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Neural-network approach to modeling liquid crystals in complex confinement
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Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter
profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either
(i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy
minimization. The traditional implementations of both approaches are computationally expensive and plagued
with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer
perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical
particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing
its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by
standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good
agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can
be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally
realizable but very problematic to conventional theoretical treatments.
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I. INTRODUCTION

In a world suffused with images, displays are paramount. Of
these, liquid crystal (LC) devices (LCDs) have a huge market
share [1]. LCs are a state of matter intermediate between solid
and liquid; they retain some of the order of a solid, but are free
to flow as a liquid [2]. In particular, their constituent particles,
which are typically elongated, all point, on average, in the same
direction, termed the director; the extent of this alignment is
given by the LC order parameter.

The director orientation is determined by effects external to
the LC itself. All current LCDs are basically light valves that
rely, for their operation, on the competing actions of bounding
surfaces, known as anchoring, and applied fields on the
director (see, e.g., [3,4]). Typically, a LC layer is sandwiched
between suitably prepared substrates, which may favor the
same (symmetric) or different (hybrid) alignments. An electric
field is then used to deviate the orientational order profile
from that induced by the substrates alone. Two examples are
the conventional (and highly successful) twisted-nematic (TN)
cell [4] found in most TV screens, and the more recent hybrid
aligned nematic (HAN) cell of Bryan-Brown et al. [5,6]. The
latter has led to a practical realization of a bistable device:
unlike the TN cell, a bistable device has two optically distinct,
stable states and an applied voltage is only needed when
switching between them, with consequent substantial energy
savings.

Applications of LCDs beyond displays include sensors. For
example, it has been shown that a LC film deposited at the
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air-water interface can be switched in and out of the HAN
state by varying the surfactant concentration in the water,
thereby providing an easy-to-read surfactant detector [7]. LC
confinement is also pertinent to some of the many fascinating
LC colloid systems devised in recent years [8], where the
LC matrix is squeezed to microscopic dimensions when the
colloidal particles self-aggregate.

In order to predict the behavior of a confined LC, we
need to find its structure. A theorist will start by selecting
an appropriate model, which should be simple enough to
be amenable to computation, and yet capture the relevant
features of the real system. One such popular model is hard
ellipsoids between hard walls. It is also necessary to write a
suitable free energy (Helmholtz or Gibbs, as the case might
be) for the system, on the basis of a statistical mechanical
theory such as Onsager’s, which we shall encounter below.
The equilibrium state is, then, that which minimizes the free
energy. Because the system is nonuniform, the free energy is a
functional of the density-orientation profile, i.e., it depends on
the density, director, and order parameter at each point in the
region occupied by the LC, and minimization is difficult. Two
major routes are then possible: (i) functionally to differentiate
the free energy and thereby derive a nonlinear, integral Euler-
Lagrange (EL) equation, which must then be solved; or (ii) to
perform a direct multidimensional free energy minimization.
Route (i), essentially in the form of Picard iteration [9], has
been used by many workers including ourselves [10,11]; it
is easier to implement, but may fail to converge, converge
very slowly, or converge to a local minimum, especially if
the density-orientation profile is strongly nonuniform and
the initial guess is not carefully made. Route (ii) basically
uses variants of the conjugate-gradient scheme [12,13]; it
is more reliable, less dependent on the quality of the
initial guess, and possibly somewhat faster, but harder to
implement.
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To our knowledge, only systems that exhibit spatial
variability along one dimension have been investigated by
microscopic theory. Whereas this comprises the most popular
device geometries including the TN and hybrid HAN cells, it
is now possible to pattern substrates along either one or two
dimensions, and thereby create novel, more versatile aligning
layers for LCs [14–17]. Various of these complex substrates
have found application in bistable LCDs such as the zenithally
bistable nematic [6], post-aligned bistable nematic [18], and
square well array [19,20] devices. If one wishes to study
these using the microscopic theorist’s premier formalism,
density-functional theory (DFT), one ends up needing to
represent the density-orientation profile, which is a function
of at least two angles, in addition to the spatial coordinates, on
a very large grid of points. Moreover, the interactions between
any two particles at any positions and with any orientations
need to be specified by a potentially huge interaction kernel,
computation of which requires very fast processors and/or
very large RAM. Ideally, one would like to have a toolbox
that would permit fast, accurate, and reliable calculation of the
structure of a LC layer confined between substrates of many
different patterns, in either symmetric or hybrid combinations.
This would help guide researchers as to what configurations
might be more promising for applications without actually
having to manufacture them; the latter is a laborious and often
expensive endeavor.

We therefore seek an alternative route to minimizing the
free energy of a confined fluid of nonspherical particles.
“Minimization” is, of course, one particular realization of the
more general problem known as optimization. Of the many
available optimization techniques, one that, to our knowledge,
has not yet been exploited in the context of LC modeling
is artificial neural networks (ANN). ANNs are a class of
learn-by-example systems that have some features in common
with biological neurones [21]. Biological neurones fire (or
not) depending on the input (usually neurotransmitters) they
receive (see Fig. 1). Some ANNs mimic this behavior by
making artificial units compute an affine transformation for
their input vector, followed by some monotonic activation
function.

The main difficulty in solving a particular problem is
representation, i.e., designing a neural network that is rich
enough that its output is able to reproduce a function of the
required complexity. In fact, in general the representation of
the solution is itself a constraint. In this paper, we describe
an approach to learning the density-orientation profile of a
confined LC within the framework of an ANN. We focus on
a particular type of ANN, the multilayer perceptron (MLP),
which has been shown to be a universal approximator for
all Borel-measurable functions [22]. This makes the MLP
a good candidate for tackling the representation problem.
Furthermore, the MLP is a well-studied learning system,
for which many algorithms have been developed to speed
up convergence. This paper does not concern the use of
acceleration algorithms: rather, its main aim is to determine
whether MLP networks are applicable to, and may offer an
alternative way of addressing the problem of, calculating
the structure of a confined LC. This requires modifying the
MLP to perform unsupervised learning, as the value of the
equilibrium free energy is not known a priori. We do not

FIG. 1. (Color online) (a) A neurone fires (or not) on the basis of
the stimuli it receives from other neurones. (b) An artificial neurone
weights the inputs it receives and generates an output. It must be
designed so as to produce the desired output.

claim that the MLP we developed is the best method for any
one particular application; our aim was just to add another tool
to the theorist’s toolbox.

