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Recently, Sawada [Phys. Rev. E 88, 032406 (2013)] proposed a model to take into account the dielectric
dispersion of ionic origin in a weak electrolyte cell. We first show that the model is based on questionable
assumptions. Next, we point out an error in the author’s calculation of the current in the external circuit. Finally,
we demonstrate why some criticism on recent papers is irrelevant.
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In recent papers, Sawada reports on the electric response
of a cell of chlorobenzene doped with different concentrations
of tetrabutylammonium tetraphenylborate (TBATPB) [1–3].
According to the presented experimental data, the real and
imaginary parts of the complex dielectric constant present two
relaxations. The one in the higher frequency region depends
on the ionic concentration, whereas that in the dc limit is
independent of it. This observation is of some interest. In
Ref. [1], Sawada interprets his experimental data assuming
that, by increasing the concentration of TBATPB, there is an
increasing number of different type ionic groups contributing
to the electrical response of the cell. The analysis was based
assuming the validity of the superposition principle. In Ref. [4],
we have shown that, in the low frequency region, the superposi-
tion principle does not work. Consequently, the interpretation
of the data proposed in Ref. [1] does not work well. The same
set of experimental data has been considered in Ref. [2] and has
been fitted again by means of the model presented in Ref. [1],
based on the assumption of a constant electric field across
the sample. The limit of this assumption was discussed in
Refs. [5,6]. In Ref. [3], the subject of this Comment, Sawada,
points out that his experimental data cannot be interpreted
by means of the standard Poisson-Nernst-Planck (PNP) model
using a reasonable value of the diffusion coefficient for the ions
in chlorobenzene, expected to be on the order of 10−9 m2/s.
The limits of the PNP model have been discussed also in
Refs. [7–9]. For this reason, Sawada proposes a modified
version of the PNP model, based on the assumptions: (i)
The actual electric field across the sample coincides with the
external field, and (ii) the interface between the electrolyte and
the electrode is responsible for a capacitance, rather small with
respect to that of the Stern layer as suggested in Ref. [10].

The aim of our Comment is as follows: (i) to show that the
model proposed by Sawada [3] has to be used with caution
since the reported expression for the admittance of the cell,
used in the analysis of the data, is not correct and (ii) to refute
his criticism on Ref. [11].

In Ref. [3], the sample is in the shape of a slab of thickness
d and surface area S, and the dopant TBATPB is assumed
completely dissociated in the solvent. The Cartesian reference
frame used in the description has the x axis perpendicular
to the electrodes, placed at x = 0 and x = d. The diffusion
coefficients of the positive and negative ions are supposed to
be identical Dp = Dm = D. In this framework, the presence

of the external voltage of amplitude V1 and circular frequency
ω is responsible for a redistribution of ions. The actual
bulk density of positive and negative ions can be written as
np(x,t) = c0 + p(x,t) and nm(x,t) = c0 + m(x,t), where c0

is the concentration of TBATPB and p(x,t) and m(x,t) are the
bulk variations in the ionic densities due to the presence of the
external field. In this framework, the fundamental equations
of the PNP model take the form
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where we have taken into account that μ/D = q/(KBT ), KB

is the Boltzmann constant, and T is the absolute tempera-
ture [12]. In the limit of small V1, the perturbation of the
bulk ionic densities due to the external electric field are small:
p � c0 and m � c0. Therefore, p and m can be considered
on the same order as V1, as the electric field E, and Eqs. (1)
and (2), at the first order in the variations, can be rewritten as
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In the limit of small V1, the fundamental equations of
the model are Eqs. (3)–(5), that are linear with con-
stant coefficients. For a harmonic applied voltage �V (t) =
V1 exp(iωt), the solutions we are looking for are, as assumed
in Ref. [3], p(x,t) = p1 exp(iωt), m(x,t) = m1 exp(iωt), and
E(x,t) = E1(x) exp(iωt), and the equations to be solved for
p1(x), m1(x), and E1(x) are
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where the prime means a derivative with respect to x,

f ′ = df/dx. Equations (6)–(8) have to be solved with the
proper boundary conditions. If the electrodes are perfectly
blocking, the current densities have to vanish on the electrodes.
In this case, in the linear approximation of the PNP, the
boundary conditions at x = 0 and x = d are

p′
1 − qc0

KBT
E1 = 0, m′

1 + qc0

KBT
E1 = 0, (9)

with V (0) = 0 and V (d) = V1 for the electric potential, related
to the electric field by E1 = −V ′. On the contrary, if the
electrodes are adsorbing, the boundary conditions at x = 0
and x = d are

p′
1 − qc0

KBT
E1 = ±β∗p1, m′

1 + qc0

KBT
E1 = ±β∗m1, (10)

where β∗ = ξ ∗/D is the parameter related to the adsorp-
tion [3,13]. The equations of the problem form a system of
linear differential equations with linear boundary conditions.
The problem can be analytically solved [11,14,15], contrary
to the statement in Ref. [3].

