H [(1 − φ2)2/4 + (W∇φ)2/2]},
(1)

where e is the dimensionless internal energy density that
depends on the temperature T and on the phase field φ. For
simplicity we assume that the cost of an interface is provided
by the variations of the phase field only and is described by
H . The entropy production is

Ṡ =
∫

V

dV

[
δS

δφ
φ̇ + δS

δe
ė

]
=

∫
V

dV

[
δS

δφ
φ̇ +∇ δS

δe
· J

]
, (2)

where the flux of dimensionless energy J enters the continuity
equation

ė = −∇ · J. (3)

Then the variational equations of motion relate δS/δφ and
∇(δS/δe) to φ̇ and J through the Onsager linear relations,

cP T 2
M

L2

δS

δφ
= τ φ̇ + (MW∇φ) · J, (4)

cP T 2
M

L2
∇ δS

δe
= (MW∇φ)φ̇ + J

D(φ)
, (5)

where cP is the specific heat at T = TM that is assumed to be
independent of the phase (independent of φ). For simplicity,
we consider constant τ and M . The thermal diffusivity D(φ)
depends on φ to account for a diffusional contrast. While the
variational formulations without cross coupling (M = 0) have
been well known in the literature for a long time (see, for
example, Ref. [11] and references therein), cross terms were
introduced only recently [8–10]. They obey Onsager symmetry
and are naturally written proportional to W∇φ. This vector is
normal to the interface and is of magnitude of order unity in
the interface region and zero in the bulk. It is also important
to make a proper link between scalar and vectorial quantities
(we refer to Refs. [8,10] for more details). A positive entropy
production Ṡ > 0 requires

τ > 0,D(φ) > 0,� = 1 − (MW∇φ)2D(φ)/τ > 0. (6)

The variational derivatives δS/δφ = [∂s/∂φ]e +
H [φ(1 − φ2) + W 2∇2φ] and δS/δe = [∂s/∂e]φ
are evaluated using the thermodynamical relations
[∂s/∂φ]e = −(L/T )[∂f (T ,φ)/∂φ]T and [∂s/∂e]φ = L/T

[11]. The dimensionless free energy f = e − T s/L is chosen
equal to zero at T = TM . We interpolate the entropies at TM

as

TM

L
s(T = TM,φ) = σ (φ) = σS + σL

2
− σL − σS

2
p(φ), (7)

where σS = TMSS/L, σL = TMSL/L, and hence σL − σS = 1.
To be explicit, we choose the switching function p(φ) =
15(φ − 2φ3/3 + φ5/5)/8 that has the properties p(φ =
±1) = ±1, p(φ) = −p(−φ), and p′(φ = ±1) = p′′(φ =
±1) = 0. Then, near T = TM , the dimensionless internal

energy e and free energy f read

e(T ,φ) = u + σ (φ), f (T ,φ) = − L

cP TM

σ (φ)u, (8)

with the dimensionless temperature u = cP (T − TM )/L. Fi-
nally, using the above considerations, we present Eqs. (3)–(5)
in the form of coupled equations of motion for φ and u,

�τφ̇ = H̃ [φ(1 − φ2) + W 2∇2φ] − p′(φ)

2
u

+MWD(φ)∇φ · ∇u (9)

and

u̇ = ∇ · {D(φ)[∇u + MWφ̇∇φ]} + p′(φ)

2
φ̇, (10)

where H̃ = (cP T 2
M/L2)H .

At equilibrium where u = 0 and φ̇ = 0, the phase field
obeys φeq(x) = −φeq(−x) = − tanh(x/W

√
2) for a solid

phase at x = −∞ and a liquid phase at x = +∞, and
W 2[φ′

eq(x)]2 = [1 − φ2
eq(x)]2/2. We also define σeq(x) =

σ [φeq(x)] = (σS + σL)/2 − p[φeq(x)]/2.
Macroscopic description and thin interface limit. In the

macroscopic description, one discusses the thermal diffusion
equation in the bulk with boundary conditions at the sharp
interface. First, the energy conservation at the interface reads

DS∇u|S · n + V σS = DL∇u|L · n + V σL = JE, (11)

where DS (DL) is the thermal diffusivity in the solid (liquid)
phase, n is the vector normal to the interface, and ∇u|S (∇u|L)
is the gradient of u on the solid (liquid) side of the interface.
V is the normal velocity of the interface and JE is the normal
flux of dimensionless energy through the interface. Second,
the temperature at the interface is TS (TL) on the solid (liquid)
side and deviates from TM due to interfacial kinetic effects.
The kinetic boundary conditions relate, through linear Onsager
relations, the difference of chemical potential or free energy
across the interface δf and the Kapitza temperature jump δu to
their conjugate fluxes V and JE . These relations read [12,13]

(cP TM/L)δf = σSuS − σLuL = ĀV + B̄JE + d0κ, (12)

δu = uL − uS = B̄V + C̄JE, (13)

where uS = cP (TS − TM )/L and uL = cP (TL − TM )/L. The
Gibbs-Thomson correction proportional to the curvature κ

of the interface is parametrized by the capillary length
d0 = γ cP TM/L2, where the interface energy is related to
the phase-field parameters through γ = αHTMW with α =
W