The remainder of this paper is organized as follows: In
Sec. II, we describe general features of ANNs and introduce
their terminology. Then, in Sec. III, we recapitulate the
model and density-functional theory (DFT) that we have used
previously to study confined LCs [11,23,24], and show how our
particular minimization problem can be solved using ANNs. In
Sec. IV, we test our algorithm by contrasting its performance
with that of the standard iterative solution of the EL equations,
for a number of different boundary conditions. Validation of
the two methods is then achieved through comparison with
Monte Carlo (MC) simulation data. Finally, in Sec. V, we
discuss the potential and limitations of our ANN approach,
and outline some directions for future research.

II. NEURAL NETWORKS

A. Generalities

Artificial neural networks (ANNs) can learn and exhibit
global behavior that is able to model real-world problems,
although the learning is local to very simple units. These
properties are shared by many other networks that use
local interactions, such as Markov models [25] or Bayesian
networks [26]. ANNs differ from these other approaches
in their network architecture, and in how the units receive
information, process it, send it to their neighbors, and learn
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from the information they receive and from the consequences
of their action. Neurones within ANNs (henceforth referred to
as “units”) use laws that are inspired by biological neurones,
hence their name. Interactions between ANN units may, in
general, be represented as a graph (cyclic or not). The influence
of one unit on another is usually governed by some factor,
usually called a weight. Weights code the interactions between
units.

There are several types of ANN, and each type uses specific
rules. Some of these rules are no longer biologically inspired,
and have evolved to other, more efficient, forms. ANNs may
be regarded as models of some unknown target function, and
two major ANN categories may be considered: supervised and
unsupervised. The former are applicable when there is knowl-
edge of the solution of the target function, for some particular
learning examples; supervised ANNs learn these examples and
their solutions, and use the consequent knowledge to predict
for unlearned examples [27]. The latter category, unsupervised
learning, is applicable when there is no prior knowledge of
the solutions for the learning examples; these networks learn
directly from data, and try to capture features and/or some
kind of organization within same. This learned knowledge
is subsequently organized into self-generated categories and,
after learning, the system is able to categorize any new
examples it receives [28]. In addition to these major ANN
categories, there are also some ANNs that are intended for
storing and retrieving content-addressable information, i.e.,
information that is fully retrieved by providing the system
with some small detail or tag.

The multilayer perceptron (MLP) is a type of supervised
ANN that requires the user to define some energy function (or
cost function) expressing how far the MLP is from learning
the desired response for the learning examples. A typical
energy function is the sum of the quadratic error over all
learning examples [27]. The MLP represents unit interactions
as weights, and assumes that the energy function may be
expressed as a differentiable function of its weights. Learning
is achieved, e.g., by using the gradient descent rule, although
second-order methodologies (based on the Hessian matrix)
may also be used. MLPs have been successfully employed
to learn and model complex nonlinear systems [29]. Aside
from the fact that MLPs can represent any Borel-measurable
function (which includes all functions of practical interest),
they have also been shown to be able to learn any function that
they are able to represent [30].

The MLP may be seen as a directed graph, with several
layers of units. The first layer of units receives the input; the last
layer of units produces the output. Intermediate layers perform
increasingly complex computations, such that the output of the
units within a layer acts as input to the units in the next layer.

In order to use a MLP, we must sample some input data
examples (the training set), and provide these samples to the
real-world complex system to be modeled, thereby capturing
the response vector of the real-world system to each element
of those data (desired response vectors). As MLP is a learn-
by-example algorithm, it learns by being fed each instance of
the training set and iteratively tuning its weights according
to the error between the MLP response vector (output layer
response) and the desired response vector to that particular
instance.

FIG. 2. (Color online) Example of MLP with three units in the
input layer, five units in the hidden (intermediate) layer, and two units
in the output layer.

B. Terminology

We use xl as the input vector for layer l, wli as the weight
vector of unit i in layer l, gli as the net input of unit i in
layer l, given by gli = wlixl , and ali as the output of units i

in layer l, given by ali = ϕ(gli), where ϕ is some activation
function. Whenever labeling the layer is irrelevant, we omit
the subscript l. In a MLP, each layer feeds the next layer (if
there is one), so input vector xl usually corresponds to output
vector al−1. We also use y as the overall output vector of the
neural network (y = almax ), and s for some sample that feeds
the first layer (s = x1). We denote by d the desired response
vector. We also use y(s) and d(s) when we explicitly want to
express those vectors as functions of the sample.

Figure 2 shows the topology of a MLP with three units in the
input layer, five units in the hidden (intermediate) layer, and
two units in the output layer. Input layer units do not perform
computations, they just provide input for the hidden layer. Each
unit in the hidden and output layers computes gli = wlixl , and
then ali = ϕ(gli). A typical choice for the activation function
is the logistic mapping: ϕ(x) = 1/(1 + e−x). Other options
include the hyperbolic tangent, the sine, or no activation
function (linear unit).

