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Universality class of the conserved Manna model in one dimension
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The nonequilibrium absorbing phase transition of the discrete conserved Manna model was studied via Monte
Carlo simulations on a one-dimensional chain, using the natural initial states with a sequential update. The critical
density of the particles was found to be smaller than the recently reported value, and the order-parameter exponent
was considerably different from the directed percolation (DP) value. The influence of quenched disorder was also
studied on a diluted strip of Lx × Ly lattice sites with Lx � Ly , and the results were compared with those of the
contact process (CP). It was found that the Manna model and the CP exhibited distinctly different behaviors; the
CP exhibited nonuniversal power-law decreases of active-site densities in the Griffith phase, whereas the Manna
model showed a standard critical behavior. These results consistently suggest that the Manna model belongs to a
universality class that is different from the DP class.

DOI: 10.1103/PhysRevE.89.060101 PACS number(s): 05.70.Ln, 05.50.+q, 64.60.av, 64.60.De

Universality classes of nonequilibrium absorbing phase
transitions (APTs) can be classified by various features
of models, such as unconventional symmetries, types of
hopping mechanisms of particles, quenched randomness, and
conservation laws [1]. Directed percolation (DP) is the most
robust class, and various models that yield a continuous
phase transition from a fluctuating phase into a single or
many absorbing states in a homogeneous one-component
system with short-range interactions are known to fall into
this class [2,3]. The parity-conserving class and the Manna
(conserved-DP) class are also well-established classes classi-
fied by, respectively, the symmetry of the absorbing states and
conservation of the number of particles [4–8].

Recently, Basu et al. showed in one dimension that the
known models in the Manna class, i.e., the discrete and con-
tinuous conserved Manna models, yielded critical exponents
similar to the DP values when generated from the initial states
prepared in a particular way [9]. In the stochastic Manna model
(hereafter called the Manna model), which is identical to the
discrete conserved Manna model in Ref. [9], each lattice site
is occupied by multiple particles; the sites occupied by two or
more particles are considered to be active sites, and empty and
singly occupied sites are considered to be inactive [10,11].
Starting from an initial state, the dynamics proceeds with
hopping of active particles; each of the particles on randomly
selected active sites hops to one of the neighboring sites. Two
different types of updates, parallel and sequential updates,
can be employed. In the parallel update, all active sites are
updated at the same time with an increment of evolution
time �t = 1, whereas in the sequential update, randomly
selected active sites are updated, each with an increment
of �t = 1/Na(t), with Na(t) being the number of active
sites at time t . There is no particle creation or annihilation
during the dynamics and thus the number of particles is
conserved.

Before the work of Basu et al. [9], all studies employed
a random initial distribution of particles, i.e., random initial
states [12]. The main concern in the previous study was
that the random initial states yielded an inhomogeneous
distribution of inactive singly occupied particles [9]. Such
background particles may become active at a later time as
dynamics proceeds and contribute to the critical behavior.

The inhomogeneous background field was claimed to cause
an anomalous decay of active-site densities near and at the
critical point, i.e., the active-site density decreased, reached
a minimum, and then increased before saturation to a steady-
state density. The undershooting of active-site densities caused
a failure of scaling and made accurate estimation of the
critical exponents difficult. Following an idea introduced
earlier for the pair-contact process [13], Basu et al. prepared
the natural initial states as follows. Starting from a random
distribution of particles, let the simulation run until the steady
state is achieved; from there, all particles are allowed to
take a random-walk step to the nearest-neighbor sites. The
configuration obtained in this way is called the “natural” initial
state. They showed that the natural initial states eliminated
such undershooting and that all models known to belong to
the Manna class yielded the critical exponents similar to the
DP values [9]. Based on the numerical analysis, they claimed
that an independent Manna class did not exist and that all
models in the Manna class were expected to show the DP
critical behavior after a long time. On the other hand, in
two dimensions, the critical behavior of the Manna model
was found to be different from that of the DP class even
when the dynamics proceeded from the natural initial states
[14].

In this Rapid Communication, the Manna model was
studied on a one-dimensional (1D) chain and on a diluted
strip of Lx × Ly lattice sites with Lx � Ly . Attention was
paid particularly on whether or not the critical behavior was
different from the DP critical behavior. On a 1D chain,
the critical density was found to be slightly smaller and,
accordingly, the order-parameter exponent was different from
that of the earlier work [9]. The influence of quenched disorder
was also found to be distinct from that of a prototype model
in the DP class.