∫ ∞
−∞ dx[φ′

eq(x)]2 = 2
√

2
/

3 [1]. Ā is the inverse growth
kinetic coefficient (usually denoted by β when the other kinetic
coefficients are absent), C̄ is the Kapitza resistance, and B̄ is
the cross coefficient. A physically motivated procedure for
the thin interface limit that involves the entropy production
(dissipation function) in the interface region was introduced
in Ref. [10]. It is equivalent to the more mathematically
oriented asymptotic matching [1,2]. It allows one to ex-
press the macroscopic kinetic coefficients Ā,B̄,C̄ in terms
of the parameters of the phase-field model τ,M and the
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thermal diffusivity D(φ) [compare with Eqs. (19)–(21) in
Ref. [10]]:

Ā =
∫ ∞

−∞
dx[τ − 2MWσeq(x)][φ′

eq(x)]2

+
∫ ∞

−∞
dx

[
σ 2

eq(x)

D[φeq(x)]
− σ 2

S

2DS

− σ 2
L

2DL

]
, (14)

B̄ =
∫ ∞

−∞
dxMW [φ′

eq(x)]2

−
∫ ∞

−∞
dx

[
σeq(x)

D[φeq(x)]
− σS

2DS

− σL

2DL

]
, (15)

C̄ =
∫ ∞

−∞
dx

[
1

D[φeq(x)]
− 1

2DS

− 1

2DL

]
. (16)

As we see, here there is a larger flexibility for tuning kinetic
coefficients compared to classical phase-field models where
M = 0.

Elimination of the Kapitza jump and full equilibrium
boundary conditions. The models for the solidification of a
pure material usually assume δu = 0. Since V and JE are
linearly independent fluxes, this requires B̄ = C̄ = 0. For this
purpose we use

1

D(φ)
=

(
1

2DS

+ 1

2DL

)
+ g(φ)

(
1

2DS

− 1

2DL

)
, (17)

where g(φ) obeys g(φ = ±1) = ±1 and g(φ) = −g(−φ).
This choice automatically eliminates the Kapitza resistance
C̄ = 0 [14]. Then

B̄ = αM − γW

2

(
1

2DS

− 1

2DL

)
, (18)

where

γ =
∫ ∞

−∞

dx

W
{1 − p[φeq(x)]g[φeq(x)]}. (19)

The condition B̄ = 0 is therefore provided by

M = M∗ = γW

2α

(
1

2DS

− 1

2DL

)
. (20)

We understand at this point why the kinetic cross coupling was
not needed (M∗ = 0) for the Kapitza jump to be eliminated
when D(φ) = DS = DL [1].

Using these choices of D(φ) and M , we find the remaining
kinetic coefficient Ā,

Ā = ατ

W
− βW

4

(
1

2DS

+ 1

2DL

)
, (21)

where

β =
∫ ∞

−∞

dx

W
{1 − p2[φeq(x)]} � 1.407 48. (22)

Finally, kinetic effects may be fully eliminated (Ā = B̄ = C̄ =
0) by the choice

τ = τ ∗ = βW 2

4α

(
1

2DS

+ 1

2DL

)
. (23)

The condition of stability � > 0 sets an upper bound for
the diffusional contrast if one requires equilibrium bound-
ary conditions. Using the relation (Wφ′

eq)2 = (1 − φ2
eq)2/2

and defining the contrast ν = (DL − DS)/(DL + DS), the
inequality � = 1 − (M∗W∇φ)2D(φ)/τ ∗ > 0 reads close to
equilibrium

1 <
2βα

γ 2ν2
min

1 + νg(φeq)(
1 − φ2

eq

)2 . (24)

This means |ν| < νmax, where νmax is model dependent through
g(φ) and the coefficient γ . In the case of a larger contrast
(DS � DL), which is important for the solidification of alloys,
one may use a one-sided model (see the relevant discussion in
Ref. [10]).

Two remarks are in order. First, Almgren has shown that
the correction to the conservation law due to the interface
stretching effect is eliminated if

∫ ∞
−∞ dx[σeq(x) − σS/2 −

σL/2] = 0 [2]. This integral represents the equilibrium inter-
face “adsorption” and vanishes as soon as p(φ) = −p(−φ),
which is the usual choice in phase-field models. In Ref. [15],
the authors effectively add an even part to p(φ) in order to
tune the kinetic coefficient B̄, thus allowing for some interface
adsorption. However, it is not physically sound to tune the
kinetic effects using a thermodynamical degree of freedom
of the model. Here, we tune the kinetic cross coefficient
B̄ with the help of the cross coupling term M . Second,
surface diffusion is another effect that alters the conservation
law at the interface. In order to remove this effect, D(φ)
should satisfy

∫ ∞
−∞ dx[D(φeq) − DS/2 − DL/2] = 0 [2]. The

switching function should in this case be written g(φ) =
g0(φ) + ag1(φ), where g0(±1) = ±1 and g1(±1) = 0, both
being odd in order to recover C̄ = 0. Then the surface diffusion
effect is eliminated with an appropriate choice a = a∗(|ν|) [2].