The MLP uses gradient descent in order to update its
weights. In general, �wlij = −η∂E/∂wlij , where wlij is the
weight value between the j th unit in some layer l − 1 and
the ith unit in the next layer l, E is the cost function to be
minimized, and η is a small learning factor. A typical choice
for E is

E =
∑

s∈{training set}

∑
i

[yi(s) − di(s)]2, (1)

where i indexes the components of vectors y(s) and d(s). As
samples are presented sequentially, the gradient descent rule is
applied to the error of a given sample. Therefore, for a single
iteration, the energy may be taken to be

E =
∑

i

(yi − di)
2. (2)

The classic MLP learning method uses precomputation of the
delta term δli = −∂E/∂gli in order to make computation of
∂E/∂wlij more efficient. ∂E/∂wlij is easily computed from
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δli as

∂E

∂wlij

= ∂E

∂gli

∂gli

∂wlij

= −δixlj = −δia(l−1)j , (3)

where a(l−1)j stands for the output of unit j in the preceding
layer [21]. After finding the delta terms in some layer l + 1,
those in the preceding layer l are easily computed from

δli = ϕ′(gli)
∑

k∈{l+1}
δ(l+1)k w(l+1)ki , (4)

where k represents each unit in layer l + 1. Note that the
time taken to compute all of the delta terms increases only
quadratically with the number of units. If we choose the logistic
mapping as our activation function, ϕ(x) = 1/(1 + e−x), we
may observe an interesting property: ϕ′(gi) = ai(1 − ai).
Therefore, after finding the delta terms in the output layer,
their values can be very efficiently backpropagated from the
output layer to the hidden layers. Delta terms in the output
layer are also efficiently computed using

δoi = [di(s) − yi(s)]yi(s)[1 − yi(s)], (5)

where δoi represents the delta terms in the output layer.

III. MLP CALCULATION OF THE EQUILIBRIUM
DENSITY-ORIENTATION PROFILES OF A
CONFINED NEMATIC LIQUID CRYSTAL

A. Model and theory

The model and theory that we use have been extensively
described in our earlier publications [11,23,24], to which we
refer readers for details. In short, following established practice
in the field of generic LC simulation [31], we consider a purely
steric microscopic model of uniaxial rod-shaped particles of
length-to-breadth ratio κ = σL/σ0, represented by the hard
Gaussian overlap (HGO) potential [32]. For moderate κ ,
the HGO model is a good approximation to hard ellipsoids
(HEs) [33,34]; furthermore, their virial coefficients (and thus
their equations of state, at least at low to moderate densities)
are very similar [35,36]. From a computational point of view,
HGOs have the considerable advantage over HEs that the
distance of closest approach between two particles is given
in closed form [37]. Particle-substrate interactions have been

σ

0σz

L

wall

θ

L

FIG. 3. The HNW potential: the molecules see each other
(approximately) as uniaxial hard ellipsoids of axes (σ0,σ0,κσ0), but
the wall sees a molecule as a hard line of length L, which need not
equal κσ0. Physically, this means that molecules are able to embed
their side groups into the bounding walls. Varying L is therefore
equivalent to changing the wall penetrability, which can be done
independently at either wall.

modeled, as in [23,24,38], by a hard needle-wall (HNW)
potential (Fig. 3): particles see each other as HGOs, but the
substrates see a particle as a needle of length L (which need
not be the same at both substrates, or in different regions
of each substrate). Physically, 0 < L < σL corresponds to a
system where the molecules are able to embed their side
groups, but not the whole length of their cores, into the
bounding walls. This affords us a degree of control over
the anchoring properties: varying L between 0 and σL is
equivalent to changing the degree of end-group penetrability
into the confining substrates. In an experimental situation, this
might be achieved by manipulating the density, orientation, or
chemical affinity of an adsorbed surface layer. In what follows,
we characterize the substrate condition using the parameter
L∗ = L/σL.

We choose a reference frame such that the z axis is
perpendicular to the substrates, and denote by ωi = (θi,φi) the
polar and azimuthal angles describing the orientation of the
long axis of a particle. Because, for unpatterned substrates, the
HNW interaction only depends on z and θ , it is reasonable to
assume that there is no in-plane structure, so that all quantities
are functions of z only. The grand-canonical functional [39] of
an HGO film of bulk (i.e., overall) density ρ at temperature T

then writes, in our usual approximations [11,23,24],

β�[ρ(z,ω)]

Sxy

=
∫

ρ(z,ω)[ln ρ(z,ω) − 1] dz dω −
(
1 − 3

4ξ
)
ξ

2(1 − ξ )2

∫
ρ(z1,ω1)�(z1,ω1,z2,ω2)ρ(z2,ω2) dz1dω1dz2dω2

+β

∫ [
2∑

α=1

VHNW
(∣∣z − zα

0

∣∣,θ) − μ

]
ρ(z,ω) dz dω, (6)

where Sxy is the interfacial area, μ is the chemical poten-
tial, ξ = ρv0 = (π/6)κρσ 3

0 is the bulk packing fraction, zα
0

(α = 1,2) are the positions of the two substrates,
�(z1,ω1,z2,ω2) is now the area of a slice (cut parallel to the
bounding plates) of the excluded volume of two HGO particles
of orientations ω1 and ω2 and centers at z1 and z2 [40], for
which an analytical expression has been derived [37]. ρ(z,ω)

is the density-orientation profile in the presence of the external
potential VHNW(z,θ ); it is normalized to the total number of
particles N ,

∫
ρ(z,ω) dz dω = N

Sxy

≡ M, (7)
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and is related to the probability that a particle positioned at z

has orientation between ω and ω + dω. This normalization is
enforced through the chemical potential μ, which is essentially
a Lagrange multiplier.

Three remarks are in order. First, note that each surface
particle experiences an environment that has both polar and
azimuthal anisotropy, as a consequence of the excluded-
volume interactions between the particles in addition to the
“bare” wall potential. Second, because we are dealing with
hard-body interactions only, for which the temperature is an
irrelevant variable, we can set β = 1/kBT = 1 in all practical
calculations (we retain it in the formulas for generality). Third,
and finally, the prefactor multiplying the second integral in
Eq. (6) is a simplified implementation of the Parsons-Lee
density rescaling [41], which amounts to (approximately)
summing the higher virial coefficients. In the spirit of [42],
this prefactor is a function of the bulk density, and not of
the local density, which should be valid provided the density
does not exhibit sharp spatial variations. Equation (6) is, thus,
the “corrected” Onsager approximation to the free energy
of the confined HGO fluid, which we expect to perform
better for particle elongations κ � ∞ inasmuch as structure
is determined by location in the phase diagram. We do not
expect, however, to see any new structure that is not captured
by the Onsager approximation since what we are doing is
simply rescaling density. More sophisticated approaches exist
(see, e.g., [12,13]), but our purpose here, as stated above, has
been to introduce a new calculational tool, so we apply it
to the simplest possible microscopic treatment of anchoring
phenomena that yields fairly good results [11,23,24].

