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In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for
incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard
equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB
models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard
equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic
equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests,
including Zalesak’s disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to
test the accuracy and stability of the present model. The results show that, compared with the previous models, the
present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In
addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious
velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high
Reynolds numbers is investigated.
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I. INTRODUCTION

Multiphase flows frequently occur in many important
engineering and scientific applications, but modeling of such
flows is a rather challenging task due to complex interfacial
dynamics between different phases. Interface tracking is a
widely used technique in multiphase flow models, which can
be commonly classified into two categories: sharp interface
methods [1,2] and diffuse interface methods [3,4]. In the sharp
interface methods, different fluids are separated by the sharp
interface and fluid properties such as density and viscosity at
the interface are discontinuous. On the contrary, in the diffuse
interface methods, the interface has a nonzero width and fluid
properties vary smoothly across the interface. These features
make the diffuse interface methods have some advantages
over the sharp interface methods in the study of multiphase
flows in which the interface undergoes a high deformation
and even breaks up. Among the diffuse interface approaches,
the lattice Boltzmann (LB) method [5–8] has received par-
ticular attention in that it can simulate multiphase flows
effectively by incorporating the intermolecular interactions in a
straightforward way.

Over the decades, several types of LB models for mul-
tiphase flows have been developed under different physical
pictures. The first multiphase LB model is the color-gradient
model proposed by Gunstensen et al. [9] based on a lattice
gas method [10]. In this model, two colored particles are
introduced to describe different fluids and the interparticle
interactions are expressed by a local color gradient associated
with the density difference. Subsequently, Shan and Chen
[11,12] proposed another type of multiphase LB model, known
as the pseudopotential model, by introducing an artificial
interparticle potential to describe fluid interactions. This model
gives a nonideal equation of state and has a capacity to
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simulate miscible or immiscible flows via controlling the
interaction strength in a multiphase system [13]. With the
idea of free energy, Swift et al. [14] constructed a third
type of multiphase LB model in which a nonideal pressure
tensor related to the free-energy functional was introduced.
A limitation of the original model is the lack of Galilean
invariance that was restored in the later developed free-energy
models [15–17]. More recently, Inamuro et al. [18] proposed a
free-energy-based model that can simulate multiphase flow
with a large density ratio. Different from the above three
types of models, some kinetic-based multiphase LB models
were proposed based on the Enskog equation [19,20] and
the modified Boltzmann equation [21]. These models usually
have strong physical foundations owing to the underlying
physics of the kinetic theory, but up to now, the practical
applications of these models are still limited. He et al. [22]
developed a more popular incompressible multiphase model,
which is an extension of their former kinetic-theory-based
model [21]. Different from the former model, a pressure
distribution function was introduced in this model such that
the discretization error in the calculation of the forcing terms
was reduced. As a result, the numerical stability of the model
is improved, while the maximum density ratio is still no
more than 15. In addition, an index function was adopted
to track the interface. Based on the model of He et al. [22],
Lee et al. proposed a three-stage stable discretization scheme
[23] and a second-order mixed difference scheme [24] to
calculate the forcing terms so that a large density ratio can
be reached. However, in their models [24,25], the total mass
is not strictly conserved [26–28]. To improve stability at a low
viscosity, the model of He et al. [22] was also extended to the
multiple-relaxation-time (MRT) version [29].

In the aforementioned models [22,23,29] where an order
function is used, the interface capturing equation, namely,
the Chan-Hilliard (CH) equation [4], cannot be completely
recovered [30,31]. To solve this problem, Zheng et al. [30]
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presented a LB model for interface capturing in which a spatial
difference term of the distribution function was introduced.
This term is used to produce the diffusion effect such that
the CH equation can be recovered exactly. Utilizing this LB
model for tracking the interface, they proposed a multiphase
LB model and claimed that the model could tolerate a large
density ratio [31]. However, the later work conducted by
Fakhari and Rahimian [32] showed that the model [31] is
limited to density-matched binary fluids and a MRT version
of the multiphase LB model based on the work of Huang
et al. [33] for interface tracking and the work of He et al.
[22] for flow field was then proposed [32]. This MRT model
is able to simulate multiphase flow with moderate density
ratio and low viscosity, but some additional artifacts are
included in the recovered interface equation, which affects
the numerical accuracy of the model in capturing the interface
(see Sec. III). Recently, similar to the work of Zheng et al.
[30], to recover the CH equation, Zu and He [34] adopted a
spatial difference term of the equilibrium distribution function
instead of the distribution function. It is noted that the model
for interface capturing becomes unstable as the relaxation time
approaches 1.0 and also a prediction-correction step is needed
to evaluate the pressure and velocity since they satisfy two
implicit equations.

In this paper, we propose an alternative MRT LB model
for incompressible multiphase fluid systems. The features
of the present model are summarized as follows. First,
a double-distribution-function model is utilized, in which
one distribution function is used to solve the CH equa-
tion and the other is adopted to solve the Navier-Stokes
(NS) equations. Second, different from the previous models
[30,34], a time-derivative term is incorporated such that
the CH equation can be recovered exactly. In addition,
the MRT collision model is used instead of the single-
relaxation-time (SRT) collision model to improve the nu-
merical stability. Third, we introduce a modified pressure
distribution function that results in the correct incompressible
hydrodynamic equations and simultaneously the pressure and
velocity can be obtained explicitly. Finally, the present model
is capable of simulating low-viscosity or high-Reynolds-
number flows and also guarantees the conservation of the
total mass.

The rest of the present paper is organized as follows.
In Sec. II, the phase-field theory is briefly introduced and
then the present MRT model for multiphase flow systems is
presented; the Chapman-Enskog analysis of the model is also
conducted to match the target equations in the framework of
phase-field theory. Numerical experiments to test the accuracy
and stability of the present model are made in Secs. III and IV.
As an application, the present model is also invoked to study
the Rayleigh-Taylor instability at high Reynolds numbers.
Finally, a brief summary is given in Sec. V.

II. PHASE-FIELD-BASED MRT LB MODEL FOR
INCOMPRESSIBLE MULTIPHASE FLOWS

A. Phase-field theory

In the phase-field theory, the free energy of a multiphase
system can be written as a function of the order parameter

φ [4,35,36],

F (φ) =
∫

�

[ψ(φ) + k|∇φ|/2]d�, (1)

where � is the fluid domain occupied by the system, ψ(φ)
denotes the bulk free-energy density, and k|∇φ|/2 accounts
for the surface energy with a positive coefficient k. If the
system considered is a van der Waals fluid, then the bulk free
energy has a double-well form [4]

ψ(φ) = β(φ − φA)2(φ − φB)2, (2)

where β is a constant relating to the interfacial thickness D

and the surface tension σ by [4]

D = 1

|φA − φB |

√
8k

β
(3)

and

σ = |φA − φB |3
6

√
2kβ. (4)

Here φA and φB are constants that represent fluids A and B,
respectively. With this bulk free energy, the chemical potential
μ can be derived as

μ = ∂F (φ)

∂φ
= dψ(φ)

dφ
− k∇2φ

= 4β(φ − φA)(φ − φB)

(
φ − φA + φB

2

)
− k∇2φ. (5)

Solving the equation μ = 0, one can obtain the one-
dimensional interface profile at the equilibrium state (along
the z direction),

φ(z) = φA + φB

2
+ φA − φB

2
tanh

(
2z

D

)
. (6)

If we assume that the diffusion is driven by the chemical
potential gradient, then the evolution of the order parameter
should be governed by the CH equation [4,35,36]

∂φ

∂t
+ ∇ · φu = ∇ · Mφ(∇μ), (7)

where Mφ is the mobility coefficient and u is the fluid velocity,
and governed by the incompressible NS equations [4,34–38]

∇ · u = 0, (8a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [νρ(∇u + ∇uT )]

+ Fs + G, (8b)

where p is the hydrodynamic pressure, ν is the kinematic
viscosity, and G is the body force. Here the surface tension
force takes the potential form Fs = μ∇φ [4,31].