Starting from an initial distribution of particles of density ρ,
the active-site density ρa(t) decays exponentially in time for
ρ < ρc, saturates to a steady-state density ρsat for ρ > ρc,
and decreases following the power law ρa(t) ∼ t−α at the
critical density ρc. A set of critical exponents is defined as
in equilibrium critical phenomena by the order parameter
ρsat(ε) ∼ εβ , the correlation length ξ ∼ ε−ν⊥ , and the corre-
lation time τ ∼ ε−ν‖ ∼ ξz in the vicinity of criticality, where
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ε = |ρ − ρc| is the distance from criticality and z = ν‖/ν⊥ is
the dynamic exponent. When ρ is slightly different from ρc

for a system of size L, ρa can be written as

ρa(t,ε,L) = t−αF(tεν‖,t/Lz). (1)

In the t → ∞ limit on an infinite system, since ρa(∞,ε,∞) =
ρsat(ε) ∼ εβ as ρ → ρc+, the relation β = ν‖α is obtained.
On the other hand, at criticality on a system of size L,
ρa(∞,0,L) = ρsat(L) ∼ L−β/ν⊥ in the steady state. The uni-
versality classes are classified from the values of the critical
exponents.

The stochastic Manna model is a simple model, but
investigation of its critical behavior on a 1D chain is nontrivial,
mainly because of the extremely slow decay of active-site
densities. Basu et al. [9] calculated ρa(t) using the parallel
update starting from the natural initial states and determined,
from the power-law behavior of ρa(t), ρc = 0.892 36(3), which
is slightly larger than the known value ρc = 0.891 99(5) by
Lübeck and Heger using the random initial states [12,15].
It is, however, believed that the critical density should be
the same irrespective of the initial states because the data
for ρsat(L) and ρsat(ε) remain the same for both initial states
and, accordingly, the power-law behaviors of both should hold
equally for different initial states.

Since an accurate value of ρc is particularly important to
estimate the critical exponents, extensive simulations were
carried out using the natural initial states. The sequential
update was employed because it turned out to be faster than the
parallel update. For sufficiently large systems near and at ρc,
the system never reached the steady state within an attainable
evolution time and, accordingly, the natural initial states could
not be prepared from the steady-state configurations. To see
how the homogenization was achieved, the cumulative sums
Sj = ∑j

i=1 ni − (N/L)j defined in Ref. [9] were calculated
for ρ = 0.892 16 and 0.897, both on a system of size L = 105,
and plotted in Fig. 1; from the figure, it is clear that the initial
density fluctuations are leveled out after t = 108 for both
densities. (Note that homogenization is achieved one order
faster than that in Ref. [9], presumably due to the different
update rule.) Considering that the steady state was not reached
at t = 108 for ρ = 0.892 16, it appeared that the initial memory
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FIG. 1. (Color online) Plot of the cumulative particle density for
a random initial state captured at different simulation times. (a) is for
ρ = 0.892 16 and (b) is for ρ = 0.897. Data from the most fluctuating
set to the least fluctuating set are for t = 1 (black), 106 (orange), 107

(green), 108 (red), and 109 (blue) time steps.
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FIG. 2. (Color online) (a) Data of ρa(t) for selected particle
densities in the 1D Manna model. (b) The selected data between
the two known values of ρc on a larger scale. (c) The scaled data
ρa(t)tα as a function of time. The numbers on the legend in (a) are the
particle densities for the data in the same order from top to bottom.

of density fluctuation was lost after a long time regardless of
whether or not the steady state was achieved. The natural initial
states were thus prepared after relaxing the system up to 109

time steps (one order higher t for safety) for the densities close
to and at ρc.

The data for ρa(t) were calculated for selected particle
densities on a system of size L = 106, and the results were
plotted in Fig. 2: (a) the raw data, (b) the data for five selected
densities on a larger scale, and (c) the scaled data ρa(t)tα as
a function of t . The data for ρ = 0.8920 veer down and those
of ρ = 0.892 36 veer up, suggesting that none of the known
values is the true ρc. The asymptotic power law appeared
to hold in the region 104 � t � 108 for ρ between 0.892 15
and 0.892 17. Therefore, ρc = 0.892 16(3) was obtained with
α � 0.158. [Note that Basu et al. obtained ρc from the power
law of ρa(t) up to 107 time steps.]