Minimization of the grand-canonical functional can be per-
formed either directly on Eq. (6) [route (ii) above] or, as in our
earlier work, by first analytically deriving, and then numer-
ically solving, the EL equation for the equilibrium density-
orientation profile [route (i) above]:

δ�[ρ(z,ω)]

δρ(z,ω)
= 0 ⇒ ln ρ(z,ω) = βμ −

(
1 − 3

4ξ
)

(1 − ξ )2

×
∫ ′

�(z,ω,z′,ω′)ρ(z′,ω′) dz′dω′, (8)

where the effect of the wall potentials has been incorporated
through restriction of the range of integration over θ :∫ ′

dω =
∫ 2π

0
dφ

∫ θm

π−θm

sin θ dθ =
∫ 2π

0
dφ

∫ cos θm

− cos θm

dx, (9)

with

cos θm =
{

1 if
∣∣z − zα

0

∣∣ � L
2 ,

|z−z0|
L/2 if

∣∣z − zα
0

∣∣ < L
2 ,

(10)

zα
0 being, we recall, the position of substrate α. In either

case, the solution is the density-orientation profile ρ(z,ω) that
minimizes �[ρ(z,ω)]. In the next section, we propose a variant
of a MLP ANN, which we denote minimization neural network
(MNN), developed in order to follow route (ii).

B. MLP minimization

The MNN that we have designed to minimize the grand-
canonical potential comprises, in common with most MLPs,

an input layer, one or more hidden layers, and an output layer.
Our MNN receives as input a position and an orientation,
specified by (z,θ,φ), and outputs the expected value of the
density-orientation profile at that point, ρ(z,θ,φ).

First, note that, as in earlier work [11,23,24], integrations
are performed by Gauss-Legendre quadrature by means of the
algorithm due to Chrzanowska [43]; here, we have used 64 z

points, 16 θ points, and 16 φ points. Therefore, it is enough
that our MNN be able to estimate densities from a discrete set
of (z,θ,φ) that are triplets of the chosen Gaussian abscissas.
Input is coded by referencing (z,θ,φ) by their index within
the quadrature. The MNN receives (z,θ,φ) coded in a 64-bit
string: the first 32 bits code the z position, by setting to “1” the
correct bit and to “0” the remaining bits; likewise, θ is coded
by 16 bits and φ by the other 16 bits. This 64-bit input is fed
into the input layer, along with an extra constant input (set
to 1) that is required for any perceptron (in order to model its
threshold) [44]. The input layer thus has 65 units.

The output layer constructs a linear combination of
hidden-layer outputs, followed by application of an activation
function. The form of the activation function should mirror,
as closely as possible, the distribution of the target values,
densities in our case. We observe that, in this problem, the
expected distribution for the logarithm of the density is more
or less uniform. This justifies our choice of the exponential
activation function for the output layer. Neural networks with
an exponential activation function for the output layer have
been applied previously in the context of information theory,
mainly to estimate probability density functions [45,46].

Each unit inside a hidden layer receives input from all units
in the preceding hidden layer, or (in the case of the first hidden
layer) from all units in the input layer. Each hidden layer unit
has its own combining weights. After combining inputs, each
unit uses the logistic function as its activation function. The
number of units inside each hidden layer is a parameter of the
MNN. For the case of a single hidden layer, we explain in
Sec. IV how we chose the number of units.

The objective is to make the MNN learn its weights
such that the MNN output [the density-orientation profile
ρ(z,θ,φ) at the Gaussian abscissas triplets] minimizes the
grand-canonical potential �[ρ(z,θ,φ)]. To achieve this, we use
backpropagation learning with momentum. The momentum is
a parameter that holds memory of the previous learning steps,
and provides step acceleration if the gradient direction does
not change in the course of several iterations. Momentum must
not be greater than 1 because this leads to divergence of the
learning process (it would mean that past learning steps would
exponentially gain more weight rather than being progressively
“forgotten”). We denote the momentum parameter by α, and
the learning step parameter by η.

We start by rewriting Eq. (6) in terms of discretized position
and orientation variables as

� = 1

2

∑
i,j

[
giyi

(
M

γ

)2

Kijgjyj

]

+
∑

i

{
giyi

M

γ

[
ln

(
yi

M

γ

)
− 1

]}
, (11)
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where indices i and j label points in the space of discretized
variables (z,θ,φ), gi and gj are the scaling factors of
Gaussian quadrature [47], y(z,θ,φ) = ρ(z,θ,φ)/N , Kij is the
interaction kernel:

Kij =
(
1 − 3

4ξ
)
ξ

(1 − ξ )2
�(zi,θi,φi,zj ,θj ,φj ), (12)

and we have defined γ = ∑
m gmym. For a particular input k,

∂�

∂yk

= Mgk

γ

[
−M

γ 2

∑
ij

giyiKijgjyj + M

γ

∑
i

giyiKik

− 1

γ

∑
i

giyi ln

(
yi

M

γ

)
+ ln

(
yk

M

γ

)]
. (13)

Therefore, the gradient of � with respect to the weights w
(o)
i

connecting the ith unit in the hidden layer with the output
layer, when the MNN is stimulated with input k, is given by

∂�

∂w
(o)
i

= ∂�

∂yk

∂yk

∂O(o)

∂O(o)

∂w
(o)
i

= ∂�

∂yk

yk

∂

∂w
(o)
i

∑
j

ajw
(o)
j

= ∂�

∂yk

ykai, (14)

where ai denotes the output of the ith hidden-layer unit upon
stimulation by input k, and O(o), the net output (before appli-
cation of the activation function) of the output layer, is a linear
combination of its (hidden-layer) inputs. Note that, because
the activation function is exponential, ∂yk/∂O(o) = yk .