B. The MRT LB model for the Cahn-Hilliard equation

The generalized evolution equation for the CH equation
reads

hi(x + ciδt,t + δt) − hi(x,t) = −�h
ij [hj (x,t) − h

eq

j (x,t)]

+ δtRi(x,t), (9)
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where hi(x,t) is the order distribution function with velocity
ci at position x and time t , �h

ij is an element of the generalized

collision matrix �h, and Ri(x,t) is the source term. Here
h

eq

i (x,t) is the local equilibrium distribution function, which

is defined as [32,33,39,40]

h
eq

i (x,t) =
{

φ + (ωi − 1)ημ, i = 0

ωiημ + ωi
ci ·φu

c2
s

, i �= 0,

where ωi is the weighting coefficient, cs is the speed of sound, and η is an adjustable parameter that controls the mobility. In the
D2Q9 model, ωi is given by ω0 = 4/9, ω1,...,4 = 1/9, ω5,...,8 = 1/36, cs = c/

√
3, and ci is defined as

ci =
⎧⎨
⎩

(0,0)c, i = 0
(cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1, . . . ,4√

2{cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4]}c, i = 5, . . . ,8,

where c = δx /δt , with δx and δt representing the lattice spacing and time step, respectively. In this study, c = δx = δt = 1.0.
Based on the work of Lallemand and Luo [41], the collision operate �h can be written as

�h = M−1ShM, (10)

where M is the transformation matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which can be used to project hi and h
eq

i onto the moment space
with mh = Mh and meq

h = Mheq , where h = (h0, . . . ,h8)T

and heq = (heq

0 , . . . ,h
eq

8 )T. Here Sh is a diagonal relaxation
matrix

Sh = diag
(
sh

0 ,sh
1 ,sh

2 ,sh
3 ,sh

4 ,sh
5 ,sh

6 ,sh
7 ,sh

8

)
, (11)

where 0 < sh
i < 2. We would like to point out that, if the sh

i

are equal to each other, the MRT model will reduce to the SRT
model. The source term Ri in Eq. (9) is defined as

R = M−1

(
I − Sh

2

)
MR̄, (12)

where I is the unit matrix, R = (R0, . . . ,R8), and R̄ =
(R̄0, . . . ,R̄8) with [42]

R̄i = ωici · ∂tφu
c2
s

. (13)

Applying the Chapman-Enskog expansion to Eq. (9), we can
derive the CH equation exactly with the mobility Mφ given by

Mφ = ηc2
s (τh − 0.5)δt, (14)

where τh = 1/sh
3 = 1/sh

5 (see Appendix A). The order param-
eter in the present model is calculated as

φ =
∑

i

hi (15)

and the density is determined by the value of φ,

ρ = φ − φB

φA − φB

(ρA − ρB) + ρB. (16)

It should be noted that the MRT model for interface capturing
proposed by Fakhari and Rahimian [32] is slightly different
from our model in the evolution equation. In their model, the
source term Ri is not included in Eq. (9), which leads to an
artificial term in the recovered equation

∂φ

∂t
+ ∇ · (φu)

= ∇ · Mφ(∇μ) + (1/sh
3 − 0.5

)
δt∇ · (ε∂t1φu). (17)

As can be clearly seen, the additional term of O(δtMa) appears
in the recovered equation, which will produce a larger error
in the interface capturing compared to our model shown in
Sec. III.

C. The MRT LB model for the incompressible
Navier-Stokes equations

The starting point of the proposed model for the incom-
pressible NS equations is the discrete Boltzmann equation
with a generalized collision matrix �f [22,25],

Dfi

Dt
=
(

∂

∂t
+ ci · ∇

)
fi

= −�
f

ij

(
fj − f

eq

j

)+ (ci − u) · F
c2
s

�i(u), (18)

where fi is the density distribution function, �f

ij is an element

of collision matrix �f , f
eq

i is the equilibrium distribution
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function

f
eq

i = ωiρ + ρsi(u),

si(u) = ωi

[
ci · u
c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
, (19)

and �i(u) = f
eq

i /ρ. The total force F is defined as

F = −∇(p − ρc2
s

)+ Fs + Fa + G, (20)

in which Fa = ρA−ρB

φA−φB
∇ · (Mφ∇μ)u is an interfacial force

introduced by Li et al. [38].
Different from the previous works [22–25,32,38], we

introduce a pressure distribution function

gi =
{

fi + ( p

c2
s
− ρ)�(0) − p

c2
s
, i = 0

fi + ( p

c2
s
− ρ)�(0), i �= 0.

Taking the total derivative of the variable gi , according to
Eq. (18), the evolution equation of gi can be written as

Dgi

Dt
= −�

f

ij

(
gj − g

eq

j

)+ Fi, (21)

where

gi
eq =

{
p

c2
s
(ωi − 1) + ρsi(u), i = 0

p

c2
s
ωi + ρsi(u), i �= 0,

and

Fi = (ci − u)

c2
s

· {[�i(u) − �i(0)]∇(ρc2
s

)
+ (Fs + Fa + G)�i(u)}. (22)

Note that the terms associated with u · ∇p, which are of
O(Ma3) for incompressible flows (Ma � 1), are dropped
from Eq. (22). Integrating Eq. (21) from time t to t + δt and
using the trapezoidal rule, one can obtain

gi(x + ciδt ,t + δt ) − gi(x,t)

= δt

2

[−�
f

ij

(
gj − g

eq

j

)+ Fi

]
∣∣∣∣
(x+ci δt ,t+δt )

+ δt

2

[−�
f

ij

(
gj − g

eq

j

)+ Fi

]∣∣∣∣
(x,t)

. (23)

Here the evolution equation for gi is implicit, as shown in
Eq. (23). To remove this implicitness, we introduce a modified
particle distribution function

ḡi = gi − δt

2

[−�
f

ij

(
gj − g

eq

j

)+ Fi

]
. (24)

Then Eq. (23) can be recast as

ḡi(x + ciδt ,t + δt ) = gi(x,t) + δt

2

{−�
f

ij

[
gj (x,t) − g

eq

j (x,t)
]

+Fi(x,t)
}
. (25)

Similar to Eq. (10), �f can be expressed as [41,43]

�f = M−1Sf M, (26)

where Sf = diag(sf

0 ,s
f

1 ,s
f

2 ,s
f

3 ,s
f

4 ,s
f

5 ,s
f

6 ,s
f

7 ,s
f

8 ), and then we
can rewrite Eq. (25) in the vector form

ḡ(x + ciδt ,t + δt )

= M−1

[(
I − δt

2
Sf

)
mg + δt

2
Sf meq

g + δt

2
MF̄
]
, (27)

where ḡ and F̄ are the 9-tuple vectors of the distribution
functions ḡi and Fi , respectively, mg = Mg, and meq

g = Mgeq

with g = (g0, . . . ,g8)T and geq = (geq

0 , . . . ,g
eq

8 )T. Based on
the definition of ḡi , given by Eq. (24), one can easily derive

mg =
(

I + δt

2
Sf

)−1[
m̄g + δt

2
Sf meq

g + δt

2
MF̄
]
, (28)

where m̄g = Mḡ with ḡ = (ḡ0, . . . ,ḡ8)T. Substituting Eq. (28)
into Eq. (27), with some matrix manipulations we can obtain
the evolution equation for ḡi in an explicit scheme

ḡi(x + ciδt ,t + δt ) − ḡi(x,t)

= −[M−1SgM]ij
[
ḡj (x,t) − g

eq

j (x,t)
]

+ δt

[
M−1

(
I − Sg

2

)
M
]

ij

Fj (x,t), (29)

where Sg = diag(sg

0 ,s
g

1 ,s
g

2 ,s
g

3 ,s
g

4 ,s
g

5 ,s
g

6 ,s
g

7 ,s
g

8 ), s
g

i = 2δt s
f

i

2+δt s
f

i

for

all i, and the MRT model also reduces to the SRT version if
all the elements of Sg are identical to each other. By taking the
first-order moment of ḡi , the fluid velocity can be obtained

u =
[∑

i

ci ḡi + 0.5δt (Fs + G)

]/

[ρ − 0.5δt (ρA − ρB)∇ · Mφ∇μ/(φA − φB)]. (30)

As shown in Appendix B, the pressure can be calculated as

p = c2
s

1 − ω0

[∑
i �=0

ḡi + δt

2
u · ∇ρ + ρs0(u)

]
(31)

and the kinematic viscosity is determined by

ν = c2
s (τg − 0.5)δt , (32)

where τg = 1/s
g

7 = 1/s
g

8 . Note that the fluid velocity and pres-
sure in our model can be computed explicitly [see Eqs. (30) and
(31)], while a prediction-correction step is needed to evaluate
them in the previous model [34]. In addition, the present model
can also recover the incompressible hydrodynamic equations
exactly (see Appendix B for details).