The steady-state densities for ρ > ρc were calculated from
the data in Fig. 2(a) and also from simulations on a system
of size L = 218 for comparison with the data in Ref. [9]. It
should be noted that the size of system L = 106 is much larger
than those of Refs. [9,12], L = 218 = 262 144 and L = 213,
respectively. Figure 3 shows ρsat(ε); the lower set is for ρc =
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FIG. 3. (Color online) Data of ρsat(ε) in the 1D Manna model.
The upper set is for ρc = 0.892 36 which is shifted upward by
multiplying 1.5 and the lower set for ρc = 0.892 16. The inset is
the raw data, with the arrow marking ρc.
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0.892 16 and the upper set shifted upward is for ρc = 0.892 36.
Data for ε � 0.02 (ρc < ρ < 0.91) in the lower set yielded the
power-law behavior, with the power of β = 0.380(5) (lower
dashed line), which is consistent with the value β = 0.382(19)
by Lübeck [15] but is off from the DP value of βDP = 0.2763.
A slight deviation of the leftmost data for L = 218 from the
power-law fit appears to be due to the finite-size effect.

Basu et al. found that a log-log plot of ρsat(ε) against ε

with a larger value of ρc yielded a curvature for an entire
region of ε. Plotting the effective exponent against ε0.45, they
obtained a value of β close to the DP value. However, because
ε > 0.02 is far from the critical point and might be out of
the scaling region, it is not clear whether the correction-to-
scaling analysis by taking the trend of the data in such a region
into account is valid. In our data, however, the significant
upward curvature was not observed for ε � 0.02 as ρ → ρc+,
as was seen in Fig. 2; thus the correction fit was unnecessary.
It was also noticed that special attention should be paid to
unbiased sampling when collecting data from the nodes of the
Message Passing Interface (MPI) system running in parallel,
particularly close to ρc. Since computing time varies over
realizations due to fluctuations of ρa(t), those of smaller ρa(t)
apparently take less CPU time. As a result, it was found that,
when collecting data in a series, ρa(t) in the large t region
(t � 104) increased gradually as the number of realizations
increased, because realizations of larger ρa(t) were collected
later. Therefore, in order not to lose the realizations of long
computing time, simulations should not be stopped until the
accumulated data yield stationary results. If it is stopped before
then, the collected data should be discarded for the unbiased
sampling. (Note that the data at ρc took approximately 2000 h
with 40 cores of Pentium-3.2 GHz running in parallel.)

In order to verify the estimates of ρc, α, and β, the off-
critical scaling was examined. Figure 4 shows the off-critical
scaling function in Eq. (1), ρat

α = F(tεν‖,∞), scaled using
ρc = 0.892 16, α = 0.158, and ν‖ = β/α = 2.405 [Fig. 4(a)]
and ρc = 0.892 36, α = 0.159, and ν‖ = 1.733 (known DP
values) [Fig. 4(b)] for the data within the scaling region in
Fig. 3 (ε � 0.02). In Fig. 4(a), data in the supercritical region
fall onto a single curve, i.e., scaling holds, whereas in the
subcritical region data collapsing is a bit poor. In Fig. 4(b),
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FIG. 4. (Color online) Off-critical scaling function of ρa(t)
scaled with (a) ρc = 0.892 16, α = 0.1581, and ν‖ = 2.404 and
(b) ρc = 0.892 36, α = 0.159, and ν‖ = 1.733 (DP values). The
numbers in the legends are the particle densities for the data in the
same order.

on the other hand, the scaling fails in both regions. It is clear
that the values used in Fig. 4(a) are more reliable. Poor scaling
in the subcritical region in Fig. 4(a) might be attributed to
an inhomogeneous distribution of background particles. In the
subcritical region, the system fell into an absorbing state before
homogenization was achieved. Nonetheless, eliminating data
for ρ = 0.87 and 0.88, scaling held fairly well; the scaling
region is thus relatively narrow for ρ < ρc. (Note that the
system for these ρ values did not survive up to the time required
for homogenization.)

The distinct behavior of the Manna model from that of the
contact process (CP) [16] was also observed on the responses to
the quenched disorder added in the system. The CP is defined
as that particles either spread (A → AA) with a rate λ or
become extinct (A → 0) with a rate μ (usually set μ = 1).
For λ > λc, the system remains in an active phase, whereas
for λ < λc, the system falls into a single absorbing state of
a vacuum. The influence of quenched disorder on the CP
was first studied by Moreira and Dickman [17] and it has
been recently studied more extensively in 1D [18,19]. It is
now widely known that the particle density ρa(t) exhibits
nonuniversal power-law behavior in the Griffith phase of
λ0

c < λ < λc, where λ0
c and λc are the critical spreading rates on

a pure system and on a disordered system, respectively. Such
a nonuniversal power-law decrease on a disordered lattice is
typical for models in the DP class, such as CP [17–19] and
cellular automata [20].