For the weights w
(h)
ij connecting the ith input-layer unit and

the j th hidden-layer unit, we have

∂�

∂w
(h)
ij

= ∂�

∂yk

∂yk

∂O(o)

∂O(o)

∂aj

∂aj

∂O(h)
j

∂O(h)
j

∂w
(h)
ij

= ∂�

∂yk

ykw
(h)
ij aj (1 − aj )

∂

∂w
(h)
ij

∑
i ′,j ′

xi ′w
(h)
i ′j ′

= ∂�

∂yk

ykw
(h)
ij aj (1 − aj )xi, (15)

where O(h)
j stands for the net output of the j th hidden-layer

unit and we use the logistic activation function aj = 1/

[1 + exp(−O(h)
j )].

We define the momentum learning function as

mij (0) = 0, (16)

mij (t + 1) = αmij (t) − η
∂�

∂wij

, (17)

where t is the iteration number (“time”). The MNN internal
weights are initialized randomly in the range (−1,1) (uniform
distribution), and are updated according to �wij = mij (t).

We define epoch as the process of activating the MNN with
every point of the input space, one at a time, and making
the consequent updates of the weights. Note that the greatest
computational expense in determining ∂�/∂w

(h)
ij at input k is

that incurred in performing the summation
∑

ij giyiKijgjyj .
Fortunately, this expression does not depend on k, and so it

need only be computed once in each epoch, the result then
being applied to every point of the input space.

IV. RESULTS

We tested our algorithm by considering a fluid of HGO
particles of elongation κ = 3, sandwiched between two
semipenetrable walls a distance Lz = 4κσ0 = 12σ0 apart. The
density-orientation profile ρ(z,ω) was computed for different
values of the reduced bulk density ρ∗

bulk ≡ ρbulkσ
3
0 and of the

reduced needle length L∗ = L/σL.
The EL equation was solved by the Picard method, as

described in [9–11], until the convergence errors, defined as
(i) the sum of the absolute values of the differences between
consecutive iterates of ρ(ω,z) at 64×16×16 = 16 384 points,
and (ii) the difference between the surface tensions in two
consecutive iterations were less than 10−3. The mixing
parameter was set at 0.9. The MNN was always started from a
random intitial guess for ρ(ω,z), the density-orientation profile
(corresponding to an isotropic distribution), so as not to bias
the outcome. Most calculations were performed for a single
hidden layer, which is guaranteed to be able to represent
any Borel-measurable functions [22]; this turned out to be
sufficient in most cases (but not all, see following).

In an attempt to ascertain a more comprehensive picture of
the merits of our ANN approach, we have also implemented a
conjugate gradient-based solver for our confined LC system.
This is also a direct minimization method, a more conventional
variant of route (ii). However, this alternative scheme proved
unreliable in most situations, failing to find the equilibrium
density-orientation profile except when provided with an initial
guess that was very close to the optimal solution. Therefore,
for this particular problem, the conjugate-gradient approach
does not seem to offer a practical alternative to the EL and
ANN routes considered in more depth.

A. Fine tuning the parameters

MNN uses three parameters: h, the number of units within
its hidden layer (aside from the constant unit, set to 1); α, the
momentum coefficient; and η, the learning step. α is required
to be in range [0,1). h is not known, but could be several tens
to hundreds or thousands of units. η is usually smaller than 1,
but there are no further requirements.

The first step was to fine tune these parameters. For
this purpose, we ran two representative experiments with
different mean densities ρ∗

bulk = 0.28 [corresponding to the
bulk isotropic (I) phase] and ρ∗

bulk = 0.35 [corresponding
to the bulk nematic (N) phase], performing MNN learning
with every combination of α ∈ {0.1,0.3,0.5,0.7,0.9} and η ∈
0.1,0.4,0.7,1.0; h ∈ 10; 25,50,100,150,200,250. We let the
network run for 5000 epochs (except when it diverged), and
inspected the final results. We found that the time taken to
process each learning epoch increased in proportion to the
number of hidden units; even so, we decided to compare the
results of different runs after a set number of epochs, rather
than after a set learning time.

We chose L∗ = 1, which induces parallel anchoring and
is typically more demanding numerically than homeotropic
anchoring. Results are collected in Tables I–III. Tables I
and II show, for two ρ∗

bulk values, the grand-canonical potential
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TABLE I. Grand-canonical potential � after 5000 epochs, for
κ = 3, L∗ = 1, ρ∗

bulk = 0.28 (bulk I phase) and different choices of
α, h, and η.

α

h η 0.1 0.3 0.5 0.7 0.9

10 0.1 1.18672 1.144328 1.137906 1.138144 1.155396
10 0.4 1.143171 1.137942 1.138922 1.148959 1.138407
10 0.7 1.137403 1.135984 1.146504 1.139451 1.135816
10 1.0 1.136813 1.138326 1.135614 1.135183 1.134833

25 0.1 1.155936 1.146062 1.139696 1.137812 1.151736
25 0.4 1.142638 1.138965 1.137261 1.149138 1.140928
25 0.7 1.137169 1.136048 1.147395 1.137414 1.136469
25 1.0 1.135599 1.139655 1.135423 1.134769 1.134763

50 0.1 1.161899 1.147519 1.139771 1.138908 1.150827
50 0.4 1.143001 1.1393 1.137638 1.14981 1.145919
50 0.7 1.13813 1.136625 1.14542 1.138345 1.136331
50 1.0 1.135791 1.139874 1.13528 1.135041 1.134815

100 0.1 1.153975 1.143765 1.141101 1.138393 1.150638
100 0.4 1.142178 1.139652 1.137911 1.149062 1.141389
100 0.7 1.138173 1.136224 1.146931 1.138316 1.135955
100 1.0 1.135891 1.13979 1.135491 1.16345 1.134821