III. NUMERICAL TESTS FOR
THE INTERFACE-CAPTURING LB MODEL

In this section, we validate the proposed LB model for
interface capturing by using three benchmark tests: Zalesak’s
disk rotation [44], a single vortex [45], and a deformation
field [46]. In these validations, Eq. (9) is only used since the
velocity field has been prespecified. To quantitatively describe
the accuracy of the present model and compare with the
existing LB models [30,32,34], the following relative error
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FIG. 1. Initial setup for three tests: (a) Zalesak’s disk rotation, (b) a single vortex, and (c) a deformation field.

is used [47]:

Eφ =
∑
x

|φ(x,T ) − φ(x,0)|∑
x

|φ(x,0)| , (33)

where φ(x,T ) is the computational result of order parameter
after a periodic time T and φ(x,0) is the initial solution.
In the present study, the explicit difference scheme [39]
∂tχ (x,t) = [χ (x,t) − χ (x,t − δt )]/δt is used for computing
the time derivative in Eq. (13) and the second-order isotropic
central schemes [27]

∇χ (x,t) =
∑
i �=0

ωiciχ (x + ciδt ,t)

c2
s δt

, (34a)

∇χ2(x,t) =
∑
i �=0

2ωi[χ (x + ciδt ,t) − χ (x,t)]

c2
s δ

2
t

(34b)

are adopted to discretize the spatial gradients since the global
mass conservation can be guaranteed [28]. Here χ is an
arbitrary function.

A. Zalesak’s disk rotation

Zalesak’s disk is a widely used case to test basic features of
an interface capturing model. In this test the disk with a slot is
initially placed at the center of a 200 × 200 square computation
domain, as illustrated in Fig. 1(a). The disk radius and the slot
width are set as 80 and 16 in lattice units, respectively. The

rotation of the disk is driven by a vortex flow with the velocity
(u,v),

u = −w(y − 0.5d), v = w(x − 0.5d), (35)

where d = 200 and w is a constant angular velocity. Here
we set w = U0π/d such that the disk will return to its initial
location after one period T = 2d/U0. In our simulations, some
other physical parameters are set as D = 2.0, σ = 0.04, and
φA = −φB = 1.0. The order parameter is initialized by φA

inside the disk and φB elsewhere. The relaxation times sh
3

and sh
5 are chosen as 4

3 , which corresponds to the relaxation
time of 0.75 taken in Zu and He’s model [34]. Considering
the components of the equilibrium in moment space, we
fix sh

0 = sh
7 = sh

8 = 1.0 as usual, sh
1 = sh

2 , and sh
4 = sh

6 . The
relaxation times sh

1 (= sh
2 ) and sh

4 (= sh
6 ) can be freely adjusted

to improve the stability and accuracy of the MRT model.
In this test, sh

1 ranging from 0.8 to 1.3 and sh
4 in the wide

scope of 0.6 � sh
4 � 1.4 can give good results. As one case,

we set sh
1 = sh

2 = sh
4 = sh

6 = 1.3. To simplify the description,
the dimensionless Péclet number (Pe) is introduced and is
defined as Pe = U0D/Mφβ(φA − φB)2 [34]. Unless otherwise
specified, the periodic boundary conditions are applied at all
boundaries.

We first present a comprehensive comparison among
different LB models. Figure 2 shows the interface patterns
after one period at Pe = 200 and U0 = 0.025. Note that
the interface is displayed by the contour level of φ = 0.
We can clearly see that the results by the model of Zheng

T
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200
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50
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FIG. 2. Results of Zalesak’s disk test after one period at Pe = 200 and U = 0.025 for (a) the present model, (b) the model of Zheng et al.
[30], (c) Fakhari and Rahimian’s model [32], and (d) Zu and He’s model [34].
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FIG. 3. Results of Zalesak’s disk test after one period at Pe = 200 and U = 0.04 for (a) the present model, (b) model B [30], (c) model C
[32], and (d) model D [34].

et al. [30] (labeled as model B) are unstable, which not only
produce quantities of sawteeth along the edge of the disk, but
also present many unphysical disturbances around the square
computational domain. In contrast, the other three models give
a more stable interface. Nonetheless, a small distortion near
the corner of the slot is observed in the results of Fakhari and
Rahimian’s model [32] (labeled as model C) and the results
by Zu and He’s model [34] (labeled as model D) are slightly
asymmetric. As mentioned above, the recovered equation by
model C contains an additional term, which is of O(δtMa).
To see the effect of the term more clearly, we performed the
simulations in which Pe is kept at 200, but U0 is increased to
0.04. As shown in Fig. 3, we can observe that there exist some
obvious jagged shapes in the vicinity of the interface, which
indeed produce a larger error than the last situation. Model B
is still worst in tracking the interface and the results of model
D are slightly twisted at the corner of the slot, while our model
generates relatively accurate results. To show the advantage
of our present model, we further conducted numerical tests
at a larger Péclet number. Figure 4 shows the results at
Pe = 700 and U0 = 0.025. It is obvious from Fig. 4 that the
previous models induce some diffusion around the edge of
the disk and also quantities of jetsam. On the contrary, our
present model can still obtain a stable and accurate interface.
To give a quantitative comparison among these models, the
relative errors Eφ after one period were computed and are
listed in Table I. It can be seen that our model is much more
accurate than the other three models in capturing the interface,
especially at a larger Péclet number. Actually, obtaining an

accurate order parameter is very important in that the density
field is determined by the value of the order parameter.

Finally, to show some advantages of the present MRT model
over the SRT version, a comparison between them is conducted
with the above two cases. The SRT model is derived when all
the relaxation parameters in Sh are equal. Here we set all
sh
i as 4

3 . Figure 5 shows the disk interface at time T by the
SRT model. It can be seen that the SRT model can obtain a
stable interface at a low Péclet number of 200. However, when
the Péclet number is increased to 700, the results of the SRT
model become unstable, which produce many disturbances
around the edge of the disk. In contrast, the MRT model can
still obtain good results [see Fig. 4(a)], which suggests that the
MRT model is much more stable and accurate than the SRT
model in capturing the interface.

B. Single vortex

As shown above, Zalesak’s disk test does not cause large
topological changes in which the shape of the interface remains
unchanged during the rotation process. In order to test the
capacity of the present MRT model in capturing a more
deformed and stretched interface, the time-reversed single-
vortex test is also considered. This test poses some challenges
as the velocity field is time dependent and strongly nonlinear,

u = U0 sin2 πx

d
sin

2πy

d
cos

πt

T
,

(36)

v = −U0 sin
2πx

d
sin2 πy

d
cos

πt

T
,
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FIG. 4. Results of Zalesak’s disk test after one period at Pe = 700 and U = 0.025 for (a) the present model, (b) model B, (c) model C, and
(d) model D.
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TABLE I. Relative errors of Zalesak’s disk test.