In Ref. [3], it is assumed that the actual electric field across
the sample is position independent and is given by E1 = V1/d.
Consequently, the actual electric field is independent of the
ions’ distribution. According to Ref. [3], this is a reasonable
approximation. Our opinion about this approximation is
different. In the limit of a small external electric field, the
ions move under the effect of the electric force until the actual
electric field vanishes in the bulk. In the limit of a large external
field, the ions are unable to screen it, and the electric field in
the sample is nearly uniform. However, in this limit, the bulk
variation in densities of the ions is large, and hence the linear
approximation does not work any longer [16]. We stress that, in
Ref. [3], the system is not assumed supported [17] because, in
the bulk, the field is not screened by the ions. In this framework,
Eqs. (6)–(8) are

i
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D
p1 = p′′

1 , i
ω

D
m1 = p′′

1 , (11)

p1 = m1, (12)

whereas the boundary conditions remain Eqs. (9) or (10) for the
blocking or adsorbing electrodes, respectively. Equations (11)
are equations of diffusion, widely considered in supported
systems [17]. As is evident, solutions of Eqs. (11) and (12)
with the boundary conditions Eqs. (9) or (10) are the trivial
ones p1 = m1 = 0, for E1 �= 0. Probably, this means that
the equation p1 = m1 is valid only to some degree of
approximation, not discussed in Ref. [3]. We note also that,
in all the analysis presented in Ref. [3], p1 = −m1 as follows
from Eqs. (17)–(22) or Eqs. (33)–(38) of Ref. [3].

By means of standard calculations, the current in the cell is
given by Eq. (23) of Ref. [3], that is

j1(x) = iωε0εsE1 + q

{
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)}
,

(13)

where we have taken into account that E(t) = E1 exp(iωt) and
E1 = V1/d. Equation (13) can be rewritten as

j1(x) = iωε0εsE1 + jp1 + jm1 , (14)

if Eqs. (15) and (16) of Ref. [3] are taken into account. The
current in the external circuit is simply given by

J1 = j1(d) = iωε0εsE1 + jp1 (d) + jm1 (d). (15)

Let us consider first the case where the electrodes are blocking,
discussed in Sec. II A of Ref. [3]. In this case, from Eq. (15),
for the blocking character of the electrodes, we obtain

J1 = j1(d) = iωε0εsE1 = iωε0εs

V1

d
, (16)

as expected since, in this case, the current in the external circuit
is just due to the displacement current. From this equation, it
follows that, in the framework of Ref. [3], the admittance per
unit area of the cell is simply

Y1 = J1

V1
= iω

ε0εs

d
, (17)

i.e., the cell behaves as a true condenser. Equation (17) is
different from Eq. (25) reported in Ref. [3]. Note that to
evaluate the current in the external circuit by means of

J1 = 1

d

∫ d

0
j1dx, (18)

as performed in Ref. [3] is correct only if j1(x) is position
independent [18], that is not the case in the framework
considered in Ref. [3]. In fact, from Eq. (13), we obtain

dj1

dx
= −iωq[p1(x) − n1(x)] = −2iωqp1(z), (19)

that is not identically zero, as required for the application of
Eq. (18).

Let us consider, finally, the case where the electrodes are
adsorbing. According to the calculation reported in Ref. [3],
the admittance per unit area is given by

Y1S = 2qμc0 + iωε0εs

d

−2
qD

dV1
{Aap(eZd − 1) + Bap(e−Zd − 1)}, (20)

where Z = √
iω/D, that coincides with Eq. (39) of Ref. [3]

if one takes into account that, as follows from Eqs. (35)–(38)
of Ref. [3], Aap = −Aan and Bap = −Ban. Equation (20) has
been obtained evaluating the electric current in the external
circuit by means of Eq. (18), that is not correct. If the current
is evaluated by means of (15) with the expressions (33) and
(34) taking into account (35)–(38) of Ref. [3], we get

Y1C = 2qμc0 + iωε0εs

d

− 2
qDZ

V1
{Aap(eZd − 1) + Bap(e−Zd − 1)}, (21)

that differs from Eq. (20) in the second term, where the
coefficient 2qD/(dV1) is replaced by 2qDZ/V1. Taking
into account that Z = √

iω/D, we can conclude that the
disagreement between Y1S and Y1C depends on the frequency.

In Fig. 1, we compare the real ε′ [Fig. 1(a)], and imaginary
ε′′ [Fig. 1(b)] parts of the dielectric constant derived in the
framework of the model proposed in Ref. [3] when the current
in the external circuit is determined by Eq. (15) or by Eq. (18).
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FIG. 1. (Color online) Spectrum of (a) ε′ and of (b) ε′′, deter-
mined in the framework of the model proposed in Ref. [3] using for
the admittance expression Y1S (red) and expression Y1C (blue dashed
line) in the presence of adsorption from the electrodes. The parameters
for the numerical calculations are reported in the text.