150 0.1 1.151959 1.143478 1.141839 1.139804 1.148809
150 0.4 1.141686 1.140083 1.138062 1.147389 1.139929
150 0.7 1.138489 Diverged 1.144011 1.138239 1.136154
150 1.0 Diverged 1.139816 1.135752 1.135015 1.135209

200 0.1 1.150801 1.143571 Diverged 1.137666 1.149625
200 0.4 1.141804 1.139046 1.13702 1.147081 1.140075
200 0.7 Diverged Diverged 1.144176 1.138129 Diverged
200 1.0 Diverged 1.139729 1.135639 Diverged 1.135132

250 0.1 1.153768 1.142571 1.140022 Diverged 1.148498
250 0.4 1.140632 Diverged Diverged 1.147263 Diverged
250 0.7 Diverged Diverged 1.143332 Diverged Diverged
250 1.0 Diverged 1.138431 1.13553 Diverged Diverged

� obtained for the full set of h, η, and α considered. In
Table III, summary data are presented showing the 1000- and
2000-epoch � values from batches of 10 equivalent runs with
h = 10 and a range of η and α values. From these we conclude
the following:

(1) The probability of divergence increases with h, η, α,
and ρ∗

bulk. We also observe that for small h (less than 25)
learning is fairly robust: there are no instances of repeated di-
vergence, although in batches of 10 simulations (see Table III),
there were occasional simulations that diverged for η = 1.0,
α = 0.9.

(2) Learning speed increases with η and α (as expected).
Provided that h � 25 we may, if convergence speed is
important and occasional divergence can be accommodated,
set η = 1.0 and α = 0.9. If, alternatively, divergence must be
avoided, we should set η = 0.7 and α = 0.9.

(3) Given that they yield very similar average results, either
h = 10 or 25 could be chosen. Our results suggest that h = 25
may perform slightly the better of the two, but the reduced
computation time per epoch (and, hence, shorter overall time)
could be an argument for choosing h = 10. That said, it is
known that using a larger number of units leads to higher
representation power. We therefore decided to select h = 25 in

TABLE II. Same as Table I, but for ρ∗
bulk = 0.35 (bulk N phase).

α

h η 0.1 0.3 0.5 0.7 0.9

10 0.1 9.101475 8.971296 8.955008 8.963734 9.023824
10 0.4 8.966737 8.962024 8.962016 8.999954 8.955046
10 0.7 8.952314 8.954215 8.966831 8.951803 8.968915
10 1.0 8.959308 8.965214 8.94864 8.967841 8.948766

25 0.1 9.032404 8.977229 8.954232 8.965194 9.030154
25 0.4 8.974211 8.953414 8.971946 8.99511 8.962507
25 0.7 8.970363 8.959918 8.979666 8.950231 8.959656
25 1.0 8.950319 8.961905 8.957792 8.958059 8.957027

50 0.1 9.09479 8.959672 8.964864 8.962899 9.015685
50 0.4 8.976157 8.953012 8.952501 8.99655 8.96172
50 0.7 8.961037 8.961134 8.973959 8.969405 8.958759
50 1.0 8.949888 8.972432 8.958441 8.947867 Diverged

100 0.1 9.091432 8.97678 8.96335 Diverged 9.031278
100 0.4 8.972937 8.962469 8.966482 9.013989 8.972309
100 0.7 8.969883 Diverged 8.985739 8.960194 Diverged
100 1.0 Diverged 8.952872 8.948058 Diverged 9.149149

150 0.1 9.065501 8.957815 Diverged 8.963453 9.03997
150 0.4 8.985513 Diverged Diverged 8.994269 Diverged
150 0.7 Diverged Diverged 8.985764 Diverged Diverged
150 1.0 Diverged 8.962265 Diverged Diverged Diverged

200 0.1 9.077518 Diverged Diverged 8.963536 9.034062
200 0.4 8.961021 Diverged Diverged 9.014442 Diverged
200 0.7 Diverged Diverged 8.981122 Diverged Diverged
200 1.0 Diverged 8.9528 Diverged Diverged Diverged

250 0.1 9.057811 8.990148 Diverged Diverged 9.008942
250 0.4 Diverged Diverged Diverged 8.995841 Diverged
250 0.7 Diverged Diverged 8.981818 Diverged Diverged
250 1.0 Diverged 8.952725 Diverged Diverged Diverged

our subsequent calculations using the MNN for determine the
density profile for alternative boundary condition problems.

In summary, in what follows we employ (except where
otherwise indicated) h = 25, η = 1.0, and α = 0.9. Conver-
gence of the MNN was deemed to have been achieved if the
difference (defined as in [11]) between two solutions 1000
iterations apart was less than 10−4.

B. MNN versus iterative solution

We next assessed our new MNN method by comparing
its results for the structure of a symmetric film with those
obtained by standard iterative solution of the EL equation (8),
and with computer simulations (NVT Monte Carlo for
N = 1000 particles), where available. Details of the simu-
lations are given in [23,24]. Once ρ(ω,z) has been found, we
can integrate out the angular dependence to get the density
profile

ρ(z) =
∫

ρ(z,ω) dω, (18)

and use this result to define the orientational distribution
function (ODF) f̂ (z,ω) = ρ(z,ω)/ρ(z), from which we can
calculate the orientational order parameters in the laboratory-
fixed frame [10]. These are the five independent components of
the nematic order parameter tensor Qαβ = 〈 1

2 (3ω̂αω̂β − δαβ)〉.
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TABLE III. Grand-canonical potential � values after 1000 and 2000 MNN epochs, for h = 10 and different choices of momentum and
learning step parameters. The HGO model parameters are κ = 3, ρ∗

bulk = 0.35 (bulk N phase), and L∗ = 1 (impenetrable walls). Statistics are
compiled from batches of 10 runs; * means that one run diverged and was not included in the calculations.