Pe U0 Present model Model B Model C Model D

200 0.025 2.75 × 10−2 5.07 × 10−1 2.95 × 10−2 3.12 × 10−2

200 0.04 2.76 × 10−2 7.96 × 10−1 8.44 × 10−2 3.28 × 10−2

700 0.025 4.93 × 10−2 1.58 6.3 × 10−1 4.03 × 10−1

where t is the evolution time scaled by d/U0. The initial
setup is shown in Fig. 1(b), where the computational grid is
200 × 200 and the disk has a radius of 40 centered at (100,150).
The simulated parameters σ , D, φA, φB , and Sh are the same
as those in the previous test. The order parameter is set equal
to φA inside the disk and φB outside the disk, respectively, and
a period T is set equal to 6. Theoretically, the disk’s interface
will be stretched progressively into a thin filament that spirals
towards the vortex center until undergoing the largest deforma-
tion at time T/2. Then, if the velocity field is reversed in time,
the disk will return to its initial position at time T . We tested
this problem with different models and present the results in
Fig. 6, where Pe = 500 and U0 = 0.04. We can see that in the
results of the present model, the disk can return to its original
position without any distortion after one period. Models C and
D can also give accurate results, while some serious distortions
around the disk can be observed in the results of model B.
As expected, if we increase the velocity U0, model C would
have a larger error. To confirm this statement, we performed
the simulations at Pe = 500 and a larger velocity U0 = 0.08.
As seen from Fig. 7, we not only observe that the interface
of the disk obtained by model C has some distortions, but
also find that some unphysical disturbances appear both inside
and outside the disk. Similar unphysical phenomena are also
observed in the results of models B and D. On the contrary, the
present model can give the accurate results. In order to test the
ability of our model for the case with large Pélect number, we
also carried out some simulations at Pe = 1500. From Fig. 8
it can be clearly seen that the present model can still obtain
a stable and accurate interface while the other three models
produce some unphysical disturbances. The relative errors Eφ

were calculated to give a quantitative comparison among the
four models and are summarized in Table II. It can be found
that the present model generates a smaller error than the other
three models at a large Péclet number or a large velocity.

T
(a) (b)
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FIG. 5. Results of Zalesak’s disk test by the SRT model at
(a) Pe = 200 and U = 0.025 and (b) Pe = 700 and U = 0.025.

C. Deformation field

The above two tests have shown the advantage of the
present model in interface capturing. To further present the
capacity of the present model, here we also apply it to study
the problem of deformation field, which is considered one of
the most stringent benchmarking problems including complex
evolution of the interface [46]. Initially, a circular body with
a radius of 100 is placed in the middle of the computational
domain 500 × 500, as illustrated in Fig. 1(c). The velocity
(u,v) is given by

u = −U0 sin

[
nπ

(
x

d
+ 0.5

)]
sin

[
nπ

(
y

d
+ 0.5

)]
cos

πt

T
,

v = −U0 cos

[
nπ

(
x

d
+ 0.5

)]
cos

[
nπ

(
y

d
+ 0.5

)]
cos

πt

T
,

(37)

where t is the scaled time by d/U0 and n is the number of
vortices. In our simulations, U0 = 0.025, n = 4, T = 1.25,
and the Péclet number is fixed at 200. The rest of the parameters
are set as those in Zalesak’s disk test. Figure 9 shows the
evolution of the interface in one period T . During the first
half period, the circular body is continuously entrained by the
vortices and a very thin filamentary structure is formed at time
T/2, while in the second half period, the thin filament moves
back and returns to the initial configuration at time T . We
clearly see from Fig. 9 that the symmetry of the interface is
well retained and the final profile of the interface at time T is
almost the same as the initial state. The relative error Eφ is
approximately 1.22 × 10−2, which has the same order as those
in the previous two tests.

IV. NUMERICAL TESTS FOR THE MRT LB MODEL
FOR MULTIPHASE FLOWS

A. Static droplet test

A basic static droplet test is first performed to validate
the present model for multiphase flows. Initially, the droplet
with R = 25 is placed at the center of a 100 × 100 lattice
domain and the periodic boundary condition is applied at
all boundaries. In our simulations, some physical parameters
are fixed as ρA = 1.0, ρB = 100.0, D = 5.0, σ = 0.001,
φA = −φB = −1.0, and sh

3 = sh
5 = 1.25; the other relaxation

parameters in Sh are chosen to be the same as those in Sec. III.
Note that sg

0 , sg

3 , and s
g

5 have no influence on the deriving of the
NS equations. For simplicity, the relation s

g

0 = s
g

3 = s
g

5 = 1.0
is used [29]. Here s

g

7 and s
g

8 are set equal to 1.88, which can
be used to derive a low kinematic viscosity ν = 0.01. The
other relaxation factors in Sg are chosen as s

g

1 = s
g

2 = 1.0 and
s
g

4 = s
g

6 = 1.7 [25]. The initial interface profile is given by

φ(x,y) = φB + φA

2
+ φB − φA

2

× tanh

(
2
R −

√
(x − xc)2 + (y − yc)2

D

)
, (38)

where (xc,yc) is the coordinate of droplet center. Based on
Eq. (16), one can derive the corresponding initial density
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FIG. 6. Results of the single-vortex test at Pe = 500 and U = 0.04 for (a) the present model, (b) model B, (c) model C, and (d) model D.

profile

ρ(x,y) = ρB + ρA

2
+ ρB − ρA

2

× tanh

(
2
R −

√
(x − xc)2 + (y − yc)2

D

)
. (39)

Figure 10(a) shows the density distribution as a function
of the distance from the droplet center with three values
of mobility Mφ = 0.01,0.1,1.0. It can be clearly seen that
the density profiles for three cases retain the original shape,
except for a slight deviation at the interface for Mφ = 1.0.
This minor deviation is induced by the increasing diffusion
effect as the value of mobility becomes large [34]. The
pressure distribution across the domain center for Mφ = 0.01
is presented in Fig. 10(b), where the pressure is calculated
by P = p − kφ∇2φ − k|∇φ|2/2 + p0 and p0 = φ∂φψ − ψ

is the equation of state [32,34]; PA and PB are the pressures of
fluids A and B. According to the Laplace law, we can get the
ratio between the surface tension computed by our model and

the one given in Eq. (4), σMRT/σ = R(PB − PA)/σ = 0.965,
which suggests that the Laplace law is well satisfied.

We next consider the spurious velocity produced by the
present model. The spurious velocity is a common concerning
problem in two-phase flows [27,48] and cannot be completely
removed [27]. However, it may benefit from the extra flexibility
to reduce the spurious velocity if the MRT model is adopted
in the collision process [48]. In Fig. 10(c), the velocity fields
derived by both the present MRT model and the SRT version
are shown. Here the SRT model is derived when the SRT
collision scheme is used for both the CH equation and the NS
equations. It can be clearly seen from Fig. 10(c) that spurious
velocities by the SRT model appear around the edge of the
droplet, while they can be reduced to some extent by the MRT
model. The maximum magnitudes of the spurious velocity
generated by the MRT model and the SRT version are 7.1 ×
10−8 and 7.8 × 10−6, respectively. In addition to weakening
the spurious current, the MRT model is also able to reduce
the large fluctuation of the maximal kinetic energy Emax =
(ρ|u|2/2)max at early times, as shown in Fig. 10(d). In the
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FIG. 7. Results of the single-vortex test at Pe = 500 and U = 0.08 for (a) the present model, (b) model B, (c) model C, and (d) model D.
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FIG. 8. Results of the single-vortex test at Pe = 1500 and U = 0.04 for (a) the present model, (b) model B, (c) model C, and (d) model D.

MRT model Emax varies from 10−13 to 10−11 at the initial
stage, whereas it suffers from a large fluctuation ranging from
10−12 to 10−4 in the SRT model.

B. Rayleigh-Taylor instability

To demonstrate the capacity of the present model in the
study of the high-Reynolds-number two-phase flows, we con-
ducted some simulations of Rayleigh-Taylor instability (RTI)
[49] at high Reynolds numbers. Rayleigh-Taylor instability
is a fundamental interfacial instability that will occur when a
heavier fluid is accelerated against a lighter one in the presence
of a slight perturbation at the interface. This instability plays
a significant role in extensive areas such as astrophysics [50]
and confinement fusion [51]. Due to its wide and important
applications, the RTI has been extensively studied by using
experimental measurements [52], theoretical analysis [53–56],
and as well as numerical approaches [22,34,37,38,57–61].
However, the Reynolds number considered in the previous
works is relatively low and the late-time quantitative descrip-
tion of the immiscible RTI at high Reynolds numbers is still
lacking. To fill this gap, the immiscible RTI at high Reynolds
numbers is studied by the present model.