The quenched disorder in the 1D CP is defined by
a binary probability distribution P (λ(r)) = (1 − p)δ(λ(r) −
λ) + pδ(λ(r) − cλ), where p and c represent, respectively, the
concentration of impurity sites and the relative strength of the
impurities. In this expression, the randomly selected pL sites
are assigned as impurity sites and, in each impurity site, the
spreading rate is suppressed by a factor c (<1). For the Manna
model, however, similar disorder cannot be set because of
conservation of the number of particles. In two and higher
dimensions, on the other hand, the diluted sites are assumed to
be disordered sites [17,21]. Therefore, an infinite percolation
cluster can be considered as the disordered lattice. On a 1D
chain, since any diluted site fragments the system into smaller
clusters, a diluted infinite cluster cannot be set. On the other
hand, the sites on a Lx × Ly (Lx � Ly) strip can be diluted
without fragmenting the system, thus enabling one to study
the influence of disorder in one dimension.

The active site densities were compared for the two models
on a strip of 105 × 20 sites, with p = 0.2. The periodic
boundaries were set along the x direction and the free
boundaries along the y direction. Figure 5 shows ρa(t) of
the CP on an undiluted strip. The data yielded a larger local
slope in the early time, which is a transient 2D behavior and,
for t > 102, ρa(t) exhibited the 1D critical behavior. It appears
that λc � 1.709 41, with α � 0.16 (inset), which is close to the
known DP value in one dimension. The steady-state densities
calculated from the figure also yielded a power-law decrease,
when plotted against λ − λc, with the power β � 0.28 (not
shown), which is again close to the DP value.

Figure 6(a) shows ρa(t) for the CP on a strip diluted
with p = 0.2 for selected values of λ > λ0

c . The data yield
a nonuniversal power-law decrease, with the power depending
on the value of λ, suggesting the presence of the Griffith
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FIG. 5. (Color online) Data of ρa(t) for the CP on a strip of 105 ×
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phase. However, for the Manna model, the selected data
for ρ > 0.7483 saturated to steady-state densities and those
for ρ < 0.7483 decayed exponentially, rather than following
nonuniversal power laws, as can be seen in Fig. 6(b). (It appears
that 0.704 < ρc < 0.705 for the Manna model on a clean strip.)
The plot clearly shows a behavior different from that of the CP.
If one naively estimates β from the data in Fig. 6 assuming ρc

as a parameter, it would be β ≈ 0.35, which is close to the 1D
value. One may, however, raise a possible concern that the two
models exhibit the same DP critical behavior on a clean lattice
but they may respond differently to the disorder. We cannot
rule out such a possibility; however, using the language of
the renormalization group theory, the clean fixed point of the
CP is unstable whereas that of the Manna model appears to
be stable; therefore, the two models should be distinguished.
This is in a similar situation to the 2D case, in which disorder
was irrelevant as long as the disorder concentration was less
than the critical concentration [22]. In the recent study in 2D,
the two known models in the Manna class were found to yield
consistent exponent values within an error of 1% but they
were 7%–12% off from the DP values [23]. It is also worth
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noting that, according to the Harris criterion [24], the clean
fixed point is unstable if dν⊥ < 2. The inequality holds for
the both CP and Manna model in both dimensions; however,
the Harris criterion established for equilibrium magnetic
systems is now known to be invalid for nonequilibrium APTs
[14,22,25].

In summary, the critical behavior of APTs was studied for
the 1D Manna model with the natural initial states, using
the sequential update rule. On a chain, the critical density
was found to be slightly smaller than that of the earlier
work and, with the estimate, the order-parameter exponent
was considerably larger than the DP value. The influence of
quenched disorder was also investigated on a strip of 105 × 20
sites, with 20% of the sites diluted. For the CP, the active-
particle density exhibited a nonuniversal power-law decrease
in the region λ0

c < λ < λc, whereas for the Manna model the
active-site density yielded a standard critical behavior. The
results on a chain and on a diluted strip both suggested that
the Manna model should be distinguished from the models in
the DP universality class.
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