η = 1.0, α = 0.9 η = 1.0, α = 0.7 η = 0.7, α = 0.9 η = 0.7, α = 0.7

1000 2000 1000 2000 1000 2000 1000 2000

Mean 8.964565* 8.957609* 8.968601 8.965057 8.961541 8.959473 8.970223 8.962241
Median 8.960294 8.958088 8.969784 8.965568 8.960423 8.958575 8.970974 8.962251
Maximum Diverged Diverged 8.975090 8.971631 8.970380 8.968318 8.977538 8.972639
Minimum 8.949732 8.948179 8.955962 8.952717 8.951463 8.949201 8.957841 8.951727
St. deviation 0.016548* 0.008898* 0.006345 0.006298 0.006714 0.006718 0.006962 0.006562

In the case under study there is no twist, i.e., the director is
confined to a plane that we can take as the xz plane and Qyy =
Qyz = 0. The three remaining order parameters Qxy , Qzz,
and Qxz [because Qαβ is traceless, Qxx = −(Qxx + Qzz)]
are in general all nonzero owing to surface-induced biaxiality
(see our earlier work for L∗ = 1 [11]). This effect has not
been neglected in the present treatment, but in what follows
we show results for Qzz only, as it (i) allows one readily to
distinguish between homeotropic and planar states; and (ii) is
usually the largest order parameter (in absolute value). It is
given by

Qzz(z) =
∫

P2(cos θ )f̂ (z,ω) dω. (19)

Figures 4–11 show the density and order parameter profiles
from EL and MNN minimization of the free energy, compared
with MC simulation data. There is very good agreement
between EL and MNN at the lower (isotropic) density, for all
values of the reduced needle length L∗. At the higher (nematic)
density, however, there is again perfect agreement for L∗ = 0,
1
3 , and 1; for L∗ = 2

3 , EL minimization predicts alignment
of the LC parallel to the walls, as seen in simulations [23],
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=0.28, theory, Euler-Lagrange solution
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=0.28, theory, neural network minimisation

FIG. 4. (Color online) Density ρ∗(z) (top) and order parameter
Qzz(z) (bottom) profiles for a symmetric film of HGO particles of
elongation κ = 3, for ρ∗

bulk = 0.28. The needle length is L∗ = 0 on
both walls, inducing homeotropic anchoring (only one half of system
is shown). Lines are from theory using the standard solution of the EL
equation (solid) and our MNN (dashed), symbols are from simulation.
This density lies in the isotropic phase.

whereas MNN with a single hidden layer predicts homeotropic
alignment, which is metastable for this value of L∗. Indeed,
we expect a crossover from homeotropic to planar equilibrium
alignment at L∗ ≈ 0.5 [23], so it is not altogether surprising
that convergence to the absolute free energy minimum should
be harder in this range, where bistability is often observed in
simulations. Use of a MNN with two hidden layers, however,
allowed us to reach the correct equilibrium state at little extra
computational cost, in 3 out of 10 attempts, all starting from
different random initial guesses for ρ(ω,z). In Fig. 9 we plot
both the metastable and true equilibrium profiles, for which the
free energy (in reduced units) is, respectively, 8.937 and 8.783.
In the latter case, there is again perfect agreement between the
EL and MNN results. Note that the metastable state is also a
solution of the EL equation, for a different choice of initial
guess.

C. Assessment of computational costs

In order to contrast the performances of MNN minimization
versus iterative solution of the EL equation, we ran three
different codes on a laptop computer with a CPU of 2.20 GHz
and 2 GB RAM, under the MS Windows Vista operating sys-
tem. The confined HGO fluid parameters are κ = 3, L∗ = 1,
ρbulk = 0.35, corresponding to the most demanding case of
a bulk N phase between fully impenetrable walls. The EL
code was run until the error, defined as the sum of the
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FIG. 5. (Color online) Same as Fig. 4, but for ρ∗
bulk = 0.35. This

density lies in the nematic phase.
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FIG. 6. (Color online) Density ρ∗(z) (top) and order parameter
Qzz(z) (bottom) profiles for a symmetric film of HGO particles of
elongation κ = 3, for ρ∗

bulk = 0.28. The needle length is L∗ = 1
3 on

both walls, inducing homeotropic anchoring (only one half of system
is shown). Lines are from theory using the standard solution of the EL
equation (solid) and our MNN (dashed), symbols are from simulation.
This density lies in the isotropic phase.

absolute values of the differences between consecutive iterates
at 64×16×16 = 16 384 points, was less than 10−2; the MNN
was run for 1000 or 2000 iterations.

(A) Standard iterative solution of the EL equation coded in
C: runtime for 711 iterations is 436 minutes; final free energy
is 8.965674.

(B) MNN coded in C, using h = 25, the Kij matrix is
computed on the fly: runtime for 1000 iterations is 150 minutes.
Using a prestored K would be faster, but by far not as fast as
MATLAB because MATLAB uses machine code optimized for
matrix calculation.

(C) MNN coded in MATLAB, using h = 25 and prestored
Kij matrix: runtime for 1000 iterations is 4 min. The Kij

matrix, which is reusable for any simulation with the same
model parameters, takes an additional 38 min to generate.

0 1 2 3 4 5 6
z/σ0

-0.5

0.0

0.5

1.0

Q
zz
(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ∗ (
z)

ρ*
=0.35, theory, Euler-Lagrange solution

ρ*
=0.35, MC simulation

ρ*
=0.35, theory, neural network minimisation

FIG. 7. (Color online) Same as Fig. 6, but for ρ∗
bulk = 0.35. This

density lies in the nematic phase.
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FIG. 8. (Color online) Density ρ∗(z) (top) and order parameter
Qzz(z) (bottom) profiles for a symmetric film of HGO particles of
elongation κ = 3, for ρ∗

bulk = 0.28. The needle length is L∗ = 2
3 on

both walls, inducing parallel anchoring (only one half of system is
shown). Lines are from theory using the standard solution of the EL
equation (solid) and our MNN (dashed), symbols are from simulation.
This density lies in the isotropic phase.