The physical system we consider here is a domain of
[0,d] × [0,4d], which consists of two layers of fluids with
a heavy fluid at the top and a light one at the bottom. The
initial interface is h = 2d + 0.05d cos(2πx/λ), where λ is
the wavelength. To be smoothed across the interface, the
initial order profile is set as φ(x,y) = tanh 2(y − h)/D. The
dimensionless Reynolds number and the Atwood number (A)
characterizing RTI are defined respectively as [62]

Re = λ
√

Agλ/(1 + A)/ν, A = (ρl − ρg)/(ρl + ρg). (40)

In our simulations, the physical parameters are fixed as
d = λ = 256,

√
gλ = 0.04, A = 0.1, Pe = 40, D = 4.0, and

σ = 5.0 × 10−5 and the relaxation parameters in Sh and Sg

are given as those in the above static droplet tests except for s
g

7

TABLE II. Relative errors of the single-vortex test.

Pe U0 Present model Model B Model C Model D

500 0.04 2.74 × 10−2 4.67 × 10−1 2.72 × 10−2 2.72 × 10−2

500 0.08 2.81 × 10−2 8.4 × 10−1 2.14 × 10−1 1.32 × 10−1

1500 0.04 3.55 × 10−2 1.22 2.58 × 10−1 1.59 × 10−1

and s
g

8 ; s
g

7 and s
g

8 are adjustable according to the value of the
Reynolds number. The boundary conditions adopted are those
in Ref. [22]. The computational mesh 256 × 1024 is used
since it already gives grid-independent results. The detailed
grid-independent test is deferred to Appendix C. Figure 11
depicts the evolution of the instability at four different values
of Re. From Fig. 11 we can observe the significantly distinct
behaviors of instability at different values of Re. At high Re,
the spike of the heavy fluid first falls down and gradually
rolls up, forming into two counterrotating vortices. Then these
two vortices continue to grow, which results in a pair of
secondary vortices at the tails of the roll-ups. Finally, the
interface undergoes a chaotic breakup, which induces the
formation of an abundance of small dissociative droplets in
the system. In contrast, at low Re the spike of the heavy fluid
falls down and the bubble of the light fluid rises up slowly
and no vortices are observed in the whole process as the
shear layer between the bubble and spike is stabilized due
to the larger viscosity effect. We also conducted a quantitative
study of the Reynolds number effect. Figures 12(a) and 12(b)
present the evolution of the normalized bubble amplitude and
velocity with nondimensional time. The normalized bubble
velocity is commonly referred to as the bubble Froude number,
which is defined as Frb = ub/

√
Agλ/(1 + A) [63]. For the

high-Re case, the RTI undergoes a number of stages, including
linear growth, terminal velocity, reacceleration, and chaotic
development. At the linear stage (t � 1), the amplitude has a
growth with an exponential form [52] and the growth rate γ is
given by the well-known linear theory [52,53]

γ =
√

Agk − σk3/(ρl + ρg), (41)

where k = 2π/λ is the wave number. It should be noted
that the above formula is the theoretical result of inviscid
fluids subjected to surface tension. Combining the effect of
viscous force, Menikoff et al. [54] proposed the lower and
upper bounds to the growth rate, which are the solutions
of the quartic and quadratic equations (see Appendix D for
details). Figure 14 shows the growth rates at various values
of Re. It is seen that the present model can give accurate
predictions of the growth rate, which are located in the region
between the lower and upper bounds. At the second stage,
the bubble evolves with a constant terminal velocity that is
sustained for 1 � t � 2.5. The classic potential flow model
[55] analytically predicts constant bubble and spike velocities
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FIG. 9. Results of the deformation field test at Pe = 200 and U = 0.04 for the present model.

ub,s = √
2Ag/3k(1 ± A), yielding a bubble Froude number

of 0.325 and a spike Froude number of 0.365, respectively.
We compared the simulated results Frb and Frs with these
theoretical values in Figs. 12(b) and 13(b). It can be found
that good agreement between them can be achieved. For
2.5 � t � 3.5, however, the vortical interactions gradually
increase and begin to affect the velocities at the tips of the
bubble and spike. Due to this increasing vortical effect, the
bubble and spike are accelerated such that the velocities in this
region diverge from the solutions to a potential flow problem.
This process is termed reacceleration and was first identified
by Glimm et al. [64] and further verified by Ramaprabhu
et al. [65]. The reacceleration cannot go on continuously.
After t � 3.5, the bubble Froude number becomes unstable
and begins to fluctuate with the time, suggesting that the
evolution has transformed to the chaotic stage. To show the
nature of the growth at this stage, we present the normalized
bubble acceleration a/2Ag in Fig. 15(a), in which the smaller
wavelength λ = 128 case was chosen to make the simulation
last longer. As can be seen from Fig. 15(a), the normalized
acceleration at late time fluctuates around a constant value of
0.07, resulting in a stationary average acceleration. Therefore,
the bubble front at late time has a quadratic growth as hb =
αAgt2, where the coefficient α is 0.07. The quadratic growth
at late time was also observed in previous work [62]. With this
value, the bubble Froude number at late time fluctuates around
the trajectories having the corresponding slope of 0.15, as
shown in Fig. 15(b). For the low-Re case, some late growth
stages, such as reacceleration and chaotic development, maybe
no longer be attained. For instance, at Re = 30, the late-time
flow at the tip of bubble is approximately described by the
potential flow approach, as the bubble Froude number during
this stage approaches a constant value [see Fig. 12(b)]. Both
the chaotic stage and reacceleration are no longer observed. It
is also noted that the terminal bubble Froude number is below
the theoretical value of 0.325. That is because the viscosity

effect becomes important when the Reynolds number is small
enough. Banerjee et al. [56] recently realized this effect and
modified the terminal bubble velocity including viscous effects
and vorticity w0 as

Frb =
(√

2Ag

3(1 + A)k
+ 1 − A

1 + A

w2
0

4k2
+ 4

9
k2ν2 − 2

3
kν

)/

×
√

Agλ

1 + A
. (42)

Based on Eq. (42), the terminal Frb for Re = 30 is 0.248, which
is slightly smaller than the 0.26 given by the present model.

We also carried out the simulation to give a comparison
with the experiment of immiscible RTI by Waddell et al. [52].
In their experiment, the Atwood number was 0.336 and the
Reynolds number was approximately 10 000 based on the
definition in Eq. (40). The two immiscible fluids in a 121-mm-
wide tank were accelerated by 1.34g with an initial wavelength
of 35 mm. Figure 16 depicts a sequence of the interface patterns
obtained by the present model. It is found that the behaviors of
the interface are very close to experimental images presented
in Fig. 6 of Ref. [52]. The main structures such as the roll-ups
and the late-time chaos in the experiment are also observed
in our simulations. We further present the bubble and spike
amplitudes as functions of time in Fig. 17, where the marked
points were taken from experimental measurements. As can be
seen from Fig. 17, the simulation results are in good agreement
with the experimental data.

V. SUMMARY

In this paper, a MRT LB model based on the phase-
field theory was developed for incompressible multiphase
flow systems. In this model, two distribution functions are
utilized to solve the CH equation and the incompressible NS
equations. The Champan-Enskog analysis shows that both
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FIG. 10. (Color online) Static droplet test: (a) density profile across the interface with different values of Mφ , (b) pressure distribution for
Mφ = 0.01, (c) spurious currents in the upper plane (MRT) and lower plane (SRT), and (d) maximum kinetic energy versus time.

the CH equation and the incompressible NS equations can
be exactly recovered from the model. To test the present
model, we performed a large number of numerical simulations
and conducted a comprehensive comparison among different
LB models. The results show that the present model is more
accurate and more stable in capturing the interface. In addition,
it was also found that the spurious velocity can be effectively
reduced by using the present model.