We now shortly summarize how the nondiagonal phase-
field model is designed. With the switching function p(φ), one
tunes the thermodynamic adsorption property of the interface
that causes a kinetic correction to the conservation law due to
interface stretching. With the diffusivity D(φ), one tunes the
kinetic coefficient C̄ and the kinetic correction to the conser-
vation law due to surface diffusion. With the cross coupling
coefficient M , one tunes the kinetic coefficient B̄. With the
relaxation time τ , one tunes the kinetic coefficient Ā. Here
we have presented the procedure to eliminate simultaneously
all the kinetic effects. Let us note that an interface anisotropy
may be introduced in a routine way through the orientation
dependences W (n), τ (n) [1], and M(n).

Numerical test. We now perform a numerical validation
of the presented theory using a simple but illustrative ex-
ample. We discuss the solidification of a thin film that may
exchange heat with an environment at temperature TE < TM .
Averaging the temperature in the film over its thickness, the
problem becomes two dimensional. Moreover, we discuss
the propagation of a flat solidification front, and the average
dimensionless temperature in the film then obeys the one-
dimensional diffusion equation

u̇(x) = Dku
′′(x) − u(x) − uE

τv

(25)
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in phase k = L,S. We model the heat exchange with the envi-
ronment using a simple linear law valid for small temperature
differences between the film and the environment, i.e., for
−uE = −cP (TE − TM )/L � 1. Here τv is the characteristic
time for this exchange.

We focus on the case without Kapitza jump, B̄ = C̄ = 0,
that requires M = M∗. Then, according to Eqs. (12) and (13),
and due to the fact that σL − σS = 1, we have uS = uL = ui =
−ĀV , where Ā is given by Eq. (21).

In a comoving frame of reference with the interface located
at the origin x = 0, phase S occupying x < 0 and phase L

occupying x > 0, the solution in the quasistatic approximation
(u̇ = 0) reads

u(x < 0) = uE + (ui − uE) exp(x/
√

DSτv),
(26)

u(x > 0) = uE + (ui − uE) exp(−x/
√

DLτv).

Using the energy conservation at the interface, i.e., V =
DSu

′(x = 0−) − DLu′(x = 0+), we find

V = Veq

(
1 − Ā(JS + JL)

1 + Ā(JS + JL)

)
, (27)

where JS = √
DS/τv and JL = √

DL/τv , and with

Veq = −uE(JS + JL) (28)

being the velocity for equilibrium boundary conditions, i.e.,
when ui = 0. Let us note that the quasistatic approximation
that allows one to use Eqs. (26) is justified for −uE � 1.

We perform phase-field simulations where the temperature
evolution equation (10) is replaced by

u̇ = ∇ · {D(φ)[∇u + MWφ̇∇φ]} + p′(φ)

2
φ̇ − u − uE

τv

(29)

that takes into account the heat exchange with the environment.
We use uE = −0.1, DSτv/W 2 = 200, and different ratios
DL/DS = (1 + ν)/(1 − ν). We choose g(φ) = φ (no need
to eliminate surface diffusion here) for which νmax � 0.71
[for example, for the choice g(φ) = p(φ), one has νmax �
0.86]. In Fig. 1, we present (V − Veq)/Veq as a function
of A(JS + JL), where V is obtained from the simulations
(symbols) and Veq is given by Eq. (28). We compare with
the analytical prediction (line) with V given by Eq. (27).
The excellent quantitative agreement between simulations
and analytics provides a strong support for the theory.

DL/DS = 0.5
DL/DS = 2
DL/DS = 4

A(JS + JL)

V − Veq

Veq

0.0 0.1 0.2 0.3

-0.20

-0.10

 0.00

 0.10

FIG. 1. (V − Veq)/Veq as a function of A(JS + JL) for different
values of DL/DS from simulations (triangles, crosses, squares) and
from analytics (line).

We have also performed two-dimensional simulations of
the relaxation of a corrugated interface to its flat equilibrium,
a situation that involves surface diffusion. The resulting
spectrum has been compared with the analytical solution of
the macroscopic problem. The numerical results agree well
with the analytical predictions. These results will be published
elsewhere.

Summary. In this Rapid Communication, we have achieved
a realistic description of interface kinetics in a phase-field
model with a diffusional contrast. This is enabled by a
kinetic cross coupling (nondiagonal model) between the
conserved and the nonconserved fields that is not present in
classical diagonal models. This cross coupling provides a full
correspondence between the number of independent kinetic
parameters in the phase field and the macroscopic descriptions.
This correspondence allows one to tune the kinetic effects as
desired and, for example, allows one to eliminate them partly
or fully. Using the case of the solidification of a pure substance,
we first eliminate the Kapitza temperature jump at the interface
and, second, fully eliminate interfacial kinetic effects. We
obtain an excellent quantitative agreement between phase-field
simulations and the analytical solution of the corresponding
macroscopic approach using a simple but illustrative example.
The extension of our results to multiphase systems where triple
junctions are present might be challenging.
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