We limit our comparison to the case of adsorbing electrodes.
For the numerical calculations, we assume V1 = 0.01 V that
the ions are monovalent (q = 1.6 × 10−19 A s) with a diffusion
coefficient D = 8.2 × 10−10 m2/s in chlorobenzene, whose
dielectric constant is ε = 5.6 × ε0. The mobility of the ions
is evaluated by means of μ = (q/KBT )D. The thickness
of the sample is d = 22 μm, c0 = 1.2 × 1020 m−3, ξ∞ =
10−6 m/s, and τ = 10 s as in Ref. [3]. As is evident from
Fig. 1, the frequency dependencies for ε′ and ε′′ are the
same, but the numerical values differ in a frequency range
of 0.1–10 Hz. The numerical disagreement strongly depends
on ξ∞ and τ . We note, in particular, that, if the current is
correctly determined, ε′ becomes negative between 10 and
100 Hz, which is, apparently, absurd.

Finally, note that the assumption of full dissociation in
Ref. [3] is questionable. In fact, the effect of recombination is
important when the electrostatic energy between two ions is
comparable with the thermal energy [19]. The limit density for
which this hypothesis works well can be roughly determined
as follows. Let r be the average distance between two ions
of opposite sign. The electrostatic energy, responsible for the
recombination, is Ue = (1/4πε)q2/r in the SI. The thermal
energy of the ion, assumed pointlike, is Ut = (3/2)KBT .

When Ue ∼ Ut , there is recombination. The distance r for
which the recombination takes place is fixed by Ue = Ut

and is known as the radius of Bjerrum. For a bulk density
of ions c0, the average distance between the ions is on the
order of 
 = c

−1/3
0 , assuming that the ions form a cubic lattice

of parameter 
. If ε ∼ 5.6 × ε0, q = 1.6 × 10−19 A s, and
c0 ∼ 5.6 × 1022 [3], we obtain 
 = 2.6 × 10−8 m and Ue =
1.6 × 10−21 J. Since Ut ∼ 6 × 10−21 J, it follows that Ue is
comparable with Ut and the hypothesis of full dissociation has
to be assumed with precaution. In this situation, the problem
of the response of the cell to an external excitation should be
faced according to the lines discussed in Ref. [20].

In Ref. [3], just before Eq. (33), the author states that “the
analytical formula by Barbero [11] does not take account
of the influence of external charges on the internal field
formation, and thus, it cannot be used for the analysis of
practical experiment data.” This statement is not correct for
the following reason. In Ref. [11], the electric field has been
evaluated solving the full PNP model, taking into account not
only the continuity equations, but also the Poisson equation for
the actual potential across the sample. In Eq. (14) of Ref. [11],
the two contributions depend on the distribution of the ionic
charge as it follows from the following Eqs. (15) of the same
reference, contrary to the analysis presented in Ref. [3] where
the field is assumed independent of the ionic distribution. In
Ref. [11], also the electrical current is evaluated in a correct
manner. It is possible to verify this in the following simple
manner. Let us assume that the electrodes are adsorbing.
We indicate, by σp and σm, the surface density of adsorbed
positive and negative ions on the electrode at x = d due to the
external voltage of amplitude V1. In this case, the boundary
conditions at x = d for the current densities of particles are
jp = dσp/dt and jm = dσm/dt for the positive and negative
ions, respectively. It follows that the electric current density
on the electrode is

j = ε

(
∂E

∂t

)
d

+ q(jp−jm) = ε

(
∂E

∂t

)
d

+q

(
dσp

dt
−dσm

dt

)
,

(22)

that can be rewritten as

j = ∂

∂t
{εE(d,t) + q(σp − σm)t}. (23)

Since the surface electric field is

E(d,t) = q{�(t) − [σp(t) − σm(t)]}, (24)

where q�(t) is the surface charge density sent by the external
power supply to fix the difference of potential �V (t) =
V1 exp(iωt) to the cell, we can finally set Eq. (23) in the form

j = q
d�

dt
, (25)

as reported in Ref. [11]. It follows that the criticism on Ref. [11]
in Ref. [3] is not pertinent.

We have shown that the assumption of uniform electric
field in Ref. [3] across the sample is far from being realistic
and pointed out that, in the framework of the model proposed in
Ref. [3], the electrical current used to determine the admittance
of the cell is not correctly evaluated. We agree with Sawada
that probably the standard PNP model is unable to justify the
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experimental data published in Refs. [1–3] and it has to be
generalized. However, even if the model proposed in Ref. [3]
is able to fit the experimental data with a reasonable value of the
diffusion coefficient assumed on the order of D ∼ 10−9 m2/s,
it seems to us that it is not physically based and contains

inconsistencies. We note that the interpretation of diffusion
coefficients fitted to polarization models requires care as is
underlined in Ref. [7] that the diffusion coefficient, determined
by means of electrode polarization, can be up to four orders of
magnitude higher than the values obtained by NMR.
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