As an important application, the present model was also
used to study the immiscible RTI problem, in which the effect
of Re is investigated in detail. It was found that the instability
undergoes different growth stages at low and high values of Re.
At high Re, a sequence of growth stages are obtained, including
linear growth, terminal velocity, reacceleration, and chaotic
development. At early stages, both the linear growth rate and
the terminal Froude number quantitatively agree well with the
theoretical predictions. The late chaotic stage is also observed
by the present model. At this stage, the mean acceleration is
found to be a constant, which indicates a quadratic growth. In
contrast, at low Re, some late growth stages, such as chaotic
development, could no longer be reached. Finally, we also
carried out the simulation of RTI to give a comparison with
the experiment and good agreement was achieved.

In conclusion, the present model can improve the perfor-
mance in interface capturing and also has been proven to be
promising in the study of low-viscosity or high-Reynolds-
number two-phase flows; therefore, we expect that the present
work can play an important role in studying complex interfacial
flows.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE
MRT LB MODEL FOR THE CAHN-HILLIARD EQUATION

To derive the interface governing equation (7), we first
expand the order distribution function, with derivatives of time
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FIG. 11. (Color online) Evolution of the density contours in immiscible RTI at various values of Re: (a) Re = 30, (b) Re = 150,
(c) Re = 3000, and (d) Re = 30 000. The time is normalized by the characteristic time

√
λ/Ag.

and space in consecutive scales of ε:

hi = h
(0)
i + εh

(1)
i + ε2h

(2)
i + · · · , (A1a)

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1, (A1b)

where ε is a small expansion parameter. By applying the Taylor
expansion to Eq. (9), then it can be written as

Dihi + δt

2
D2

i hi + · · · = − 1

δt
(M−1ShM)ij

(
hj − h

eq

j

)+ Ri,

(A2)

where Di = ∂t + ci · ∇. Substituting Eqs. (A1a)–(A1b) into
Eq. (A2) and treating the terms in the zeroth, first, and second
order of ε separately gives

h
(0)
i = h

(eq)
i , (A3a)

D1ih
(0)
i = − 1

δt

(M−1ShM)ij h
(1)
j +

[
M−1

(
I − Sh
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)
M
]

ij

R̄j
(1)

,

(A3b)

∂t2h
(0)
i + D1ih

(1)
i + δt

2
D2

1ih
(0)
i

= − 1

δt

(M−1ShM)ij h
(2)
j +

[
M−1

(
I − Sh

2

)
M
]

ij

R̄j
(2)

(A3c)

for ε0, ε1, and ε2, respectively, in which D1i = ∂t1 + ci · ∇1,

R̄i
(1) = ωici ·∂t1 φu

c2
s

, and R̄i
(2) = ωici ·∂t2 φu

c2
s

. Applying Eq. (A3b) to
the left-hand side of Eq. (A3c) and multiplying the matrix M
on both sides of Eqs. (A3a)–(A3c), we can obtain the following
equations in the moment space:

m(0)
h = m(eq)

h , (A4a)

D̂1m(0)
h = −Sh′

m(1)
h +

(
I − Sh

2

)
MR̄(1), (A4b)

∂t2 m(0)
h +D̂1

(
I−Sh

2

)
m(1)

h +δt

2
D̂1

(
I−Sh

2

)
MR̄(1)

= −Sh′
m(2)

h +
(

I − Sh

2

)
MR̄(2) (A4c)

for ε0, ε1, and ε2, respectively, where Sh′ = Sh/δt , D̂1 =
MD1M−1, D1 = ∂t1 I + ∇1 · diag(c0,c1, . . . ,c8), and m(1)

h =
(m(1)

h0 ,m
(1)
h1 ,m

(1)
h2 ,m

(1)
h3 ,m

(1)
h4 ,m

(1)
h5 ,m

(1)
h6 ,m

(1)
h7 ,m

(1)
h8 )T. According to

Eq. (A4a), we can get

m(0)
h = Mh(eq) =

(
φ, − 4φ + 2ημ,4φ

− 3ημ,
φux

c
,
−φux

c
,
φuy

c
,
−φuy

c
,0,0

)T

. (A5)
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FIG. 12. (Color online) Effect of Reynolds number on (a) normalized bubble amplitude and (b) normalized bubble velocity. The time is
normalized by the characteristic time

√
λ/Ag. The dashed line represents the analytical solution of the classic potential flow model [55].

Substituting Eq. (A5) into Eq. (A4b), one can obtain the
following three equations associated with φ and φu at the
ε scale:

∂t1φ + ∂x1φux + ∂y1φuy = 0, (A6a)

∂t1φux + ∂x1c
2
s ημ = −sh′

3 m
(1)
h3 +

(
1 − sh

3

2

)
∂t1φux

c
(A6b)

∂t1φuy + ∂y1c
2
s ημ = −sh′

5 m
(1)
h5 +

(
1 − sh

5

2

)
∂t1φuy

c
. (A6c)

Similarly, from Eq. (A4c), the equation of the conserved
moment φ at the ε2 scale can be written as

∂t2φ + ∂x1

(
1 − sh

3

2

)
cm

(1)
h3 + ∂y1

(
1 − sh

5

2

)
cm

(1)
h5

+ δt

2
∂x1

(
1 − sh

3

2

)
∂t1φux + δt

2
∂y1

(
1 − sh

5

2

)
∂t1φuy = 0.

(A7)

Note that m
(1)
h3 and m

(1)
h5 are unknown and will be deter-

mined below. With the aid of Eqs. (A6b) and (A6c), we

can get

sh′
3 m

(1)
h3 = −∂t1φux − ∂x1c

2
s ημ +

(
1 − sh

3

2

)
∂t1φux

c
, (A8a)

sh′
5 m

(1)
h5 = −∂t1φuy − ∂y1c

2
s ημ +

(
1 − sh

5

2

)
∂t1φuy

c
. (A8b)

Substituting Eqs. (A8a) and (A8b) into Eq. (A7), the second-
order equation in ε is rewritten as

∂t2φ = ∂x1

[
ηc2

s δt

(
1

sh
3

− 1

2

)
∂x1μ

]

+ ∂y1

[
ηc2

s δt

(
1

sh
5

− 1

2

)
∂y1μ

]
. (A9)

For the isotropic diffusion considered here, the relation sh
3 = sh

5
should be satisfied. Combining Eq. (A6a) at t1 time scale and
Eq. (A9) at t2 time scale, we can obtain the recovered CH
equation

∂φ

∂t
+ ∇ · φu = ∇ · Mφ(∇μ), (A10)

where Mφ = ηc2
s δt ( 1

sh
3

− 1
2 ) is the mobility.
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FIG. 13. (Color online) Effect of Reynolds number on (a) normalized spike amplitude and (b) normalized spike velocity. The time is
normalized by the characteristic time

√
λ/Ag. The dashed line represents the analytical solution of the classic potential flow model [55].
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APPENDIX B: CHAPMAN-ENSKOG ANALYSIS OF THE
MRT LB MODEL FOR THE INCOMPRESSIBLE

HYDRODYNAMIC EQUATIONS

In this section, the proposed model for hydrodynamic
equations is analyzed by applying the Chapman-Enskog
expansion

ḡi = ḡ
(0)
i + εḡ

(1)
i + ε2ḡ

(2)
i + · · · , (B1a)

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1, Fi = εFi
(1). (B1b)

Using the Taylor expansion in Eq. (29), one can obtain

Diḡi + δt

2
D2

i ḡi + · · · = − 1

δt

(M−1SgM)ij
(
ḡj − g

eq

j

)
+
[

M−1

(
I − Sg

2

)
M
]

ij

Fj . (B2)

Based on Eqs. (B1a) and (B1b), we can rewrite Eq. (B2) in
consecutive orders of the parameter ε as

ḡ
(0)
i = g

(eq)
i , (B3a)

D1i ḡ
(0)
i = − 1

δt

(M−1SgM)ij ḡ
(1)
j

+
[

M−1

(
I − Sg

2

)
M
]

ij

Fj
(1), (B3b)

∂t2 ḡ
(0)
i + D1i ḡ

(1)
i + δt

2
D2

1i ḡ
(0)
i = − 1

δt

(M−1SgM)ij ḡ
(2)
j

(B3c)

for ε0, ε1, and ε2, respectively. Multiplying matrix M on
the both sides of Eqs. (B3a)–(B3c) yields the corresponding
moment equations

m(0)
g = m(eq)

g , (B4a)