Storing the Kij matrix has obvious advantages in processing
time, but we must remember that Kij is a huge matrix that
uses 512 MB storage for this problem, making this approach
very difficult to scale up to higher dimensions; the size of
Kij increases quadratically with the number of Gaussian
quadrature points included in any extra dimension.

Simulations of types B and C are algorithmically equivalent,
the only difference is whether or not matrix Kij is prestored,
so the final free energies are the same. Results depend on the
MNN parametrization (see Table III); for η = 0.7, α = 0.9, the
mean and median final free energy are, respectively, 8.959 473
and 8.958 575. This is within less than 0.1% of the EL result.
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FIG. 9. (Color online) Same as Fig. 8, but for ρ∗
bulk = 0.35. This

density lies in the nematic phase. MNN results were calculated using
two two hidden layers, η = 1.0 and α = 0.97. The metastable profiles
are for homeotropic alignment, the true equilibrium profiles are for
planar alignment.
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FIG. 10. (Color online) Density ρ∗(z) (top) and order parameter
Qzz(z) (bottom) profiles for a symmetric film of HGO particles of
elongation κ = 3, for ρ∗

bulk = 0.28. The needle length is L∗ = 1 on
both walls, inducing parallel anchoring (only one half of system is
shown). Lines are from theory using the standard solution of the EL
equation (solid) and our MNN (dashed), symbols are from simulation.
This density lies in the isotropic phase.

V. DISCUSSION AND CONCLUSIONS

We have developed and implemented a MNN for the grand-
canonical functional of confined hard nonspherical particles.
This has been tested for the HGO fluid treated at the level of
the simple Onsager approximation with a “bulk” Parsons-Lee
scaling. Results were found to be in very good agreement with
those from iterative solution of the EL equation, provided
we use two hidden layers. Our MNN appears, however, to
be substantially faster, which fact, coupled with its reliability,
makes it a strong candidate for solving the structure of confined
fluids. Speed and economy of memory storage are of particular
importance if one wishes to consider systems where there is
spatial variation in more than one dimension, or where the
particles are biaxial, in which cases the EL-based method
becomes at worst inapplicable, at best extremely expensive
on computer resources. To see why this is so, consider a
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FIG. 11. (Color online) Same as Fig. 10, but for ρ∗
bulk = 0.35.

This density lies in the nematic phase.

stripe-patterned substrate: now each particle needs to be
specified by one additional spatial coordinate, say x, along
the plane of the substrate. Hence, the interaction kernel Kij

[Eq. (12)] would depend on two additional variables xi and xj ;
if we choose the number of integration points along x to be,
e.g., nx = 32, then Kij would grow by a factor of n2

x = 1024.
The same comment applies if the particles are biaxial, where
now the additional coordinate is the third Euler angle χ . By
contrast, our MNN is sufficiently fast that Kij can be computed
“on the fly,” with substantial RAM savings.

The MNN method as presented is general and can be applied
to any functional of the density-orientation profile; we have
tested it for the simplest possible, Onsager-type approximation
to the free energy of a fluid of hard rods. More sophisti-
cated theoretical approaches are of course available, such
as a weighted-density [42] or fundamental-measure [48,49]
approximation, which would very likely be more accurate,
i.e., reproduce simulations more closely, but our purpose, as
stated above, was just to develop a new solution algorithm and
assess its performance.

Our method can be fine tuned in a number of ways,
which might yield further performance and reliability gains.
In particular, more work needs to be done to ensure that we
always converge to the true absolute minimum of the free
energy, even when there are competing metastable states.

(1) Symmetries. For systems with symmetric substrate
conditions, we may reduce the storage requirements by using
an interaction matrix of size (nz/2) × nz (where nα is the
number of discrete values of coordinate α); indeed, equivalent
efficiencies can be achieved where there are any other planes
of symmetry. Thus, if we assume that there are planes of
symmetry perpendicular to the x, z, and φ axes, the interaction
matrix will scale as N = (n2

x/2) × (n2
z/2) × n2

θ × (n2
φ/2). Its

size will then be N times the 8 bytes that are needed for
representing high-precision floating-point numbers. For nx =
nz = 32, nθ = nφ = 16, this yields a total RAM requirement
of 64 GB, which is achievable with high-end computational
hardware and/or parallelization.

(2) Network topology. So far, we have studied the impact
on learning speed of varying the number of units within each
layer, the learning rate, and momentum factor, but not of
increasing the number of hidden layers.

(3) Training algorithm. Several methods can be used to
improve the training speed of a standard MLP. Amongst these,
the most common and most successful are the conjugate-
gradient algorithms and quasi-Newton algorithms. The net-
work employed in our ANN is not a standard MLP, and in order
to benefit from these algorithms it would be necessary to adapt
them to an unsupervised network. Quasi-Newton algorithms
include Broyden-Fletcher-Goldfarb-Shanno (BFGS), one-step
secant, and Levenberg-Marquardt algorithms. These base their
weight update functions on the Hessian matrix, rather than the
gradient of the energy. In a very large data set, finding the
Hessian matrix is extremely time and memory consuming,
which renders the quasi-Newton approach unfeasible on a
standard computer. We have adapted the conjugate-gradient
algorithm to compute the error gradient of the free energy for
our unsupervised network (instead of the quadratic error of
a standard MLP). We then used the Fletcher-Reeves update
to compare the learning speed with that obtained with our
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backpropagation algorithm. This algorithm, like Polák-Ribiere
and Powell-Beale, requires a line search to determine the
minimum energy in a particular direction. This line search
is itself extremely time consuming, and our experiments
with Fletcher-Reeves have shown an overall learning speed
slower than backpropagation. Moreover, convergence seemed
more likely to become trapped in local minima. One possible
solution would be to implement a scaled-conjugate-gradient
algorithm [50]; these have been designed with the aim
of avoiding the time-consuming line search of standard
conjugate-gradient algorithms.

Given the above, the MLP approach would appear to
offer a significant opportunity in the context of complex LC
alignment calculations. There is no prospect of conventional

iterative approaches being able to deal with cases with in-plane
substrate variation, so this alternative is very welcome.
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