D̂1m(0)
g = −Sg′

m̄(1)
g +

(
I − Sg

2

)
MF̄(1), (B4b)

∂t2 m(0)
g + D̂1

(
I−Sg

2

)
m̄(1)

g + δt

2
D̂1

(
I − Sg

2

)
MF̄(1)

= −Sg′
m̄(2)

g (B4c)

for ε0, ε1, and ε2, respectively, where Sg′ = Sg/δt , m̄g , m(0)
g , m̄(1)

g , and m̄(k)
g (k � 2) are given by

m̄g = Mḡ =
(

−δt

2
u · ∇ρ,m̄g1,m̄g2,

ρux

c
− δtFx

2c
,m̄g4,

ρuy

c
− δtFy

2c
,m̄g6,m̄g7,m̄g8

)T

, (B5a)

m(0)
g = Mg(eq) =

(
0,

2p + ρu2
x + ρu2

y

c2
s

,
−3p − ρu2

x − ρu2
y

c2
s

,
ρux

c
, − ρux

c
,
ρuy

c
, − ρuy

c
,
ρu2

x − ρu2
y

c2
,
ρuxuy

c2

)T

, (B5b)

m̄(1)
g =

(
−δt

2
u · ∇1ρ,m̄

(1)
g1 ,m̄

(1)
g2 , − δtFx

(1)

2c
,m̄

(1)
g4 , − δtFy

(1)

2c
,m̄

(1)
g6 ,m̄

(1)
g7 ,m̄

(1)
g8

)
, (B5c)

m̄(k)
g = (0,m̄

(k)
g1 ,m̄

(k)
g2 ,0,m̄

(k)
g4 ,0,m̄

(k)
g6 ,m̄

(k)
g7 ,m̄

(k)
g8

)
(k � 2), (B5d)

where g(eq) = (g(eq)
0 ,g

(eq)
1 ,g

(eq)
2 ,g

(eq)
3 ,g

(eq)
4 ,g

(eq)
5 ,g

(eq)
6 ,g

(eq)
7 ,g

(eq)
8 )T, Fx = Fsx + Fax + Gx , Fy = Fsy + Fay + Gy , Fx

(1) =
Fsx

(1) + Fax
(1) + Gx

(1), and Fy
(1) = Fsy

(1) + Fay
(1) + Gy

(1). Substituting Eqs. (B5b) and (B5c) into Eq. (B4b), one can directly
derive several first-order equations in ε. For simplicity, however, only those related to the hydrodynamic equations are
presented:

∂x1ux + ∂y1uy = 0, (B6a)

∂t1ρux + ∂x1

(
p + ρu2

x

)+ ∂y1ρuxuy = F (1)
x , (B6b)

∂t1ρuy + ∂x1ρuxuy + ∂y1

(
p + ρu2

y

) = F (1)
y , (B6c)

∂t1

2p + ρu2
x + ρu2

y

c2
s

= −s
g′
1 m̄(1)

g1
+ Fg1 , (B6d)
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FIG. 15. (a) Normalized bubble acceleration and (b) bubble Froude number versus dimensionless time at high Re. The solid line represents
the value of 0.07. The dashed lines have a slope of 0.15.

∂t1

ρu2
x − ρu2

y

c2
+ ∂x1

2ρux

3
− ∂y1

2ρuy

3
= −s

g′
7 m̄(1)

g7
+ Fg7 , (B6e)

∂t1

ρuxuy

c2
+ ∂x1

ρuy

3
+ ∂y1

ρux

3
= −s

g′
8 m̄(1)

g8
+ Fg8 , (B6f)

where

Fg1 =
(

1 − s
g

1

2

)(
6

c2
u · F(1) − 9

c4
(u · u)

[
u · (F(1) + ∇1ρc2

s

)])
, (B7a)

Fg7 =
(

1 − s
g

7

2

)(
2

c2

[
ux

(
F (1)

x + ∇1xρc2
s

)− uy

(
F (1)

y + ∇1yρc2
s

)]− 3

c4

(
u2

x − u2
y

)[
u · (F(1) + ∇1ρc2

s

)])
, (B7b)

Fg8 =
(

1 − s
g

8

2

)(
1

c2

[
ux

(
F (1)

y + ∇1yρc2
s

)+ uy

(
F (1)

x + ∇1xρc2
s

)]− 3

c4
uxuy

[
u · (F(1) + ∇1ρc2

s

)])
. (B7c)

Note that F(1) in Eqs. (B7a)–(B7c) is defined as F(1) = (F (1)
x ,F (1)

y ). In a similar fashion, from Eq. (B4c), the second-order equations
in ε can also be obtained:

∂t2ρux + c2

6
∂x1

(
1 − s

g

1

2

)
m̄

(1)
g1 + c2

2
∂x1

(
1 − s

g

7

2

)
m̄

(1)
g7 + c2∂y1

(
1 − s

g

8

2

)
m̄

(1)
g8 + Fgx178 = 0, (B8a)

∂t2ρuy + c2

6
∂y1

(
1 − s

g

1

2

)
m̄

(1)
g1 − c2

2
∂y1

(
1 − s

g

7

2

)
m̄

(1)
g7 + c2∂x1

(
1 − s

g

8

2

)
m̄

(1)
g8 + Fgy178 = 0, (B8b)

where Fgx178 and Fgy178 are given by

Fgx178 = δt

2
∂x1

(
1 − s

g

1

2

)(
u · F(1) − 3

2c2
(u · u)

[
u · (F(1) + ∇1ρc2

s

)])

+ δt

2
∂x1

(
1 − s

g

7

2

)([
ux

(
F (1)

x + ∇1xρc2
s

)− uy

(
F (1)

y + ∇1yρc2
s

)]− 3

2c2

(
u2

x − u2
y

)[
u · (F(1) + ∇1ρc2

s

)])

+ δt

2
∂y1

(
1 − s

g

8

2

)([
ux

(
F (1)

y + ∇1yρc2
s

)+ uy

(
F (1)

x + ∇1xρc2
s

)]− 3

c2
uxuy

[
u · (F(1) + ∇1ρc2

s

)])
(B9)

and

Fgy178 = δt

2
∂y1

(
1 − s

g

1

2

)(
u · F(1) − 3

2c2
(u · u)

[
u · (F(1) + ∇1ρc2

s

)])

− δt

2
∂y1

(
1 − s

g

7

2

)([
ux

(
F (1)

x + ∇1xρc2
s

)− uy

(
F (1)

y + ∇1yρc2
s

)]− 3

2c2

(
u2

x − u2
y

)[
u · (F(1) + ∇1ρc2

s

)])

+ δt

2
∂x1

(
1 − s

g

8

2

)([
ux

(
F (1)

y + ∇1yρc2
s

)+ uy

(
F (1)

x + ∇1xρc2
s

)]− 3

c2
uxuy

[
u · (F(1) + ∇1ρc2

s

)])
, (B10)
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FIG. 16. Evolution of the density contours in immiscible RTI at A = 0.336 and Re = 10 000 for (a) t = 0.067 s, (b) t = 0.133 s, (c)
t = 0.231 s, and (d) t = 0.297 s.

respectively. Note that m̄
(1)
g1 , m̄

(1)
g7 , and m̄

(1)
g8 in Eqs. (B8a) and

(B8b) are unknown and will be determined in the following.

Using Eqs. (B6d)–(B6f) and neglecting the terms (related to
u3 and u∇p) of O(Ma3), we can get

− s
g′
1 m̄(1)

g1
= 3s

g

1

c2
u · F(1) − ∂t1

2p

c2
s

− (u · u)∂t1ρ

c2
s

, (B11a)

−s
g′
7 m̄(1)

g7
= 2

3
ρ(∂x1ux − ∂y1uy) + s

g

7

c2

[
ux

(
F (1)

x + ∇1xρc2
s

)− uy

(
F (1)

y + ∇1yρc2
s

)]− u2
x − u2

y

c2
∂t1ρ, (B11b)

−s
g′
8 m̄(1)

g8
= ρ

3
(∂x1uy + ∂y1ux) + s

g

8

2c2

[
ux

(
F (1)

y + ∇1yρc2
s

)+ uy

(
F (1)

x + ∇1xρc2
s

)]− uxuy

c2
∂t1ρ. (B11c)

The substitution of the above results into Eqs. (B8a) and (B8b) gives

∂t2ρux − ∂x1νρ(2∂x1ux) − ∂y1νρ(∂y1ux + ∂x1uy) + T1 = 0, (B12a)

∂t2ρuy − ∂x1νρ(∂x1uy + ∂y1ux) − ∂y1νρ(2∂y1uy) + T2 = 0, (B12b)

where

ν = c2
s δt

(
1

s
g

7

− 1

2

)
= c2

s δt

(
1

s
g

8

− 1

2

)
, (B13)

T1 = ∂x1

(
1

s
g

1

− 1

2

)
δt

(
∂t1p + u · u

2
∂t1ρ

)
+ ∂x1

(
1

s
g

7

− 1

2

)
δt

u2
x − u2

y

2
∂t1ρ + ∂y1

(
1

s
g

8

− 1

2

)
δtuxuy∂t1ρ, (B14)

and

T2 = ∂y1

(
1

s
g

1

− 1

2

)
δt

(
∂t1p + u · u

2
∂t1ρ

)
+ ∂y1

(
1

s
g

7

− 1

2

)
δt

u2
y − u2

x

2
∂t1ρ + ∂x1

(
1

s
g

8

− 1

2

)
δtuxuy∂t1ρ. (B15)

Under the incompressible condition [∂t1p = O(Ma2) and
u2 = O(Ma2)], we can get T1 = O(δtMa2) and T2 =
O(δtMa2). Therefore, Eqs. (B12a) and (B12b) can be sim-
plified as

∂t2ρux−∂x1νρ(∂x1ux−∂y1uy) − ∂y1νρ(∂y1ux+∂x1uy) = 0,

(B16a)

∂t2ρuy−∂x1νρ(∂x1uy+∂y1ux)−∂y1νρ(∂y1uy − ∂x1ux) = 0.

(B16b)

Combining Eqs. (B6a)–(B6c) and Eqs. (B16a) and (B16b)
at different time scales, we can obtain the hydrodynamic
equations

∇ · u = 0, (B17a)

∂ρu
∂t

+ ∇ · ρuu = −∇p + ∇ · [νρ(∇u + ∇uT )]

+ Fs + Fa + G. (B17b)

Furthermore, using the relationship

∂tρ + ∇ · ρu = ∂ρ

∂φ
(∂tφ + ∇ · φu) = ∂ρ

∂φ
∇ · Mφ(∇μ),

(B18)
we have

∂ρu
∂t

+ ∇ · ρuu = ρ

(
∂u
∂t

+ u · ∇u
)

+ Fa (B19)

Based on the above result, Eqs. (B17a) and (B17b) can reduce
to the incompressible Navier-Stokes equations (8). That is
to say, the LB equation, i.e., Eq. (29), can exactly recover the
hydrodynamic equations for incompressible multiphase fluids.

Now we discuss how to calculate the pressure p from the
distribution function ḡi . Starting from the expression of g

(eq)
0 ,

we have

g
(eq)
0 (x,t) = ω0 − 1

c2
s

p(x,t) + ρs0[u(x,t)] (B20)
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FIG. 17. Comparison between the present results with experi-
ments [52]. Here hb and hs represent the bubble and spike amplitudes.

and also

ḡ0(x,t) − [ḡ0(x,t) − g
(eq)
0 (x,t)

]
= ω0 − 1

c2
s

p(x,t) + ρs0[u(x,t)]. (B21)

Next we evaluate [ḡ0(x,t) − g
(eq)
0 (x,t)]. From Eq. (B3b) we

can derive

(M−1SgM)ij
[
ḡj (x,t) − g

eq

j (x,t)
] = −δtDiḡi(x,t)

+ δt

[
M−1

(
I − Sg

2

)
M
]

ij

Fj (x,t) + O
(
δ2
t

)
. (B22)

Multiplying the matrix M−1Sg−1M on both sides of Eq. (B22),
one can obtain

ḡi(x,t) − g
eq

i (x,t) = −δt (M−1Sg−1M)ijDj ḡj (x,t)

+ δt

[
M−1

(
Sg−1 − I

2

)
M
]

ij

Fj (x,t) + O(δ2
t ),

(B23)

which shows that

ḡi(x,t) = g
eq

i (x,t) + O(δt ). (B24)

Substituting Eq. (B24) into Eq. (B23) yields

ḡi(x,t) − g
eq

i (x,t) = −δt (M−1Sg−1M)ijDjg
eq

j (x,t)

+ δt

[
M−1

(
Sg−1 − I

2

)
M
]

ij

Fj (x,t) + O
(
δ2
t

)
.

(B25)

With some algebraic operations and taking i = 0, we have

ḡ0(x,t) − g
eq

0 (x,t) =
(

3s
g

1 + 2s
g

2

3c2s
g

1 s
g

2

)
δt

∂p

∂t
+
(

s
g

1 + s
g

2

3c2s
g

1 s
g

2

)

× δt

∂ρu · u
∂t

+ 2
(
s
g

1 s
g

2 − s
g

1 − s
g

2

)
3c2s

g

1 s
g

2

× δt (uxFx + uyFy) + O
(
δt

2
)
. (B26)

From Eqs. (B6b) and (B6c) we know that Fx,y = O(Ma) and
under the incompressible condition, Eq. (B26) can be rewritten
as

ḡ0(x,t) − g
eq

0 (x,t) = O
(
δt

2 + δtMa2
)
. (B27)

Therefore, we can neglect the terms in square brackets on the
left-hand side of Eq. (B21) and the pressure can be presented
as

ω0 − 1

c2
s

p = ḡ0 − ρs0(u) + O
(
δ2
t + δtMa2

)
. (B28)
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FIG. 18. (Color online) Grid-independent test for Re = 3000: (a) the interface patterns at t = 3.0 and (b) the positions of the bubble and
spike fronts versus dimensionless time.
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Based on Eq. (24), we get∑
i

ḡi = −δt

2
u · ∇ρ. (B29)

As a result, the pressure can be calculated as

p = c2
s

1 − ω0

⎡
⎣∑

i �=0

ḡi + ρs0(u) + δt

2
u · ∇ρ

⎤
⎦ , (B30)

which has an accuracy of O(δ2
t + δtMa2).

APPENDIX C: GRID-INDEPENDENCE TEST

To ensure that the numerical results are grid independent,
the grid resolution test is conducted by simulating a case
with Re = 3000 on three different sets of grids: 512 × 128,
1024 × 256, and 2048 × 512. The interface patterns at t = 3.0
and the positions of the bubble and spike fronts are presented
in Figs. 18(a) and 18(b), respectively. Figure 18(a) clearly
shows that the intermediate grid provides sufficient accuracy
in capturing the structures of small vortices. In addition,
Fig. 18(b) shows that the position of the bubble front is
well captured using the coarse grid, but it needs at least

the intermediate grid to obtain the accurate position of the
spike front. Therefore, the intermediate grid has already given
grid-independent results and will be adopted in simulations of
immiscible RTI.

APPENDIX D: BOUNDS OF THE GROWTH RATE FOR
VISCOUS FLUIDS

It is substantially difficult to give an analytical growth rate
including the effect of viscosity [53]. However, the lower and
upper bounds to the growth rate can be presented, which satisfy
the following equations respectively [54]:

γ 4
ν + νk2γ 3

ν − 2γ 2γ 2
ν − 2νk2γ 2γν + γ 4 = 0, (D1)

γ 2
ν + 2νk2γν − γ 2 = 0, (D2)

where γ is the growth rate for inviscid fluids given in Eq. (41).
One can easily obtain the upper bound γu by solving Eq. (D2),

γu = −νk2 +
√

ν2k4 + γ 2, (D3)

while the lower bound is a real solution of Eq. (D1) and should
be smaller than γu.
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